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PART I : The MESSAGE

Fields Today

1) Gauge&Symmetries —Imitation of QElectrodyn

2) Geometrization
The Third Way
Principle of Equivalence, Non-Inertial Motion

A "New Deal" in Fields

PART II : MOTION DEPENDS ON OBSERVER

31
Curved Space

Newton’s Law

mg = e

Equivalent with a free motion in a curved space

dut
du —i—F;-ku’uk =0

Du'/ds =
u'/ds .
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Metric tensor
ds® = (1 + h)dt* + 2cdtgadr®™ — dr*dz®

1+h g1 g2 g3
Ji=l g 0 -1 0
gs 0 0 -1

Basic equation

dg. 1 Oh

cot 2 0Ox“© Ja/me

g(t), h(r)
fo = —0p/0x% | h = 2p/mc?

(gravitational potential)

31

For the first time Einstein "suspected the time" (1905)

Curved Spaces: Gauss (~ 1830)

Riemann: Uber die Hypothesen welche der Geometrie zugrunde liegen, 1854
Grassman, Christoffel, Ricci, Levi-Civita

Klein: Programm zum FEintritt in die philosophische Fakultat in FErlangen, 1872
Einstein, Poincare, Minkowski, Sommerfeld, Kottler, Weyl, Hilbert
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Motion depends on subjectivity, though a "universal subjectivity" ("inter-subjectivity"?)
Pauli 1921

Covariance; Dirac

4

Non-Uniform Translation

Inertial force

g=-V/c

Equivalent with a curved space (Principle of equivalence)

5
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Coordinate Transformations
From a flat space to a curved space
da' = aida, da' = bida?, dw; = bld; ajbh = bak = o
ds? = nydr'de) = ngakalde'da"

Jij = nlmaéa;'na 9” = nlmb;bjm, where ,r]lm = nlm(+, R _)

(14 h)dt' + (g + BA)dz'/c _ B+ h)dt' + (Bg + A)dz’

dt = , dr =
G NOED IS

6
B =dx/cdt, A = \/1—i-hi+g2
Two frames, relative velociy (3, one flat, the other curved
-For h, g = 0 - Lorentz transformations
-We put § =V/c = —g as before (to give a sense to our curved space)
-We put h(r) and g(t)
-We use h, g < 1, to get corrections to the relativistic motion
-We get
dt = (1+ h/2)dt' , dv = dz’ — cgdt’ = da’ + Vdt'

7
Life in a curved space
Proper time dr = /1 + hdt
Distance ds* = ¢2(1 + h)[dt + gdr/c(1 + h)]* — [dr* + (gdr)?/(1 + h)]
or

ds* = Adt” — d1I?
Light propagates along curved geodesics (ds = 0) with velocity ¢
Time is indefinite, dr and dt’, depends on path
8

PART III : MOTION as a COORDINATE TRANSFORM; EINSTEIN’s VIEW

A GENERALIZED HAMILTON-JACOBI EQUATION

81

General Theory of Motion
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-Free motion ¢ — x; Motion under forces t —

-Had we know & — 2/, i.e. a global coordinate transf, we solve the motion
-Einstein’s line of thought

-We have not that global coordinate transformation

(cannot get the 10 g;; with four functions; local flat spaces, but axes are different from point to
point)

- Our transformations are Local! (x = (ct,r), 2’ = (ct',x'), de «—— da’)

9
One Exception: Special Theory of Relativity

From rest to motion (principle of inertia, ds®> = const)
r=clr/\/1=0%, t=1//1—[3?

A vector: momentum p = 05/0r, energy py = E/c = —0S5/cot
Apply these transf to this vector

p=vE/c?, E=Ey/\/1-p3%, Ey=mc*

Eqgs of motion

dp/dt =f
10
Additional "relativistic" forces (~ v?)

Hamilton-Jacobi equation E? — ¢?p? = m2ct
(05/0t)* — 2(05/0r)* = m2c*

This is the entire theory of special relativity

11
Hamilton-Jacobi Equation in Curved Space

Motion in curved space

Let (Py = Fy/c, —P) be the (cov) momentum of a free motion in the flat space, constant, P —P? =
2.2
mZc

Apply the coord transf for our curved space

_ 0 1 _ . P—-8P
po=1+h)p’+gp' =V1+h ur:

o0 1 (g+BA) R —(gB+A) Py
b1 =gp  — P S h ()
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An integral of motion, already (by using p; = mcdu;/ds)? NO! Different z and 2!
12
Use P2 — P2 =m?2c for g = -3

Hamilton-Jacobi Equation in curved space
(E —cgp)? — (1 +h+ ¢*)(p* +m?c®) =0

or

(0S/0t + cgdS/or)* — *(1+ h + ¢*)[(0S/0r)? + m*c*] = 0

Euler-Lagrange Motion

The action

S:—mc/ds:—m02/dt~(1+h+2gv/c—1)2/02)1/2:/dt-L

mdp/dt = F

13

Oh/Or
(1+h+2gv/c—v2/c?)/?

F =0L/or = —(mc?*/2) -

mc?(1+ h) + mevg

E = — L =
pv (L+h+2gv/c — 12/c2)1 /2

We get again the Hamilton-Jacobi equation given before

(E —cgp)® — (1 +h+g*)(p* +m*c*) =0

S:—mc/ds

§ds® = 2dsdds = 6(gida’dr’) = 2g;;da'dox’ + da'dx? (Dgy;)0x* )"

Lagrange Motion

14

pi = —05/0x" = meu; , pi = (po, —P)

Hamilton: £ = —05/0t; it follows py = —E/c

Since p;p* = m*c?, i.e. gYp;p; = m?c* we get again the Hamilton-Jacobi equation in curved space

(0S/0t + cgdS/or)* — (1 + h + ¢*)[(0S/0r)* + m*c*] = 0
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15

Contravariant metric

1 g1 g2 g3
gji— L@ ~A’ 4497 g1 9193
A2 | 92 9192 —A? + g3 9293
g3 9391 9392 —A? 4 g3

Eikonal Equation

-Waves go by k;dz' = —d®, the eikonal (phase); flat space k; = (kg = w/c, —k), frequency and
wavevector, k;k! = (w/c)? — k? = 0; straight line, ® = —wt + kr; geometric optics

-Since k;k' = g“k;k; = 0 we get the eikonal equation in curved space

16
(0® /0t + cgd®/0r)* — (1 + h + ¢*)(0®/0r)* = 0

-Solve it!
-neglect g?

-first term does not depend on the time ¢ (the second doesnt!)

0P /cot + goP/0r = —wy/c

where wq the frequency in the flat space; in addition
1 2

(@000 = = - (/) = 15 K

1+h

17
-It follows
0P /cot = —wy/c — gko

-What we measure? We measure the local, proper-time frequency

1

w/c=—0P/cOT = i

0P /cot =

'WO/C+gk0

1
v1+h
-Therefore a shift in frequency

Aw/wo = —h/2 + Cgko/u)(]
First term - the red shift; second term - Doppler effect (long)
18
-Time-dependent part of the eikonal: ®,(t) = —wot + koR(?): a translation, as expected
-The path? (0®/0r)? = (1 — h)k2

-Write it in spherical coordinates; separate variables by ® = ®,.(r)+ My, M a constant; 0P /OM =
const gives the equation of the trajectory (M is a generalized coordinate, its momentum is con-
stant)
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The deflection angle (distance M /ky)

Ap = —(k§/2) /T dr - (&2 }i.]\]/\[i//:z)?,/z

o

(4 times smaller than in grav field of a point mass; our metric is not that metric!)

19

PART IV : QUANTIZATION

BASIC CHANGES

190
Quantization
What are we doing?
Nothing Good (though NEW), even WORSE than before

Because it is bad to solve for a non-inertial motion; we just solve for an inertial frame and do the
translation (for instance, the Ham-Jac eq is solved with h for Mercury’s perihelia precession; then
apply the translation, etc)

This is perfectly true for classical motion with trajectory
Things Change Fundamentally for the Quantal Motion

20

Quantization

S = —ihlny; E — thd/0t, p — —ihd/0r

No trajectory, wavefunction 1)

No determined physical quantities (F, p) (operators)
Means and deviations: statistical meaning

w|2density of probability (conservation)

Apply this procedure to the Ham-Jac eq E? — ¢2p? = m?c?
21

Get the Klein-Gordon equation

OOt — 0% or* + (m*ct /R ) = 0

Troubles: the conserved quantity is ¢*(0y/0t) — (0* /Ot)1, both positive and negative (due to

negative energies £ = —y/p?c? + m2c*)- nonsense
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Dirac: ihdy /0t = (acp + Bmc?)y, matrices a and 3; get a probability, but 1 is a spinor; so, the
question remains for the Klein-Gordon eq

22
Approximate Klein-Gordon equation

Apply the quantization to the Ham-Jac eq in curved space

(E —cgp)’ — (1 +h)(p* +m*c*) =0

(neglecting g?)

Troubles: 1+ h does not commute with p? + m?c?, ambiguities

We may transfer it to the lhs as 1/(1 + h), and neglect the gh-commutator
23

Get then an approx Klein-Gordon eq in curved space
(ihd/0t — cgp)*th — (1 + h)(p*> + m*c*)p = 0

Still troubles, since we do not know where to put 1 + h with respect to p? + m?c?

However, in the non-relativistic limit this ambiguity does not matter, and we get the Schrodinger
equation (recall h = 2¢/mc?)

ihOy /Ot = Hap = (mc® + p*/2m + p) + cgpyp
24
The Fundamental Fact
The eigenstates are no more conserved due to the non-uniform translation
We get quantal transition
An observer in a non-uniform translation sees quantal transitions

Esssential thing: do not conserve the momentum; the presence of the external
potential p(i.e. h) is essential

25
The approximate Klein-Gordon eq can be solved by pert theory

(ih0 /0t — cgp)®th — (1 + h)(p* + m*c*)Y =0
Define H? = (1 + h)(p* + m?2c?), solve in the first order, get E? = (1 + h)(p*c® + m?c?), the

wavefunctions ¢(p)-plane waves plus a weak admixture of plane waves (due to h); then we have

(1ho/ot — cgp)y = E¢
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Get the transition amplitude
—(i/h) / gt - e~ EW-EW /g,

Conclusion: we do have quantal transitions!
26

Restricting to the first-order of the perturbation theory we get also a Dirac equation

(ihd /0t — cgp)y = (acp + Bmc?)yY
with leads to the same conclusion

A "profound" argument

Let our eq be
(0/0t + cgd/or)*p — (1 + h)[0*)/0r* — (m*c? /h*)ep] = 0

like above
27

Fourier transform; a homogeneous matricial equations in labels (w,k); solve it by zeroing the
determinant; get the eigenvalues; they are labelled by points (w, k) conveniently ordered; conse-

quently, the eigenvalues are useless, they do not provide an algebraic relationship between w and
k

That means that for an w we have many k and for a k we have many w
That means that the plane waves scatter both in w and in k
28

That means that the quantization with plane waves is the only way to understand such solutions
of the 2nd order diff eqs, and more, we have for them a statistical meaning; this is The Quantal
Fields Theory!

281
PART V : FIELDS; HOW THEY ARE and What THEY DO in a CURVED SPACE

282
Fields

Cannot forget that the above Klein-Gordon or Dirac equations in curved space are only approxi-
mate

Way out: The Fields!
29

Real Scalar Field (general note: covariant derivative)
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5= [ dutiry=g - [(0)@'%) + 02 1207
Eqs of motion
(ihd/0t — cgp)*th — (1 + h)(p* + m*c®)y + (ihc?/2)(Oh/Or)py = 0

This is the real Klein-Gordon equation in curved space

Note the additional interacting term (0h/Or)p

Supports a similar treatment with the perturbation theory; same conclusion: quantal transitions
30

(Note: compare it with the KG eq in an electromagnetic field
(ihd /0t — ep)*h — 2[(ihd/Or + eA/c)* + m*c®] = 0

Quite different! (Gauge fields!))
The Hamiltonian of the Real Scalar Field
Quantization by II = 9L/9(dy/0t), Hamiltonian by I1(9y/0t) — L, the Lagrangian in S = [d¢- L

H = Hy+ Hy, + Hyy

31
Hy = [dr- [PI12/4 + (90 /0r)? + (m2c /1)) =

= 2313(5/2)(%)“;)r + a;’ap)
Hy = [ o (VTF = 1) [PI2/4 4+ (0000 + (e 12)07]

Hyy = —(c/2) [ dr - [lI(g0y/0r) + (g0¢/or)lT] =

= —(c/2) Zp(gp) (@p@;)r + a;ap)

Systematic perturbation theory; scattering in the hg-order (¢ = \/p?c? + m2c*)
32

Electromagnetic Field. Photons

S = —(1/16mc) /da:odr N/ —gFFY
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Fij = 0;A; — 0;A;; 0;Fj; + 0;Fy; + O Fi; = 0 (free Maxwell eqs)
Interacting Maxwell eqs 9;(v/—gF") =0

div[(E+ g x B)/A] = divD =0

%[(E +gx B)/A] = curl[AB + g x E/A]

Perturbation theory; scattering, both in k and w
33
The Hamiltonian of the Photons

S = (1/87) [ dtdr - A(D? — B2) =
— (1/87) [ dtdr - (1/A)(E? + 2E(g x B) — A?B?)
H = Hy + Hy, + H,

H, = /dr- (1% /4 + B?) = 2(5/2)(@}%1) + aapa;'p)

ap

Hy = /dr (V14 h—1)(fT1%/4 4+ B?)
34

Hyg = — Z(gP/Q)(aipaap + aapajx_p)
ap
Systematic theory of perturbations (¢ = cp = chk)

Photons are scatterred in frequency, as a consequence of a non-uniform translation, when in an
external field (like a static grav field)

35
Other Fields. Quantum Gravity

Similar for other fields (spin-1/2 Dirac field) (technically more cumbersome; vierbeins)

Gravitons; quantized (with troubles); moving in a curved space S = [ dz%dr-\/=gR; g = go + 99,
background and gravitons; scattering of gravitons, ¢.e. of the space-time, on space-time, ¢.e. on
matter or on the non-inertial motion

36

PART VI : OTHER non-INERTIAL MOTIONS and MISCELLANEA;
CONCLUSIONS
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361

Rotations
dr' =dr+ (Q x r)dt

dv:dv+(er)dt+2(9xv)dt+[9x(er)]dt

Non-uniform rotation, Coriolis, centrifugal

H=mv?/2—=m(Qxr)?/24+¢=p*2m—Qr xp)+¢=

=p*/2m — QL+ ¢

No Coriolis, no centrifugal; just L we may neglect Q2
37

The above coordinate transformation gives the metric

I+h g1 g2 g3
9i=1 ¢ 0 -1 0
gs 0 0 —1

with
g=-Qxr/c
as before
Two distinctions: g(t,r)
Or/ek 1
Coupling through the angular momentum L
38
Conclusions

Non-inertial motion (for instance of the observer) produces quantal transitions in the presence of
an external field

The coupling is through momentum p for translations or through the angular momentum L for
rotations; so, the external field must not conserve these quantities

For instance, photons in a static gravitational field are scattered toward the blue (the blue shift)
while seen from a non-uniform translation (or rotation)

Relation to the Unruh effect - quite distinct (the observer in the U effect sees its own motion as
a bath of photons)

39
Another more practical Conclusion:

The quantization in curved spaces has no meaning or it has the meaning given here
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