Journal of Theoretical Physics

Founded and Edited by M. Apostol

102 (2005)

ISSN 1453-4428

Euler's transform and a generalized Omori's law

B.-F. Apostol Institute of Earth's Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Abstract

The self-replication process of the statistical events generated by an original, main event and described by a finite distribution leads to a generalized Omori distribution singular at origin. The two distributions are related to each other by Euler's transform. The self-consistency of the generating process requires an exponential law for the finite distribution, which gives rise to the original Omori's law associated to the seismic activity accompanying a major earthquake.

Singular distributions of power-law type $P(x) \sim 1/x^{\beta}$, for x > 0 and $\beta > 1$, seem to be ubiquituous.[1] Originally, they may have been introduced by Omori in 1894[2, 3] for describing the distribution of the seismic aftershocks with $\beta = 1^+$ and x denoting the time elapsed from the occurrence of the main seismic shock at x = 0. Such distributions, which may be called Omori-type singular distributions, are widely used in analyzing the seismic activity accompanying a major earthquake, both as aftershocks and foreshocks, as well as in a great variety of other situations.[4]-[11] The power-law bears also relevance on a critical-point theory for the accompanying seismic activity, and other similar phenomena, especially in connection with the self-organized criticality.[12]-[14] In view of their possible non-integrability, such power-laws are usually defined over a range $x_c < x < D$, as large as possible, where x_c is a lower-bound cutoff and $D \gg x_c$ is an upper-bound cutoff. The cutoff parameter x_c may be set zero (for $0 < \beta < 1$, for instance), and D may be extended to infinite (for $\beta > 1$, for instance).

It is shown here that such Omori-type singular distributions may arise from self-replicating events, originally produced by a main event according to a finite distribution. The two distributions are related to each other by Euler's transform, which provides a generalized form for Omori's law. The self-consistency of the production process imply a self-generating original distribution, which is given by an exponential law. The distribution of all the events produced in such a process, self-replication included, is the original Omori's law.

Let p(x) = dN/dx be a finite distribution of events N over the range x > 0. The number $dN_0 = p_0 dx$ of events placed at origin, where $p(0) = p_0$, can be viewed as the number of the main events, while the rest of events, distributed over x > 0, can be viewed as produced by the main events at a rate r(x) given by

$$p(x) = p_0 r(x) . (1)$$

2_______J. Theor. Phys.

The self-replication process implies a distribution P(x) obeying the relationship

$$P(x) = p(x) + r(x)P(x) = p(x) + \frac{p(x)}{p_0}P(x) . (2)$$

It follows that the distribution P(x) is given by

$$P(x) = \frac{p(x)}{1 - p(x)/p_0} , \qquad (3)$$

which is Euler's transform between $p(x)/p_0$ and $-P(x)/p_0$. The distribution P(x), as given by (3), corresponds to all the events generated in the process of producing accompanying events by the main events placed at x = 0. It is worth noting that P(x) is singular at origin.

Distributions P(x) as given by Euler's transform (3) can be considered for a general form of generating distributions p(x), which amounts to including only the self-replication process for the accompanying events produced by $p(x) = p_0 r(x)$. For this general case, the series expansion $p(x) = p_0 - p_1 x...$ can be considered in the neighbourhood of x = 0, leading to Omori's law $P(x) = p_0 x_0 / x$ for $x \ll x_0 = p_0 / p_1$. Euler's transform (3) provides a general representation $P(x) = p_0 / h(x)$ for such singular distributions, where h(0) = 0 and $h(\infty) \to \infty$ (such that, preferrably, P(x) is integrable at infinite). It implies $p(x) = p_0 / (1 + h) \simeq p_0 (1 - h)$ for $x \to 0$. Such a representation may be regarded as a generalized Omori-type distribution. For $h(x) \sim x^{\beta}$, $\beta > 0$, power-law distributions $P(x) \sim 1/x^{\beta}$ are obtained (an upper-bound cutoff D is necessary for $0 < \beta \le 1$, as well as a lower-bound cutoff x_c for $1 \le \beta$).

Since the accompanying events are produced by the main events at a rate $r(x) = p(x)/p_0$, and since the events are not differentiated otherwise except by their position x, it follows that the distribution p may also be produced at x + y by its value at x multiplied by rate r(y), i.e.

$$p(x+y) = p(x)r(y) , \qquad (4)$$

for any x, y > 0. This distribution may be viewed as a self-generating distribution, and equation (4) expresses a self-consistency character of the distribution p(x). Equation (4) can also be written as $p(x + \Delta x) = r(\Delta x)p(x)$, or $dp/dx = (-p_1/p_0)p(x)$, where $-p_1 = p'(0) < 0$ is the first derivative of p(x) at origin. It follows immediately, from (1) and (4), that distribution p(x) is given by an exponential law, $p(x) = p_0 e^{-p_1 x/p_0}$. It can be transformed into a normalized probability distribution $p(x) = p_0 e^{-p_0 x}$.

Inserting the exponential distribution $p(x) = p_0 e^{-p_0 x}$ in (3) the distribution

$$P(x) = \frac{p_0}{e^{p_0 x} - 1} \quad , \tag{5}$$

is obtained, which is Omori's law P(x) = 1/x for $p_0 x \ll 1$. It is customary to introduce a lower-bound cutoff x_c and to extend 1/x to infinite as $x_c^{\beta-1}/x^{\beta}$, where $\beta = 1^+$, such that

$$\int_{r_{c}}^{\infty} dx \frac{p_{0}}{e^{p_{0}x} - 1} = \int_{r_{c}}^{\infty} dx (x_{c}^{\beta - 1}/x^{\beta}) . \tag{6}$$

Equation (6) gives the exponent $\beta = 1 - 1/\ln(p_0 x_c) = 1^+$ in the limit $x_c \to 0$.

It might be noted that P(x) as given by (5) is, formally, a Bose-Einstein-type occupation number (in two dimensions) for an exponential, Boltzmann-type, distribution p(x). The self-replication equation (2), which describes a geometric series, has also a formal resemblance to Dyson's equation

J. Theor. Phys.______3

in the theory of interacting many-body ensembles. Equation (5) can also be viewed as a generalized Omori's law.

In conclusion, it may be said that self-replication processes at a rate $r(x) = p(x)/p_0$ for a generating distribution p(x) of events accompanying the main events placed at x = 0 lead to Omori-type singular distributions as given by Euler's transform (3). Such distributions include power-type distributions of the form $1/x^{\beta}$, where $\beta > 0$. The self-consistency of the generating process requires a self-generating distribution p(x), which is given by an exponential law, and which leads to the original Omori's law $1/x^{\beta}$, with $\beta = 1^+$.

Acknowledgments

The author is indebted to the members of the Institute of Earth's Physics, Magurele-Bucharest for enlightening discussions.

References

- [1] M. E. J. Newman, arXiv:cond-mat/0412004 v2, 9 Jan 2005
- [2] F. Omori, J. Coll. Sci. Imper. Univ. Tokyo 7 111 (1894)
- [3] T. Utsu, Geophys. Mag. **30** 521 (1961)
- [4] D. Sornette, C. Vanneste and L. Knopoff, Phys. Rev. A45 8351 (1992)
- [5] A. Helmstetter and D. Sornette, Phys. Rev. **E66** 061104 (2002)
- [6] A. Helstetter, S. Hergarten and D. Sornette, Phys. Rev. E70 046120 (2004)
- [7] D. Sornette and G. Ouillon, Phys. Rev. Lett. **94** 038501 (2005)
- [8] A. Saichev and D. Sornette, Phys. Rev. **E70** 046123 (2004); ibid, **71** 016608 (2005)
- [9] R. Console, A. M. Lombardi, M. Murru and D. Rhoades, J. Geophys. Res. 108 2128 (2003)
- [10] A. Petri, G. Paparo, A. Vespignani, A. Alippi and M. Constantini, Phys. Rev. Lett. 73 3423 (1994)
- [11] C. Maes, A. Van Moffaert, H. Frederix and H. Strauven, Phys. Rev. **B57** 4987 (1998)
- [12] See, for instance, D. Sornette, Phys. Reps. 378 1 (2003); P. Bak, K. Christensen, L. Danon and T. Scanlon, Phys. Rev. Lett. 88 178501 (2002)
- [13] D. Sornette and C. G. Sammis, J. Physique I 5 607 (1995); D. Sornette, Phys. Reps. 297 239 (1998); ibid, 313 238 (1999)
- [14] B. Barriere and D. L. Turcotte, Phys. Rev. **E49** 1151 (1994)