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Abstract

It is shown that the ”bosonization” of the fermions in two and three dimensions proposed
by Castro Neto and Fradkin (see, for instance, A. H. Castro Neto and Eduardo Fradkin,
Phys. Rev. Lett. 72 1393 (1994), Phys. Rev. 49 10 877 (1994)) is not a bosonization,
but rather a ”fermionization”. It is also shown that the bosonic ”coherent” state introduced
by these authors is not a coherent state, and the corresponding classical action is chosen
arbitrarily, in order to mimick some of the properties of the Fermi liquids; in particular, the
connection to the Fermi liquid theory is either lacking, or incorrect.

Few years ago, Castro Neto and Fradkin[1],[2] noticed that the Fourier transforms

ρq(k) = c+
k−q/2ck+q/2 (1)

of the fermion-density operator satisfy boson-like commutation relations

〈FS | [ρq(k), ρ−q′(k
′)] | FS〉 = qvkδ(µ− εk)δkk′δqq′ (2)

in the limit q → 0, when averaged over the Fermi sea | FS〉; here εk is the one-fermion energy,
vk = ∂εk/∂k is the corresponding velocity (Planck’s constant is set equal to one), µ denotes the
chemical potential, and the spin labels are omitted for simplicity. This is an old observation,
and it was systematically exploited, probably for the first time, by Sawada[3] in 1957. Based on
this observation the above authors[1],[2] set about to ”bosonize” the fermions in two and three
dimensions. To this end, normal-ordered operators

aq(k) = ρq(k)θ(qvk) + ρ−q(k)θ(−qvk) (3)

are introduced, where θ is the step function, such as aq(k) | FS〉 = 0, and boson-like commutation
relations [

aq(k), a+
q′(k

′)
]

= |qvk| δ(µ− εk)δkk′(δqq′ + δq,−q′) (4)

are adopted for these operators, as suggested by (2). However, the boson-like commutation rela-
tions (4) are not consistent with the definition given in (1) and (3) since

a+2
q (k) = 0 (5)

for q 6= 0. Indeed, one can check easily that

ρ2
q(k) = c+

k−q/2ck+q/2c
+
k−q/2ck+q/2 = n(k)δq,0 , (6)
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where n(k) = c+
k ck is the fermion occupation number. Therefore, the ”bosonic” operators

aq(k), a+
q (k) are in fact fermionic operators, operating only on two states, | FS〉 and | qk〉 =

a+
q (k) | FS〉, and the ”bosonization” is actually a ”fermionization”. Since aq(k) = a−q(k), one

may restrict oneself to qvk > 0, and the boson-like commutation relations (4) may be used (ap-
proximately) for k 6= k′ or q 6= q′, but not for k = k′,q = q′ where the a-operators satisfy

fermion-like commutation relations
{
aq(k), a+

q (k)
}

= 1 (and a+2
q (k) = 0). This would suffice

to say that the attempt made in Refs.1 and 2 at ”bosonizing” the fermions in two and three
dimensions is not a bosonization, but rather a ”fermionization”.

The situation is different in one dimension, where the bosonization is a genuine one. Indeed, the
boson-like operators are defined there by

ρ1,2q =
∑

k∼±kF

c+
k−q/2ck+q/2 , (7)

where kF is the Fermi momentum, and it is easy to see that, due to the summation over k,

(b+
1,2q

)n | FS〉 6= 0 (8)

for any n, where
b1q = ρ1,2q(k)θ(±qkF ) + ρ1,2−q(k)θ(∓qkF ) . (9)

One may use boson-like commutation relations for these operators, similar with those given by (2),
by averaging their commutators over the Fermi sea, and (8) gives then a boson state for any integer
n. One may conclude that this is indeed a genuine bosonization. Moreover, the commutators of the
kinetic energy with the boson operators b+

1,2q
does not depend on k in one dimension, in contrast

with the two- and three-dimensional case, so that the low-energy states of the one-dimensional
fermions can be described entirely in terms of the boson operators (the interaction energy can
always be expressed in terms of b, b+-type operators).[4] As often emphasized, this is in fact the
origin of the non-Fermi liquid behaviour of the fermions in one dimension.

Overlooking the contradiction implied by (4) and (5) Castro Neto and Fradkin[1],[2] proceed to
constructing a ”coherent” state defined by

| uq(k)〉 = exp

[
vk

2 |qvk|
uq(k)a+

q (k)

]
| FS〉 ; (10)

in view of (5) this can also be written in various other forms, like, for instance,

| uq(k)〉 =

[
1 +

vk

2 |qvk|
uq(k)a+

q (k)

]
| FS〉 ; (11)

obviously, the scalar products are different for these states. Restricting oneself to the low-energy
states defined by the a, a+-operators, one can establish the (over)completeness of both (10) and
(11) with a gaussian measure; however, the path-integral lagrangean is different, and in fact it is
not unique. Indeed, from (10) one obtains the lagrangean density

L =
∑
kq

v2
kδ(µ− εk)

2 |qvk|
· iu∗q(k)

∂

∂t
uq(k)−

(12)

−〈{uq(k)} |H| {uq(k)}〉/〈{uq(k)} || {uq(k)}〉 ,
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where H denotes the hamiltonian of the system, while, using (11), general factors of the form[
1 +

v2
k

|qvk|
δ(µ− εk)

∣∣∣u+
q (k)

∣∣∣2]−1

(13)

would affect the terms in the lagrangean density (12); they arise from the fact that commutators
like [eua, a+] = uCeua, where [a, a+] = C, differ from commutators like [1 + ua, a+] = uC. Of
course, these inconsistencies, like all the others, originate in the fact that bosonic coherent states
of the form given by (11) can not be constructed with fermionic operators. One may conclude,
therefore, that (11) is not a coherent state, and, in this respect, the choice (12) made by Castro
Neto and Fradkin[1],[2] for the classical lagrangean is arbitrary.

Further on, the lagrangean (12) is used by these authors for a hamiltonian H which is quadratic
in the a-operators,

H =
1

2V

∑
k,k′,q

Gq
k,k′a

+
q (k)aq(k

′) , (14)

where V is the volume of the system and

Gq
k,k′ = δk,k′/N(0) + fk−q,k′+q ; (15)

in (15) N(0) denotes the density of states at the Fermi surface, and fk−q,k′+q stands for a sort of
extension of the quasi-particle scattering amplitude of the Fermi liquid theory (actually, the boson-
like commutation relations for the a-operators were derived in the limit q → 0, so that keeping
q 6= 0 in the f -function would be incorrect); the summation in (14) is restricted to qvk > 0. For
this hamiltonian the lagrangean density (12) becomes

L =
∑

k,k′,q

v2
kδ(µ− εk)

2qvk

· {u∗q(k) · [iδkk′
∂

∂t
−

(16)

− qvk

V N(0)
δkk′δ(µ− εk′)−

qvkvk′

V vk

fk−q,k′+qδ(µ− εk′)]uq(k
′)} .

First, we note that the hamiltonian (14) can be diagonalized immediately, and, with the choice
(15), one obtains both the particle-hole excitations and the collective modes of a Fermi liquid;
secondly, one can see that the lagrangean (16) has precisely been chosen in such a way as to
reproduce these excitations in terms of the classical coordinates uq(k); indeed, the corresponding
equations of motion for uq(k) are identical with the well-known equations of motion for the
variations of the fermion occupancy δnq(k) in the Fermi liquid theory; hence, it is hard to see the
necessity of introducing the lagrangean (16), and to transcribe the equations of motion in terms
of uq(k)’s.[5] Restricting themselves to the particle-hole excitations in (16), i.e. without including
the f -term, Castro Neto and Fradkin[2] reproduce correctly the specific heat of the Fermi liquid by
using the imaginary-time formalism of the path integrals; obviously, this is not surprising, as long
as these excitations are correctly described by (16), and as long as the Bose statistics is (correctly)
assumed for them, when quantized. Actually, the temperature dependence of the specific heat of
the particle-hole excitations does not depend on their statistics, as a consequence of the fact that
these excitations are constrained to ”live” on the Fermi surface; consequently, one can reproduce
the correct answer either way, with a right choice of the density of states, which is precisely
what Castro Neto and Fradkin[2] do for Bose statistics. However, even so, the thermodynamic
computations, as presented by Castro Neto and Fradkin[2], are at least incomplete, and this can
be seen from the corrections brought by the f -term in (16) to the specific heat. Indeed, first



4 The Antiphysical Review

we note that these corrections, as computed by these authors (and few others, as well; see, for
instance, parts of Ref.7), are incorrect, because they amount to higher-order contributions in
powers of q to the spectrum of the particle–hole excitations, which, on one hand is not correct (as
known from the Fermi liquid theory), and, on the other hand, the commutation relations for the
a-operators were derived only in the limit of the leading q-contribution. Leaving this aside, we
still note, however, that the f -term gives the collective modes, which are sound-like oscillations,
and, as such, they would bring, for instance, a T 3-correction to the specific heat (which, actually,
is negligible) in three dimensions, where T is the temperature; but it is precisely this correction
which is not obtained by these authors, in spite of the fact that they assembled all this formalism
in order to describe the collective excitations.

Finally, even if the physics of the elementary excitations of a Fermi liquid would be correctly and
completely mimicked within such a formalism, there may still remain to justify the origin of the
”bosonized” hamiltonian given by (14) and (15). Castro Neto and Fradkin[2] claim to derive this
hamiltonian from a fermionic hamiltonian

H =
∑
k

εkc
+
k ck +

1

2V

∑
k,k′,q

fk−q,k′+qc
+
k+q/2ck−q/2c

+
k′−q/2ck′+q/2 , (17)

by the ”bosonization” procedure. Leaving aside that this ”bosonization” procedure is incorrect, it
is hard to say what physical system is described by the hamiltonian (17);[6] it seems to correspond
to some dressed, and still interacting, fermions, according to the presence of the effective mass
m∗ in the velocity vk = ∂εk/∂k, and to the presence of the quasi-particle scattering amplitude f
in the ”interacting” term. One could rather say that this hamiltonian is arbitrarily chosen again,
such as to give the correct frequencies of the particle-hole excitations and the collective modes,
in terms of the ”bosonized” ρq(k)-operators. The inconsistency of (17), as describing fermionic
quasi-particles, and of its counter-part expressed in the lagrangean (16), is immediately seen from
the attempt made by Castro Neto and Fradkin[2] to derive the effective mass. Indeed, the current

Jk = vk +
1

V

∑
k′

fkk′δ(µ− εk′)vk′ (18)

computed by these authors[2] from the variation of the lagrangean (16) is equal to k/m∗, and not
k/m as these authors, and few others,(see, for instance, some of the papers in Ref.7) incorrectly
assume; this is obvious from (17), where the velocity vk = ∂εk/∂k contains the effective mass m∗.
Consequently, this would lead to the trivial equalities m∗ = m∗, and f = 0, as expected, since
the effect of the f -”interaction” is already included in the effective mass; if, on the other hand,
the connection with the original fermions is pursued, in which case the equality Jk = k/m would
be justified, then, according to the Fermi liquid theory, the sign of the f -term in (17) should be
reversed, which would lead to an incorrect equation for the effective mass, as derived within the
present formalism. As a matter of fact, it is by far obvious that one can not derive the effective mass
equation by working only with quasi-particless, and it is precisely this connection, between the
fermionic quasi-particles and the original, interacting fermions, i.e. the Fermi liquid theory, which
is lacking in the ”bosonized coherent state” formalism of Castro Neto and Fradkin,[1],[2] in spite of
their claim that ”the Landau theory of the Fermi liquids can be obtained from the formalism”;[1]
this would be necessary, indeed, in order to have a complete, ”bosonic” (or ”classicized”) theory
of fermions in two and three dimensions.

Some of the questions raised here can be found, at least partially, in few other recent works on
the subject;[7] where it applies, the criticism made in the present paper is aimed at these works,
too.
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