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Abstract

A generalized Omori’s law is derived for probability distributions which may govern, for in-
stance, the seismic aftershocks. It is shown that Omori’s law implies a self-replication process
of the events accompanying main events, like the seismic activity associated with the occur-
rence of main seismic shocks. In general, it is shown that any finite probability distribution
can be associated to an Omori-type singular distribution, and, conversely, any Omori-type
singular distribution can be associated with a finite distribution, the two distributions being
inter-related by Euler’s transform. The finite distribution plays the role of a generating dis-
tribution for the self-replication process, and the self-consistency of the generating process
requires this distribution be given by an exponential law.

Omori’s empirical law[1]| states that the temporal distribution of the seismic aftershocks goes like
~ 1/77, where v = 1%, and 7 denotes the time elapsed from the occurrence of the main seismic
shock at 7 = 0. The law is widely used in analyzing the seismic activity accompanying a major
earthquake, both for aftershocks and foreshocks, as well as in a variety of other situations.[2|-
[10] Tt bears also relevance on a critical-point theory for the accompanying seismic activity, and
other similar phenomena.[11]-[13] A generalized Omori’s law is derived here, by assuming a self-
replication process for the events acompanying main events, like the seismic activity associated
with major seismic events. It is shown that Omori’s law implies a generating probability distri-
bution, the two distributions being inter-related by Euler’s transform. The self-consistency of the
generating process requires the generating distribution be given by an exponential law.

Let p(x) = dN/dx be a finite probability distribution for z > 0, and let dNy = podz be viewed as
the number of main events placed at origin, where py = p(0). The rest of events can be viewed as
accompanying events, so that they may be produced by the main events at a rate

r(z) = p(x)/po - (1)

It is assumed that these events self-replicate at this rate, so that the total number of resulted
events is distributed according to P(x) satisfying

P(e) = plx) + Z%P@) . @)
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It follows from (2) that the distribution P(z) is given by

_ plx)
P& = T @ @

which is Euler’s transform between p(z)/py and —P(z)/po. Equation (3) gives a generalized
Omori’s law. Indeed, P(x) as given by (3) is singular at origin. We may consider the series
expansion p(x) = pg — p12... of p(z) in powers of x in the neighbourhood of origin, where —p; =
P/ (0) < 0 1is the first derivative of p(z) at x = 0, which leads to Omori’s original law P(x) = poxo/x
for v < xg, where xyp = py/p1. In general, equation (3) provides a representation P(x) = po/h(x)
for P(x), where h(0) = 0 and h(co) — oo, such that p(z) = po/[l + h(z)] ~ po[l — h(x)] for
x — 0, which may be viewed as a generalized Omori’s law. For h(z) = (x/x()”, where 3 > 0
and zy denotes a scale parameter, power-law distributions P(z) = po(x/z)? are obtained. In
view of their possible non-integrability, the parameter xq may be taken as a lower-bound cutoff
Ze, To = X, for § > 1, and an upper-bound cutoff D > xy may be employed for 0 < 3 < 1.

The distribution p(z) in (2) can be viewed as a generating distribution for the self-replicating
events accompanying main events. Since the generating events are produced by main events at
rate r(z) given by (1), it may also be assumed that such events are also self-generated at the same
rate, according to
plz + Az) = r(Ax)p(z) , (4)
which leads to
dp/dx = —(p1/po)p(z) - (5)

It follows that p(z) is given by an exponential law p(x) = poe 1%/P0, which may be normalized
into the probability distribution p(x) = ppe P°*. Equation (4) expresses a self-consistency, or
a self-generating, character of the accompanying events. Inserting the exponential distribution
p(z) = poe ?°" into (3) the distribution

P(z)= -2 (6)

epor — 1

is obtained, which is the original Omori’s law P(x) = 1/x for pox < 1. It is customary to extend
the distribution 1/x to infinite as P(x) = 271 /2” for 3 = 1%, such that

/g:o dw—L° —/;o da(zP=1 /2Py . (7)

epor — ] .

Equation (7) leads to the exponent 5 = 1 — 1/In(ppz.) = 17 in the limit x. — 0. It might
be noted that equation (6) resembles formally a Bose-Einstein-type occupation number (in two
dimensions), for an exponential, Boltzmann-type, distribution p(z). The self-replication equation
(2), which describes a geometric series, looks also formally as a Dyson equation in the theory of
many-particles ensembles.

In conclusion, it may be said that a self-replication process for a generating distribution of ac-
companying events leads to a generalized Omori’s law, and the self-consistency character of the
process requires an exponential law for the generating distribution.
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