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al Physi
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s,Magurele-Bu
harest Mg-6, POBox Mg-35, Romaniaemail: apoma�theory.nipne.ro1 PART I : The MESSAGE2 Fields Today1) Gauge&Symmetries �-Imitation of QEle
trodyn2) Geometrization The Third WayPrin
iple of Equivalen
e, Non-Inertial MotionA "New Deal" in Fields3 PART II : MOTION DEPENDS ON OBSERVER31 Curved Spa
eNewton's Law
m
dvα

dt
= fαEquivalent with a free motion in a 
urved spa
e

Dui/ds =
dui

ds
+ Γi

jku
juk = 0



2 The Antiphysi
al ReviewMetri
 tensor
ds2 = (1 + h)c2dt2 + 2cdtgαdx

α − dxαdxα3
gij =









1 + h g1 g2 g3

g1 −1 0 0
g2 0 −1 0
g3 0 0 −1







Basi
 equation
∂gα

c∂t
− 1

2
· ∂h
∂xα

= fα/mc
2

g(t), h(r)

fα = −∂ϕ/∂xα , h = 2ϕ/mc2(gravitational potential)31For the �rst time Einstein "suspe
ted the time" (1905)Curved Spa
es: Gauss (∼ 1830)Riemann: Uber die Hypothesen wel
he der Geometrie zugrunde liegen, 1854Grassman, Christo�el, Ri

i, Levi-CivitaKlein: Programm zum Eintritt in die philosophis
he Fakultat in Erlangen, 1872Einstein, Poin
are, Minkowski, Sommerfeld, Kottler, Weyl, Hilbert32Motion depends on subje
tivity, though a "universal subje
tivity" ("inter-subje
tivity"?)Pauli 1921Covarian
e; Dira
4Non-Uniform Translation
r = r′ + R(t′) , t = t′

m
dv′

dt′
= f ′ −mdV/dt′Inertial for
e
g = −V/cEquivalent with a 
urved spa
e (Prin
iple of equivalen
e)5



The Antiphysi
al Review 3Coordinate TransformationsFrom a �at spa
e to a 
urved spa
e
dxi = ai

jdx
′j , dx′i = bijdx

j , dxi = bjidx
′

j a
i
kb

k
j = bika

k
j = δi

j

ds2 = ηijdx
idxj = ηija

i
ka

j
l dx

′kdx′l

gij = ηlma
l
ia

m
j , gij = ηlmbilb

j
m, where ηlm = ηlm(+,−−−)

dt =
(1 + h)dt′ + (g + β∆)dx′/c

√

(1 + h)((1− β2)
, dx =

cβ(1 + h)dt′ + (βg + ∆)dx′
√

(1 + h)((1− β2)6
β = dx/cdt, ∆ =

√

1 + h + g2Two frames, relative velo
iy β, one �at, the other 
urved-For h, g = 0 - Lorentz transformations-We put β = V/c = −g as before (to give a sense to our 
urved spa
e)-We put h(r) and g(t)-We use h, g ≪ 1, to get 
orre
tions to the relativisti
 motion-We get
dt = (1 + h/2)dt′ , dx = dx′ − cgdt′ = dx′ + V dt′7Life in a 
urved spa
eProper time dτ =

√
1 + hdtDistan
e ds2 = c2(1 + h)[dt+ gdr/c(1 + h)]2 − [dr2 + (gdr)2/(1 + h)]or

ds2 = c2dt′2 − dl2Light propagates along 
urved geodesi
s (ds = 0) with velo
ity cTime is inde�nite, dτ and dt′, depends on path8 PART III : MOTION as a COORDINATE TRANSFORM; EINSTEIN's VIEWA GENERALIZED HAMILTON-JACOBI EQUATION81 General Theory of Motion



4 The Antiphysi
al Review-Free motion t→ x; Motion under for
es t→ x′-Had we know x→ x′, i.e. a global 
oordinate transf, we solve the motion-Einstein's line of thought-We have not that global 
oordinate transformation(
annot get the 10 gij with four fun
tions; lo
al �at spa
es, but axes are di�erent from point topoint)- Our transformations are Lo
al! (x = (ct, r), x′ = (ct′,r′), dx←→ dx′)9 One Ex
eption: Spe
ial Theory of RelativityFrom rest to motion (prin
iple of inertia, ds2 = const)
x = cβτ/

√

1− β2 , t = τ/
√

1− β2A ve
tor: momentum p = ∂S/∂r, energy p0 = E/c = −∂S/c∂tApply these transf to this ve
tor
p = vE/c2 , E = E0/

√

1− β2 , E0 = mc2Eqs of motion
dp/dt = f10Additional "relativisti
" for
es (∼ v2)Hamilton-Ja
obi equation E2 − c2p2 = m2c4

(∂S/∂t)2 − c2(∂S/∂r)2 = m2c4This is the entire theory of spe
ial relativity11 Hamilton-Ja
obi Equation in Curved Spa
eMotion in 
urved spa
eLet (P0 = E0/c,−P) be the (
ov) momentum of a free motion in the �at spa
e, 
onstant, P 2
0−P2 =

m2c2Apply the 
oord transf for our 
urved spa
e
p0 = (1 + h)p0 + gp1 =

√
1 + h · P0−βP1√

1−β2

p1 = gp0 − p1 = (g+β∆)P0−(gβ+∆)P1√
(1+h)(1−β2)



The Antiphysi
al Review 5An integral of motion, already (by using pi = mcdui/ds)? NO! Di�erent x and x′!12Use P 2
0 −P2 = m2c2 for g = −βHamilton-Ja
obi Equation in 
urved spa
e

(E − cgp)2 − c2(1 + h + g2)(p2 +m2c2) = 0or
(∂S/∂t + cg∂S/∂r)2 − c2(1 + h+ g2)[(∂S/∂r)2 +m2c2] = 0Euler-Lagrange MotionThe a
tion

S = −mc
∫

ds = −mc2
∫

dt · (1 + h+ 2gv/c− v2/c2)1/2 =

∫

dt · L

mdp/dt = F13
F = ∂L/∂r = −(mc2/2) · ∂h/∂r

(1 + h+ 2gv/c− v2/c2)1/2

E = pv − L =
mc2(1 + h) +mcvg

(1 + h + 2gv/c− v2/c2)1/2We get again the Hamilton-Ja
obi equation given before
(E − cgp)2 − c2(1 + h + g2)(p2 +m2c2) = 0Lagrange Motion

S = −mc
∫

ds14
δds2 = 2dsδds = δ(gijdx

idxj) = 2gijdx
idδxj + dxidxj(∂gij/∂x

k)δxk

pi = −∂S/∂xi = mcui , pi = (p0,−p)Hamilton: E = −∂S/∂t; it follows p0 = −E/cSin
e pip
i = m2c2, i.e. gijpipj = m2c2 we get again the Hamilton-Ja
obi equation in 
urved spa
e

(∂S/∂t + cg∂S/∂r)2 − c2(1 + h+ g2)[(∂S/∂r)2 +m2c2] = 0



6 The Antiphysi
al Review15Contravariant metri

gij =

1

∆2









1 g1 g2 g3

g1 −∆2 + g2
1 g1g2 g1g3

g2 g1g2 −∆2 + g2
2 g2g3

g3 g3g1 g3g2 −∆2 + g2
3







Eikonal Equation-Waves go by kidx
i = −dΦ, the eikonal (phase); �at spa
e ki = (k0 = ω/c,−k), frequen
y andwaveve
tor, kik

i = (ω/c)2 − k2 = 0; straight line, Φ = −ωt+ kr; geometri
 opti
s-Sin
e kik
i = gijkikj = 0 we get the eikonal equation in 
urved spa
e16

(∂Φ/∂t + cg∂Φ/∂r)2 − c2(1 + h+ g2)(∂Φ/∂r)2 = 0-Solve it!-negle
t g2-�rst term does not depend on the time t (the se
ond doesnt!)
∂Φ/c∂t + g∂Φ/∂r = −ω0/cwhere ω0 the frequen
y in the �at spa
e; in addition

(∂Φ/∂r)2 = k2 =
1

1 + h
· (ω0/c)

2 =
1

1 + h
· k2

017-It follows
∂Φ/c∂t = −ω0/c− gk0-What we measure? We measure the lo
al, proper-time frequen
y

ω/c = −∂Φ/c∂τ = − 1√
1 + h

· ∂Φ/c∂t =
1√

1 + h
· ω0/c+ gk0-Therefore a shift in frequen
y

∆ω/ω0 = −h/2 + cgk0/ω0First term - the red shift; se
ond term - Doppler e�e
t (long)18-Time-dependent part of the eikonal: Φt(t) = −ω0t+ k0R(t): a translation, as expe
ted-The path? (∂Φ/∂r)2 = (1− h)k2
0-Write it in spheri
al 
oordinates; separate variables by Φ = Φr(r)+Mϕ,M a 
onstant; ∂Φ/∂M =

const gives the equation of the traje
tory (M is a generalized 
oordinate, its momentum is 
on-stant)



The Antiphysi
al Review 7The de�e
tion angle (distan
e M/k0)
∆ϕ = −(k2

0/2)

∫ r

∞

dr · h ·M/r2

(k2
0 −M2/r2)3/2(4 times smaller than in grav �eld of a point mass; our metri
 is not that metri
!)19 PART IV : QUANTIZATIONBASIC CHANGES190 QuantizationWhat are we doing?Nothing Good (though NEW), even WORSE than beforeBe
ause it is bad to solve for a non-inertial motion; we just solve for an inertial frame and do thetranslation (for instan
e, the Ham-Ja
 eq is solved with h for Mer
ury's perihelia pre
ession; thenapply the translation, et
)This is perfe
tly true for 
lassi
al motion with traje
toryThings Change Fundamentally for the Quantal Motion20Quantization

S = −i~ lnψ; E → i~∂/∂t, p→ −i~∂/∂rNo traje
tory, wavefun
tion ψNo determined physi
al quantities (E, p) (operators)Means and deviations: statisti
al meaning
|ψ|2density of probability (
onservation)Apply this pro
edure to the Ham-Ja
 eq E2 − c2p2 = m2c221Get the Klein-Gordon equation

∂2ψ/∂t2 − c2∂2ψ/∂r2 + (m2c4/~2)ψ = 0Troubles: the 
onserved quantity is ψ∗(∂ψ/∂t)− (∂ψ∗/∂t)ψ, both positive and negative (due tonegative energies E = −
√

p2c2 +m2c4)- nonsense



8 The Antiphysi
al ReviewDira
: i~∂ψ/∂t = (αcp + βmc2)ψ, matri
es α and β; get a probability, but ψ is a spinor; so, thequestion remains for the Klein-Gordon eq22Approximate Klein-Gordon equationApply the quantization to the Ham-Ja
 eq in 
urved spa
e
(E − cgp)2 − c2(1 + h)(p2 +m2c2) = 0(negle
ting g2)Troubles: 1 + h does not 
ommute with p2 +m2c2, ambiguitiesWe may transfer it to the lhs as 1/(1 + h), and negle
t the gh-
ommutator23Get then an approx Klein-Gordon eq in 
urved spa
e

(i~∂/∂t − cgp)2ψ − c2(1 + h)(p2 +m2c2)ψ = 0Still troubles, sin
e we do not know where to put 1 + h with respe
t to p2 +m2c2However, in the non-relativisti
 limit this ambiguity does not matter, and we get the S
hrodingerequation (re
all h = 2ϕ/mc2)

i~∂ψ/∂t = Hψ = (mc2 + p2/2m+ ϕ)ψ + cgpψ24 The Fundamental Fa
tThe eigenstates are no more 
onserved due to the non-uniform translationWe get quantal transitionAn observer in a non-uniform translation sees quantal transitionsEsssential thing: do not 
onserve the momentum; the presen
e of the externalpotential ϕ(i.e. h) is essential25The approximate Klein-Gordon eq 
an be solved by pert theory
(i~∂/∂t − cgp)2ψ − c2(1 + h)(p2 +m2c2)ψ = 0De�ne H2 = c2(1 + h)(p2 + m2c2), solve in the �rst order, get E2 = (1 + h̄)(p2c2 + m2c4), thewavefun
tions ϕ(p)-plane waves plus a weak admixture of plane waves (due to h); then we have

(i~∂/∂t − cgp)ψ = Eψ



The Antiphysi
al Review 9Get the transition amplitude
−(i/~)

∫

dt · e−i[E(p)−E(p′)]t/~cgpp′pCon
lusion: we do have quantal transitions!26Restri
ting to the �rst-order of the perturbation theory we get also a Dira
 equation
(i~∂/∂t − cgp)ψ = (αcp + βmc2)ψwith leads to the same 
on
lusionA "profound" argumentLet our eq be

(∂/∂t + cg∂/∂r)2ψ − c2(1 + h)[∂2ψ/∂r2 − (m2c2/~2)ψ] = 0like above27Fourier transform; a homogeneous matri
ial equations in labels (ω,k); solve it by zeroing thedeterminant; get the eigenvalues; they are labelled by points (ω,k) 
onveniently ordered; 
onse-quently, the eigenvalues are useless, they do not provide an algebrai
 relationship between ω and
kThat means that for an ω we have many k and for a k we have many ωThat means that the plane waves s
atter both in ω and in k28That means that the quantization with plane waves is the only way to understand su
h solutionsof the 2nd order di� eqs, and more, we have for them a statisti
al meaning; this is The QuantalFields Theory!281PART V : FIELDS; HOW THEY ARE and What THEY DO in a CURVED SPACE282 FieldsCannot forget that the above Klein-Gordon or Dira
 equations in 
urved spa
e are only approxi-mateWay out: The Fields!29Real S
alar Field (general note: 
ovariant derivative)
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al Review
S =

∫

dx0dr
√
−g ·

[

(∂iψ)(∂iψ) + (m2c2/~2)ψ2
]Eqs of motion

(i~∂/∂t − cgp)2ψ − c2(1 + h)(p2 +m2c2)ψ + (i~c2/2)(∂h/∂r)pψ = 0This is the real Klein-Gordon equation in 
urved spa
eNote the additional intera
ting term (∂h/∂r)pSupports a similar treatment with the perturbation theory; same 
on
lusion: quantal transitions30(Note: 
ompare it with the KG eq in an ele
tromagneti
 �eld
(i~∂/∂t − eϕ)2ψ − c2[(i~∂/∂r + eA/c)2 +m2c2] = 0Quite di�erent! (Gauge �elds!))The Hamiltonian of the Real S
alar FieldQuantization by Π = ∂L/∂(∂ψ/∂t), Hamiltonian by Π(∂ψ/∂t)−L, the Lagrangian in S =

∫

dt ·L

H = H0 +H1h +H1g31
H0 =

∫

dr · [c2Π2/4 + (∂ψ/∂r)2 + (m2c2/~2)ψ2] =

=
∑

p
(ε/2)(apa

+
p + a+

pap)

H1h =

∫

dr · (
√

1 + h− 1)
[

c2Π2/4 + (∂ψ/∂r)2 + (m2c2/~2)ψ2
]

H1g = −(c/2)
∫

dr · [Π(g∂ψ/∂r) + (g∂ψ/∂r)Π] =

= −(c/2)
∑

p
(gp)(apa

+
p + a+

pap)Systemati
 perturbation theory; s
attering in the hg-order (ε =
√

p2c2 +m2c4)32Ele
tromagneti
 Field. Photons
S = −(1/16πc)

∫

dx0dr ·
√
−gFijF

ij



The Antiphysi
al Review 11
Fij = ∂iAj − ∂jAi; ∂iFjk + ∂jFki + ∂kFij = 0 (free Maxwell eqs)Intera
ting Maxwell eqs ∂j(

√−gF ij) = 0

div[(E + g ×B)/∆] = divD = 0

∂

c∂t
[(E + g ×B)/∆] = curl[∆B + g ×E/∆]Perturbation theory; s
attering, both in k and ω33The Hamiltonian of the Photons
S = (1/8π)

∫

dtdr ·∆(D2 −B2) =

= (1/8π)
∫

dtdr · (1/∆)(E2 + 2E(g×B)−∆2B2)

H = H0 +H1h +H1g

H0 =

∫

dr · (c2Π2/4 +B2) =
∑

αp

(ε/2)(a+
αpaαp + aαpa

+
αp)

H1h =

∫

dr · (
√

1 + h− 1)(c2Π2/4 + B2)34
H1g = −

∑

αp

(gp/2)(a+
αpaαp + aαpa

+
αp)Systemati
 theory of perturbations (ε = cp = c~k)Photons are s
atterred in frequen
y, as a 
onsequen
e of a non-uniform translation, when in anexternal �eld (like a stati
 grav �eld)35 Other Fields. Quantum GravitySimilar for other �elds (spin-1/2 Dira
 �eld) (te
hni
ally more 
umbersome; vierbeins)Gravitons; quantized (with troubles); moving in a 
urved spa
e S =

∫

dx0dr ·√−gR; g = g0 + δg,ba
kground and gravitons; s
attering of gravitons, i.e. of the spa
e-time, on spa
e-time, i.e. onmatter or on the non-inertial motion36 PART VI : OTHER non-INERTIAL MOTIONS and MISCELLANEA;CONCLUSIONS



12 The Antiphysi
al Review361 Rotations
dr′ = dr + (Ω× r) dt

dv = dv +
(

Ω̇× r
)

dt+ 2 (Ω× v) dt+ [Ω× (Ω× r)] dtNon-uniform rotation, Coriolis, 
entrifugal
H = mv2/2−m(Ω× r)2/2 + ϕ = p2/2m− Ω(r× p) + ϕ =

= p2/2m− ΩL + ϕNo Coriolis, no 
entrifugal; just L we may negle
t Ω237The above 
oordinate transformation gives the metri

gij =









1 + h g1 g2 g3

g1 −1 0 0
g2 0 −1 0
g3 0 0 −1







with
g = −Ω× r/cas beforeTwo distin
tions: g(t, r)

Ωr/c≪ 1Coupling through the angular momentum L38 Con
lusionsNon-inertial motion (for instan
e of the observer) produ
es quantal transitions in the presen
e ofan external �eldThe 
oupling is through momentum p for translations or through the angular momentum L forrotations; so, the external �eld must not 
onserve these quantitiesFor instan
e, photons in a stati
 gravitational �eld are s
attered toward the blue (the blue shift)while seen from a non-uniform translation (or rotation)Relation to the Unruh e�e
t - quite distin
t (the observer in the U e�e
t sees its own motion asa bath of photons)39 Another more pra
ti
al Con
lusion:The quantization in 
urved spa
es has no meaning or it has the meaning given here
© The Antiphysi
al Review 2008, apoma�theor1.theory.nipne.ro


