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Abstract

New, approximate, two-electron wavefunctions are introduced for the two-electron atoms
(cations), which account remarkably well for the ground-state energies and the lowest- excited
states (where available). A new scheme of electronic configurations is also proposed for the
multi-electron atoms.

Following Bohr,[1] the electronic structure of the atoms is currently described by means of
the central self-consistent field, based on the Hartree-Fock equations.[2],[3] Although this mean-
field doctrine has long served the interpretation of the atomic spectra,[4] its central assumption of
single-electron wavefunctions has never been given an a priori legitimacy. In fact, correlated
ground-state wavefunctions have been worked out in great detail for the He atom and, generally,
for the two-electron atom.[5]−[7] In spite of the fact that these very elaborate techniques, which
are variational in essence, produce impressively accurate numerical results for the ground-state
energies, they look, however, rather arbitrary, and can not be extended easily to multi-electron
atoms. We introduce in this paper new, approximate, two-electron wavefunctions for the two-
electron atom, which give the ground-state and the lowest-excited states energies with an accuracy
which may be regarded as being remarkable for the simplicity of the approach. We propose also a
new general scheme of electronic configurations, which may constitute a reasonable starting point
for understanding the nature of the electronic structure of the multi-electron atoms.

If not specified otherwise, we use throughout this paper the atomic units aH = h̄2/me2 = 0.53 Å
(Bohr radius) and e2/aH = 27.2 eV (twice the rydberg), which render the square of the electron
charge e2 = 1; in addition, we set the Planck’s constant h̄ = 1, so that the electron mass m = 1.
We start with considering two electrons, denoted by 1 and 2, placed at r1 and, respectively, r2 in
the Coulomb field of a nuclear charge Z. We neglect the center-of-mass corrections, the spin-orbit
coupling, as well as all the other relativistic corrections; they can be treated perturbationally.
Under these assumptions the hamiltonian of the two-electron atom is given by
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where p1,2 are the momenta of the two electrons. We shall treat first the electron affinity of
hydrogen, i.e. the ground-state of the H− anion (Z = 1), and thereafter we shall proceed to the
atoms (cations) with Z ≥ 2.

If we put r1 = −r2 in (1) (for Z = 1) we get a one-particle hamiltonian for a particle of mass 1/2,

moving in a Coulomb field of charge 3/2; its ground-state energy is E
(0)
0 = −9/16 = −15.3 eV ,

which amounts to an electron affinity A(0) = 1.7 eV .This value is close to the experimental
value A = 0.76 eV .[8] The zeroth order approximation E

(0)
0 must be corrected by higher-order
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contributions of the Coulomb repulsion V = 1/ | r1 − r2 | between the two electrons. For a fixed
r1 we can see that this Coulomb repulsion describes, to the first order of approximation, harmonic
oscillations of r2 = (r2, θ2, ϕ2) along θ2, around r2 = −r1. The corresponding harmonic-oscillator
potentials have, however, various curvatures, and we should define an average potential. Setting
to describe the small oscillations of r2 by the displacements ρ, i.e. putting r2 = −r1 + ρ, we may
expand the Coulomb repulsion V as

V =
1

| r1 − r2 |
=

1

2r
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ρ

4r2
P1 (cos θ) + ... , (2)

where r =| r1 |=| r2 |, P1 is the Legendre polynomial of the first rank, and θ is the angle between

ρ and r1. We define the average potential V by V =
(
V 2

)1/2
, where the average in paranthesis is

taken over all the orientations of ρ, so that, we get in the first approximation
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1

2r
+

ρ2
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+ ... . (3)

The first term in (3) has already been included in computing the zeroth order approximation;
the second term in (3) is a harmonic-oscillator potential, which is completely determined by
replacing r by its average value over the zeroth order ground-state r = 2. We obtain therefore the

harmonic-oscillator frequency $ = (24r3)
−1/2

= 1.96 eV , and the ground-state energy corrected

by the zero-point oscillations E0 = E
(0)
0 + 1

2
$ = −14.32 eV ; this amounts to an electron affinity

A = 0.72 eV which is in excellent agreement with the experimental value 0.76 eV . We remark
that the oscillations of the second electron are along θ2 , so that they correspond to only one
degree of freedom.

For Z ≥ 2 we define r = min (r1, r2) and R = max (r1, r2) and separate the hamiltonian (1) as
follows:

H = HZ + HZ1 + V , (4)
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where Z1 = Z − 1 and p, P are the momenta of the electrons placed at r and, respectively,
R. This separation corresponds to the classical concept of screening. The two hamiltonians
HZ and HZ1 have a hydrogen-like energy spectrum; the ground-state wavefunction is given by

Ψ0(r1, r2) = C0Ψ
(Z)
100(r)Ψ

(Z1)
100 (R), where Ψ

(Z,Z1)
100 are the corresponding ground-state wavefunctions

of the hydrogen-like atom (normalized to unity) and C0 is a normalization constant.This wave-
function corresponds to an electron configuration which may be denoted by (100) × (100), and
has the energy

E
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2
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2
= −Z2 + Z − 1/2 . (8)

One can check easily that this energy is very close to the actual ground-state energy of the two-
electron atoms (cations). For example, we have E

(0)
0 = −68 eV as compared with the experimental

value Eexp
0 = −79 eV for the He atom (Z = 2), and E

(0)
0 = −176.8 eV , as compared with

Eexp
0 = −198 eV for the Li+ cation. The remaining interaction V can be written as
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where Pl are the Legendre polynomials, Ylm are the spherical harmonics, Ω is the angle between r
and R , and r = (r,θ, ϕ), R = (R,Θ, Φ). This interaction can, in principle, be treated perturba-
tionally. However, the main contribution to this interaction comes from those space regions where
r ∼ R, so that the perturbation series converges extremely slowly. Consequently, we shall account
for its main effect in another way.

Analyzing its expression given by (7) we see easily that V has a minimum value at r = R
and Ω = π; this value is given by V = −1/2r. We shall assume, therefore, that the ground-state
wavefunction given above is slightly distorted in such a way as to allow the second electron to take
full advantage of this minimum of energy. This amounts to correcting E

(0)
0 by V = −1/2r0, where

r0 is the average value of the electron distances to the nucleus r1 = r2 = r0 over the hydrogen-like
configuration (100)× (100) given above. We give here the expression of this average radius

r0 = C2
0 · 16(ZZ1)

3
∫

dr2 · r2
2 · (

∫ r2

0
dr1 · r3

1 · e−2Zr1 · e−2Z1r2+

+
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1 · e−2Z1r1 · e−2Zr2) . (10)

The ground-state energy is therefore

E0 = E
(0)
0 − 1/2r0 , (11)

and we remark that −1/2r0 is a classical correction, corresponding to the principle of minimization
of the energy for the ground-state. In particular, we note that the first-order correction of V , as
given by (9), within the quantum-mechanical perturbation theory vanishes for the ground-state.
Within the present picture the ground-state of the two-electron atom looks as being made of two
electrons, one moving inside, and the other outside an imaginary sphere, and changing continuously
their places through r1

∼= −r2. Remark that further corrections like zero-point oscillations around
r2 = −r1 done for the H− anion would be inappropriate here since the second electron moves
everywhere (independently) outside the r2 = r1 sphere in the Coulomb field of charge Z1. The
normalization constants C0, the average radii r0 and the ground-state energies E0 given by (11)
are computed in Table 1 for Z = 2 through 11, and compared with the experimental values of
the ground-state energies Eexp

0 . One can se that the agreement is very good, the errors being less
than 0.6%.

Within the present approximation the full wavefunctions of the ground-state of the two-electron
atom, including the spin degrees of freedom, may be written (up to a normalization constant) as

Ψ0(r1, r2) = [α(1)β(2)− α(2)β(1)]×
{

Ψ
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100(r1)Ψ

(Z1)
100 (r2) , r1 < r2 ,

Ψ
(Z)
100(r2)Ψ

(Z1)
100 (r1) , r1 > r2 ,

}
, (12)

for the spin-singlet state, and

Ψ0(r1, r2) =


α(1)α(2)

α(1)β(2) + α(2)β(1)
β(1)β(2)

×
{

Ψ
(Z)
100(r1)Ψ

(Z1)
100 (r2) , r1 < r2 ,

−Ψ
(Z)
100(r2)Ψ

(Z1)
100 (r1) , r1 > r2 ,

}
, (13)

for the spin-triplet state, where α, β are the spin-up and spin-down wavefunctions. The wavefunc-
tions written above are antisymmetric, such as to satisfy the Pauli exclusion principle. Within
the present approximation these wavefunctions correspond to the same energy, so that the para-
and the ortho-atoms are degenerate. However, a closer inspection of (12), for example, tells us
that the orbital of this wavefunction, though continuous at r1 = r2 has discontinuous derivatives
at these points; and, similarly, the orbital wavefunction given by (13) is discontinuous at r1 = r2.
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The exact orbitals will be continuous, and will have continuous derivatives at r1 = r2, which im-
plies that the spin-triplet orbital will have a sudden variation on passing through zero at r1 = r2.
This indicates that the ortho-atom will have a higher energy, so that we may conclude that the
ground-state corresponds to a spin-singlet (para-atom).

We remark also that the wavefunctions given by (12) and (13) are,essentially, correlated wave-
functions, or genuine two-electron wavefunctions. Indeed, one may define, for example,

ϕ2(1) =

{
Ψ

(Z)
100(r1) , r1 < r2 ,

Ψ
(Z1)
100 (r1) , r1 > r2 ,

}
, (14)

and write the spin-singlet orbital of the ground-state as ϕ2(1)ϕ1(2); in spite of certain appearances,
this is a correlated, two-electron wavefunction, since, for example, according to its definition (14),
the waefunction ϕ2(1), as function of r1, depends on r2.

We pass now to the lowest-excited states of the two-electron atoms (cations). with nuclear
charge Z ≥ 2. It is easily to check that, to the zeroth order approximation, the lowest-excited
states correspond to the hydrogen-like configurations (100) × (200) and (100) × (21m), i.e. the

wavefunctions are Ψ
(Z)
100(r)Ψ

(Z1)
200 (R) and Ψ

(Z)
100(r)Ψ

(Z1)
21m(R), according to the notations introduced

above. The corresponding energy is

E1 = −Z2

2
− Z2

1

8
= −5Z2

8
+

Z

4
− 1

8
. (15)

Indeed, one can check easily that the other alternative, corresponding to the configurations (200)×
(100), (21m) × (100), has a much higher energy. One can also check straightforwardly that the
energies given by (15) are already very close to the experimental values, as one can see in Table
2, for Z = 2 (He) and Z = 3 (Li+); the experimental values for larger Z, where available, have
no longer been included in Table 2 as they correspond clearly to much higher-excited states; for
example, Eexp = −119.6 eV for the Be2+ cation,[8] while (15) gives E = −248.2 eV for Z = 4.
In Table 2 there have also been included the normalization constants C1 for the configuration
(100) × (21m), as well as the average radii r1 over this state for Z = 2 through 11. We shall
remark, first, that a correction of the type −1/2r1, as in the case of the ground-state energy,
is not appropriate here, since the excited states are only stationary states, but they do not, of
course, minimize the energy, as the ground-state does. One may check that including −1/2r1 in
the energy computed above would, indeed, result in worse numbers, i.e. there would be a larger
discrepancy with respect to the experimental values. Secondly, we remark that although the two
configurations (100)× (200) and (100)× (21m) are degenerate in this approximation, the former
is not orthogonal to the ground-state, as the latter is. An orthogonalization procedure will push
this state toward higher energies, so that the lowest-excited state corresponds very closely to the
(100)× (21m) configuration. Thirdly, we may also remark that an improved approximation to the
lowest excited level may proceed by standard perturbation calculations applied to the interaction
V given by (9), keeping in mind that we have to include those states that conserve the total angular
momentum. In the case of (100) × (21m) this is L = 1, and the interaction V couples this state
to (21m) × (100), (21m) × (200), (32m

′
) × (21m), etc. As we have said, the perturbation series

converges, however, very slowly, as the main contributions come from r ∼ R. And finally, let us
remark that the continuity of the two-particle orbitals at r1 = r2, and of their derivatives, brings
an additional splitting in energy between the spin-singlet and spin-triplet states, as discussed
above.

Obviously, the above scheme of electronic configurations may be extended to multi-electron
atoms. For example, for an atom with N electrons, we may set up (to the zeroth order approxi-
mation) the configuration (nlm)× (n

′
l
′
m

′
)× (n

′′
l
′′
m

′′
)× ... etc, where each paranthesis denotes a
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hydrogen-like orbital corresponding, respectively, to a nuclear charge Z, Z1 = Z − 1, Z2 = Z − 2,
etc, up to ZN−1 = Z − (N − 1). The remaining interaction of the type V given in (7) can then be
minimized classically for the ground-state, according to the procedure described above. Similar
electronic configurations may also be used as starting points for the excited states. Obviously, we
have, in this picture, correlated, multi-electronic wavefunctions, though each electron moves in a
central field, corresponding, however, to different nuclear charges. One may infere that, within this
picture, the atoms are more ”rarefied”, leading to increased transition probabilities, as compared
with those corresponding to all electrons moving in a unique nuclear charge. Of course, the first
thing to be done for checking the validity of such a scheme of electronic configurations would be
that of trying to account for the periodicity of the chemical elements, i.e. the counterpart of the
closed-shell assumption of the self-consistent field model of the atom.
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Table 1
Z C0 r0 −E0(eV ) −Eexp

0 (eV )
2 (He) 0.795 1.177 79.554 78.98
3 (Li1+) 0.856 0.650 197.713 198
4 (Be2+) 0.889 0.452 370.087 371.5
5 (B3+) 0.910 0.347 596.809 599.3
6 (C4+) 0.925 0.282 877.91 881.6
7 (N5+) 0.935 0.237 1.213 · 103 1.218 · 103

8 (O6+) 0.943 0.205 1.603 · 103 1.609 · 103

9 (F 7+) 0.949 0.180 2.048 · 103 2.055 · 103

10 (Ne8+) 0.954 0.161 2.546 · 103 2.556 · 103

11 (Na9+) 0.958 0.145 3.099 · 103 3.11 · 103

Table 2
Z C1 r1 −E1(eV ) −Eexp

1 (eV )
2 (He) 0.709 2.907 57.8 59.16
3 (Li1+) 0.712 1.558 136 138.98
4 (Be2+) 0.714 1.092 248.2 −
5 (B3+) 0.715 0.853 394.4 −
6 (C4+) 0.717 0.708 574.6 −
7 (N5+) 0.718 0.610 788.8 −
8 (O6+) 0.718 0.539 1.037 · 103 −
9 (F 7+) 0.719 0.485 1.319 · 103 −

10 (Ne8+) 0.719 0.444 1.635 · 103 −
11 (Na9+) 0.720 0.410 1.986 · 103 −
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Table captions
Table 1
The normalization constants C0, the average radii r0, the ground-state energies E0 as given

by (11) and the experimental values Eexp
0 of the ground-state energies[8] for the ground-state

configuration (100)× (100) of the two-electron atoms (cations), as functions of the nuclear charge
Z.

Table 2
The normalization constants C1, the average radii r1, the energies E1 as given by (15) for the

lowest-excited states corresponding to the configuration (100)×(21m), as well as the experimental
values Eexp

1 for the lowest levels[8] of the two-electron atoms (cations), as functions of the nuclear
charge Z; the experimental values for Z > 3 have not been included as they correspond to higher
excited levels.
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