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Abstract

It is shown that the one- and two-dimensional solids may exist and melt.

Suppose that we have N identical atoms, of mass M each, arranged along a rectilinear chain;
suppose that the atoms interact through a nearest-neighbours potential, and we are interested
in small atomic displacements ui , i = 1, 2, ...N, of immaterial polarization, around equidistant
equilibrium positions xi = i·a, where a is the lattice constant. Within the harmonic approximation
with the elastic force constant K this motion is described by the hamiltonian

H =
∑

i

1

2M
p2

i +
1

2
K
∑
〈ij〉

(ui − uj)
2 , (1)

where pi is the conjugate momentum, [pi, uj] = −ih̄δij . With cyclic boundary conditions we have

ui =
1√
N

∑
k

uke
ikxi , (2)

k = (2π/Na)·integer, −π/a < k < π/a, u†
k = u−k ,

pi = M
·
ui=

1√
N

∑
k

pke
−ikxi , (3)

pk = M
·
u−k , [pk, uk′ ] = −ih̄δkk′ , and the hamiltonian (1) becomes

H =
∑
k

(
1

2M
p†kpk +

1

2
Mω2

ku
†
kuk

)
, (4)

where

ω2
k =

4K

M
(1− cos ka) ; (5)

it is brought into the diagonal form

H =
∑
k

h̄ωk (nk + 1/2) , (6)

where nk = a†kak , by introducing the phonon operators ak ,

uk =

√
h̄

2Mωk

(
ak + a†−k

)
, pk = i

√
h̄Mωk

2

(
a†k − a−k

)
. (7)
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The mean square deviation of the atomic displacements in the phonon vacuum

u2
i =

1

N

∑
k

u†
kuk =

1

N

∑
k

h̄

2Mωk

(2nk + 1) =
a

2π

∫ π/a

0
dk · h̄

Mωk

(8)

diverges logarithmically at k = 0 . This infrared divergence, in various contexts, is currently
invoked to rule out the existence of the one-dimensional solid.[1],[2]

However, the mean square deviation of the lattice constant

[
xi − xj − (xi − xj)

]2
= (ui − uj)

2 = 1
N

∑
k u†

kuk · 2 (1− cos ka) =

= 1
N

∑
k

h̄
Mωk

(1− cos ka) (2nk + 1) = a
π

∫ π/a
0 dk · h̄

Mωk
(1− cos ka)

(9)

is finite, which indicates that the solid exists, only its center of mass fluctuates immeasurably.
Obviously, the thermodynamics is meaningless in this case.

The question one should ask is whether the phonons do exist in the one-dimensional solid
subjected to the actual experimental conditions. These always imply an uncertainty u in the
localization of the center of mass of the rigid lattice, and the constraint under which we should
look for phonons reads ∑

i

u2
i = Nu2 . (10)

The magnitude of u can not be smaller than a/2 , unless the crystal is destroyed, but usually it
is much larger than the lattice constant a.

Introducing the Lagrange multiplier ω2
0 and setting

H = H − 1

2
Mω2

0

∑
i

(
u2 − u2

i

)
(11)

we get straightworwardly

H =
∑
k

(
1

2M
p†kpk +

1

2
MΩ2

ku
†
kuk

)
− 1

2
Mω2

0Nu2 , (12)

where

Ω2
k = ω2

0 + ω2
k , (13)

i.e. the phonon spectrum acquires a threshold frequency ω0 which acts as an infrared cut-off. In
addition, the ground-state energy

E0 = H =
∑
k

1

2
h̄Ωk −

1

2
Mω2

0Nu2 (14)

has a minimum with respect to ω2
0,

∂E0

∂ω2
0

=
∑
k

h̄

4Ωk

− 1

2
MNu2 , (15)

which is exactly the constraint (10) ; indeed,

∑
i

u2
i =

∑
k

u†
kuk =

∑
k

h̄

2MΩk

= Nu2 (16)
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coincides with (15). Assuming a Debye spectrum ωk = ck , where c = a(2K/M)
1
2 is the sound

velocity, and introducing the Debye wavevector kD = π/a and the Debye frequency ωD = ckD ,
we get from (16) ∫ ωD/ω0

0
dx · 1√

1 + x2
=

2MωD

h̄
u2 . (17)

The right-hand side of (17) is, typically, very large, so that we get the threshold frequency

ω0
∼= 2ωD · e−

2MωD
h̄

·u2

(18)

which is extremely small.
The phonon partition function for H given by (12) reads

Z =
∏
k

e−h̄Ωk/2T

1− e−h̄Ωk/T
= e−(F+ 1

2
Mω2

0Nu2)/T , (19)

where F is the free energy; its minimum ∂F/∂ω2
0 = 0 gives

∑
k

h̄

2MΩk

(2nk + 1) = Nu2 , (20)

i.e. again the constraint (10) , at finite temperatures. Equation (20) reads

∫ ωD/ω0

0
dx · 1√

1 + x2
· coth

(
h̄ω0

2T

√
1 + x2

)
=

2MωD

h̄
· u2 , (21)

whose solution for T → 0 is (18) and

ω0
∼=

π

2MωDu2
· T (22)

for T → ∞ ; this is again an extremely small frequency for any normal temperature, and (22)
may be used satisfactorily for any finite temperature. The constraint (10) introduces therefore an
extremely small infrared cut-off ω0 in the phonon spectrum, according to (13), slightly depend-
ing on temperature, whose effect is practically unobservable. We remark that the mean square
deviation of the distance between any pair of atoms

(ui − uj)
2 =

1

N

∑
k

h̄

2MΩk

· 2 {1− cos [ka (i− j)]} · (2nk + 1) (23)

is always smaller than 4u2 , according to (20) , so that the (on-diagonal) crystalline long-range
order does exist in one dimension.

In this connection the question of melting of the one-dimensional solid is meaningfull. The
elastic force constant K in (1) is a function of a ; actually it is a function of the nearest-neighbours
distance a + ui − uj ; more than this, it is a periodic function with the period a , whose integral
extended to the whole crystal vanishes. Consequently, it may be expanded as a Fourier series of
the reciprocal vectors of the lattice, and we may write it as

K(a + ui − uj) = K cos [G (ui − uj)] + ... , (24)

where G = 2π/a . Assuming vanishing fluctuations we may approximate the cosine in (24) by its
average

cos [G (ui − uj)] = e−
1
2
δ2

, (25)
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where δ2 = [G (ui − uj)]
2 , and keep the first G-term in (24). The sound velocity changes, therefore,

from c to c · exp (−δ2/4) , and we get a mean-field theory known as the self-consistent harmonic

approximation. Remark that it is (ui − uj)
2 which enters the theory, not u2

i .[3] On the other hand

δ2 = G2(ui − uj)
2 =

G2

N

∑
k

h̄

MΩk

(1− cos ka) · (2nk + 1) , (26)

and we may neglect ω0 here and approximate 1 − cos ka by (ka)2 /2 over the whole integration
range. With the Debye spectrum (26) becomes

δ2 =
2π2G2

h̄Mω3
D

· T 2 · e
3
4
δ2 ·

∫ h̄ωD
2T

e−δ2/4

0
dx · x coth x . (27)

Threre is a critical temperature beyond which this equation has no solution anymore; it is given
by the tangent point of the curves described by the two sides of (27) , which may be approximated
by

1 ∼=
2π2G2

h̄Mω3
D

· T 2 · 3

4
e

3
4
δ2 ·

∫ h̄ωD
2T

e−δ2/4

0
dx · x coth x , (28)

whence, together with (27), yields

δ2 ∼=
4

3
. (29)

The high-temperature limit of (27) reads now

δ2 =
π2G2

Mω2
D

· T · e
1
2
δ2

, (30)

whence we get the melting temperature (not to be mistaken for the freezing temperature[4])

Tm =
4Mω2

D

3π2G2e2/3
=

1

3π2e2/3
·Mc2 ∼= 0.017 ·Mc2 . (31)

It is interesting to compare (ui − uj)
2 = a2/3π2 at the melting point given by (29) with the square

of the lattice constant a2 . The melting temperature given by (31) indicates a sharp transition
where the crystal gets soft and can no longer bear phonons. The investigation of the validity of
this mean-field theory may indicate, in general, a continuous transition, with a variable range of
crystallinity, both in magnitude and orientation.[5]

The constraint (10) applies to all the atoms in the lattice, as, for example, to a lattice with
a basis in the unit cell. However, the optical phonons do not contribute practically to the trans-
lational displacement of the lattice, so that the threshold frequency ω0 (appearing now in the
whole phonon spectrum) is practically unchanged. The constraint (10) applies also to solids of
any dimensionality, and we shall discuss now, for the sake of reference, the case of a cubic three-
dimensional Bravais lattice. The hamiltonian of the atomic vibrations can be written as

H =
∑
αi

1

2M
p2

αi +
1

2

∑
αβ〈ij〉

Gαβ (ri − rj) uαiuβj , (32)

where α, β are the cartesian labels of the components of the displacement vector ui , ri are the
equilibrium positions, and Gαβ is the matrix of the elastic force constants. A Fourier expansion
brings H into

H =
∑
αk

1

2M
· p†αkpαk +

1

2

∑
αβk

Gαβ (k) · u†
αkuβk , , (33)
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where
Gαβ (k) =

∑
j

Gαβ (ri − rj) · eik(ri−rj) , (34)

j
′
s being the nearest neighbours of i . A canonical transform diagonalizes Gαβ (k) into Gα (k)

, where we use the same label α for polarizations. In addition, we assume a Debye, isotropic,
identical spectrum for all the polarizations,

Gα (k) = Mω2
k = Mc2k2 . (35)

We remark that the constraint (10), which now reads∑
i

u2
i = Nu2 (36)

is left unchanged under the canonical transform. Under these conditions we get the spectrum
Ω2

k = ω2
0 + ω2

k and (36) gives

∑
αk

h̄

2MΩk

· coth

(
h̄Ωk

2T

)
= Nu2 . (37)

Making use of the Debye wavevector kD = (6π2)
1/3

/a , and the Debye frequency ωD = ckD , (37)
becomes

3h̄ω2
0

2Mω3
D

·
∫ ωD/ω0

0
dx · x2

√
1 + x2

· coth

(
h̄ω0

2T

√
1 + x2

)
=

u2

3
. (38)

For T → 0 the only solution of (38) is ω0 = 0 and the zero-point fluctuations u2
0 = 9h̄/4MωD (� a2) ; for

T → ∞ we find ω0 = 0 again, and u2 = 9T/Mω2
D , which varies extremely slowly with the tem-

perature, and may be used for any normal range of temperatures. Therefore, there is no frequency
cut-off on the phonon spectrum in three dimensions, and the lattice develops its own fluctuations.

In order to compute the melting temperature we use again the self-consistent harmonic ap-
proximation,according to which

Gαβ (ri − rj) =⇒ Gαβ (ri − rj + ui − uj) =∑
G Gαβ (G) cos [G (ui − uj)] =⇒ ∑

G Gαβ (G) e−
1
2
[G(ui−uj)]

2

.
(39)

On the other hand
G (ui − uj) =

∑
α Gα (uαi − uαj) =

= 1√
N

∑
αk Gαuαk

[
1− eik(rj−ri)

]
eikri

(40)

and

[G (ui − uj)]
2 =

1

N

∑
αk

G2
α · u

†
αkuαk · 2 {1− cos [k (ri − rj)]} . (41)

For a cubic lattice the sum in (41) does not depend on 〈ij〉 and it may be approximated by

[G (ui − uj)]
2 ∼=

G2a2

N

∑
k

h̄

2Mωk

· k2
x · (2nk + 1) , (42)

or

[G (ui − uj)]
2 = G2 8 (6π2)

2/3

h̄3Mω5
D

· T 4
∫ h̄ωD/2T

0
dx · x3 coth x . (43)

We may therefore keep the first G
′
s in (39) and, denoting the corresponding (43) by δ2 , we have

Gαβ (ri − rj) =⇒ Gαβ (ri − rj) · e−
1
2
δ2

, (44)
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c =⇒ c · e−
1
4
δ2

, (45)

and a similar relation for ωD . Equation (43) becomes

δ2 = G2 8 (6π2)
2/3

h̄3Mω5
D

· T 4 · e
5
4
δ2 ·

∫ h̄ωD
2T

e−
1
4 δ2

0
dx · x3 coth x , (46)

whose critical solutions are given by
δ2 ∼= 4/5 . (47)

The finite-temperature estimation of (46) is

δ2 =
G2a2

3Mc2
· T · e

1
2
δ2

, (48)

whence the melting temperature

Tm =
3

5π2e2/3
·Mc2 ∼= 0.04 ·Mc2 ; (49)

this is the Lindemann’s law of melting.[6] At the melting temperature the fluctuations in the
atomic positions are

u2
m =

9

Mω2
D

· Tm
∼= 0.025a2 , (50)

according to (38) , and we may see that their ratio to the zero-point fluctuations is given by

u2
m/u2

0 = 4Tm/h̄ωD
∼= 0.04 · Mca

h̄
. (51)

We shall discuss now briefly the two-dimensional case. Under the same assumptions as those
employed for the three-dimensional solid the constraint equation (38) becomes

h̄ω0

Mω2
D

∫ ωD/ω0

0
dx · x√

1 + x2
· coth

(
h̄ω0

2T

√
1 + x2

)
=

u2

2
, (52)

where ωD = ckD, kD = 2
√

π/a . For T → 0 this equation has the solution ω0 = 0 and the
zero-point fluctuations u2

0 = 2h̄/MωD. For T →∞ we get

ω0
∼= ωD · e−

Mω2
D

4T
·u2

, (53)

i.e. the two-dimensional solid may exist at finite temperatures,[7] under the constraint (10). The
cut-off frequency given by (53) is extremely small and varies very slowly with the temperature; it
may be used for any finite temperature range (remark that it vanishes for T → 0 ), and its effects
are practically unnoticeable. The melting may be treated similarly with the three-dimensional
case. Instead of (46) we get now

δ2 = G2 16π

h̄2Mω4
D

· T 3 · eδ2
∫ h̄ωD

2T
e−

1
4 δ2

0
dx · x2 · coth x , (54)

whose critical solution is given by
δ2 ∼= 1 . (55)

The finite-temperature integral in (54) gives

δ2 =
2π2

Mc2
· T · e

1
2
δ2

, (56)
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whence the melting temperature

Tm =
1

2π2e1/2
·Mc2 ∼= 0.03 ·Mc2 . (57)

We stress again the possibility of a continuous transition,[8] including various structural phases.
Similar considerations as those presented here apply for highly anisotropic solids. A natural

question arises of what happens for quasi-low dimensional solids, as for a slab or a rod of thickness d
. The qualitative picture given here remains unchanged, but, of course, the quantitative results are
altered. The main feature is the occurrence of a cross-over temperature toward a three-dimensional
behaviour, of the order of h̄c/d ; for d = Nta this temperature is about 102/Nt Kelvins, for a typical
sound velocity c ∼ 103 m/s .
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