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Abstract

A growth model for accumulating seismic energy in a localized seismic focus is described,
which introduces a fractional parameter r» on geometrical grounds. The model is employed
for deriving a power-type law for the statistical distribution in energy, where the parameter
r contributes to the exponent, as well as corresponding time and magnitude distributions
for seismic events. The accompanying seismic activity of foreshocks and aftershocks is also
discussed in connection to this approach, the associated Omori distributions are derived, and
the time dependence of the magnitudes and the rate of released energy are given. It is shown
that Omori’s distribution arises from a self-replication process of a generating distribution, the
two distributions being inter-related by Euler’s transform. The self-consistency of the process
generating the accompanying seismic events requires an exponential law for the generating
distribution. A generalization of Omori’s law is also included.

The physical mechanisms of the seismic sources are largely unknown, and the patterns exhibited
by earthquakes in space and time are still a matter of debate.[1| The present Letter introduces
a model of accumulating seismic energy in a localized critical focal zone, and derives statistical
distributions of earthquakes in time, energy and magnitude, which seem to enjoy a certain consen-
sus, at least partially. The focus model includes a fractional parameter r, derived on geometrical
grounds, which turns out to be an Omori-type parameter in the power-law distribution of earth-
quakes with respect to energy. It affects also the distribution in magnitude, the recurrence law
and the mean recurrence time of the earthquakes. The associated regime of seismic activity in the
neighbourhood of a main, "regular" sesimic shock is also discussed, the corresponding Omori dis-
tributions in time, magnitude and energy are derived, and the time dependence of magnitudes and
the rate of released energy are given. It is shown that Omori’s law originates in a self-replication
process for a generating distribution of accompanying seismic events, and the self-consistency
of the generating process requires an exponential law for the generating distribution. The two
distributions are inter-related by Euler’s transform, which provides a generalization of Omori’s
law.

It is widely agreed that the seismic energy £ released in an earthquake is related to the earthquake’s
magnitude M by the Gutenberg-Richter-type relationship|2] - [5]

InE=a+0bM . (1)
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Statistical analysis of moderate and strong earthquakes (5.8 < M < 7), which are probably
most prone to represent a statistical ensemble, indicates values a ~ 10 and b ~ 3.5 (in decimal
logarithms a ~ 4.4 and b ~ 1.5) for energy measured in J.[6] (The error in seismic energy may be
up to a factor of 10). These numerical values may be adopted for the present purpose,|[7] although
the considerations made herein do not depend critically on such numerical values. Parameter a
in (1) indicates the existence of a threshold energy Fy = e® (Fy ~ 4.4-10*J), so that equation (1)
can be recast as E/Ey = M.

It is customary to assign a region of characteristic length R to the seismic energy FE, through
E ~ R3, and, similarly, a characteristic threshold length R, can be associated to the threshold
energy Fy ~ R}, leading to

where 3 = b/3 = 1.17. The two characteristic lengths R and R, have a double meaning, at least:
on one side, they may be associated with the central core of the critical focal zone where the
seismic energy accumulates, and, on the other, R may correspond to the characteristic length of
the seismic region disrupted by the earthquake, R, being in this case a scale length. The empirical
evidence in the latter case seems to support an equation of the type (2).[8, 9]

It is assumed that the characteristic lengths R and Rycorrespond to a localized critical focal region
where the seismic energy builds up by mechanical tension. It is also reasonable to assume that
the process of accumulating energy in the seismic focus exhibits a uniform velocity v, so that the
accumulation of the seismic energy in focus obeys the continuity equation

OE /ot = —vgradFE (3)

where t denotes the accumulation time. Further on, the same value v of the velocity may be as-
sumed along all three spatial coordinates, and the spatial variation of energy along each coordinate
is represented as (E + FEy)/(R + Ry). By such assumptions equation (3) becomes

E+ Ey

E = (1
dE/dt (/r)vR+RO ,

(4)

where r = 1/3. The factor 1/r = 3 in front of (4) arises, therefore, from pure geometric reasons.
Since for other, more special, geometries of the critical focal zone this factor may differ from 3,
notation r is preferred in the interest of the generality of the treatment. For the present purpose the
value of this parameter is taken as r = 1/3. Equation (4) leads also to consider the accumulation
time t = R/v as well as the threshold time ¢y = Ry/v, so it becomes

E+ Ey

dB/dt = (1/1)5— (5)

The solution of (5) is obtained straightforwardly as

1+t/to=(1+E/Ey)" . (6)
For large values of energy E (E > Ey) solution (6) reads t/ty ~ (E/Ey)" = R/ Ry, or

t o~ to(E/Ey)" = toe™™ | (7)

where the Gutenberg-Richter law (1) is used, and § = br = b/3 = 1.17. Equations (6) and (7)
are the basic equations of the present model of seismic focus. According to equation (5), such a
model looks like a growth model, with a typical power-law as given by (6).



J. Theor. Phys 3

Let Ny be the number of earthquakes during a long time T, characterized by the average threshold
time ty = T'/Ny, where Nj is very large. The cutoff parameter ¢, may be viewed as the seismicity
rate. Similarly, the frequency of N earthquakes characterized by time ¢ can be written as N/Ny =
1/(1 4 t/ty).]10] Hence, it follows straightforwardly the temporal probability distribution

1 1

P(t)dt = —d = dt/ty 8
) i) = e ®)

or, making use of (6), the probability distribution in energy
P(E)E = L dE/E, . 9)

(1+ E/Eog)t*"

Similar power-law distributions in energy have been derived recently by employing Tsalis entropy
for the fragmentation of a dynamical fault-planes model.[11] Such distributions are sometimes
called Omori-type distributions, where r is an Omori parameter.

Making use of the energy distribution (9) and the Gutenberg-Richter law (1) the magnitude
distribution
P(M)dM = Be PMdM (10)

is obtained straightforwardly, for large energies F > FE,. The number AN of seisms with magni-
tude between M and M + AM is given by AN/NyAM = P(M), or

1g(AN/T) = A— BM | (11)

where A = 1g(BAM/ty) and B = [3/2.3. Such a linear relationship has been checked for a large
amount of earthquakes, and A ~ 4.6 and B ~ 0.6 were obtained, for instance, for 5.8 < M < 7.3
(and AM = 0.1).|6] These values may be adopted here for the present purpose, though the
numerical values of such quantities do not affect the results presented herein. Making use of the
value for the parameterB, it is obtained 3 ~ 1.38, in fair agreement with the value g = 1.17 given
here. Similarly, a global rate of seismicity 1/t ~ 105 per year is obtained from the value of the
parameter A, which is consistent with estimations of cca 10° — 10°earthquakes per year, on the
average.[6] There are appreciable deviations from the Gutenberg-Richter linear relationship (11)
for extreme values of the magnitude.|[12| For low values of M such deviations are consistent with
the exact relationship P(M) = be®™ /(1 + e*M)*7 derived from the distribution given by (9) and
the Gutenberg-Richter law, but for large values of the magnitude these deviations may indicate
that either large seismic events are not statistical events, or the deviations may be ascribed to a
magnitude saturation phenomenon.

It is also convenient to introduce the so-called recurrence law, or the excedence rate, which gives
the number N.of earthquakes with magnitude higher than A/. The corresponding probability is
readily obtained from (10) as P> = e M, so the excedence rate reads

In(N-/T) = —1Inty — M . (12)

This relationship is currently employed for analyzing the earthquake statistical distributions in
magnitude. A recent analysis seems to indicate a certain universality in the value of the (3 slope
(B = (/2.3 ~0.6).[]13]

It is worth noting that equation (7) may be viewed as providing the mean recurrence time ¢, =
toe®™ for the occurrence of earthquakes of magnitude M (energy E > Ej). In fact, the mean
recurrence time of earthquakes with magnitude in the range M to M+AM is of interest. According
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to (10) the rate of such earthquakes is given by AN/T = (BAM /ty)e "M so the mean recurrence
time can be obtained as
t, = (to/BAM)"M . (13)

If the seismicity rate to is known, this equation may be used to predict the mean recurrence
times. However, it must be noted that the accuracy of such predictions is, in fact, very low.
Indeed, imposing a mean recurrence time t,, the temporal distribution (1/¢,)e~** is obtained
immediately from the maximum of the entropy. The deviation in the recurrence time defined as
(t2)/2 — tis (v/2 — 1)t, for such distributions, which amounts to cca 41% of the mean recurrence
time ¢,. It is a very large deviation to be of practical use.

The above description may be viewed as pertaining to "regular" earthquakes, characterized by a
mean recurrence time. Similarly, the energy associated to such times, as given by (6) or (7), may
be viewed as a mean energy. Such "regular" seismic events may be accompanied by an associated
seismic activity, like foreshocks and aftershocks, in which case a "regular" earthquake is referred
to as the main shock. Since 1894, when Omori suggested that seismic aftershocks are distributed
according to ~ 1/77, where v = 17 and 7 denotes the time elapsed from the main shock,[14]
the seismic activity accompanying a major earthquake is a matter of debate. One of the major
difficulties in advancing knowledge in this subject is the lack of means for distinguishing between
seismic events genuinely accompanying a main shock and other, "regular" seisms, superposed over
the associated seismic activity, and belonging possibly to other "regular" time series of seismic
activity, without any relationship with the main seismic shock. Statistical distributions of such
events, both in time, magnitude and energy, may help in operating such a distinction, and it was
precisely in this direction where progress has been recorded recently, especially in connnection with
the critical point theory of foreshocks and aftershocks, as based on self-organized criticality.[15, 16]

It is assumed here that there may exist an associated seismic activity accompanying a main seismic
event, as seismic foreshocks and aftershocks, and this whole "secondary" seismic activity forms a
statistical ensemble, i.e. is described by probability distributions.

Let the main shock occurs at a critical time {. = 0, and measure time 7 of the accompanying
seismic activity with respect to this initial moment of time. Time 7 takes both positive values,
for aftershocks, and negative values, for foreshocks. As this seismic activity corresponds to pairs
of events separated by time 7, then the corresponding statistical distributions are functions of the
absolute value |7| of time 7, as pointed out in earlier studies.[17]-[19] It is shown in Appendix
that the associated seismic activity proceeds by the self-replication of a generating distribution
of accompanying events, the self-consistency of the process requiring an exponential form for the
generating distribution. It amounts to viewing the accompanying seismic activity as a relaxation
to equilibrium of the seismic zone, and the corresponding statistical distribution p(7) can be
obtained formally by using the principle of the maximal entropy S = — [d7 - p(7)Ilnp(7). In
order to fully characterize this associated seismic activity, a mean value t/, of its duration may be
introduced, where ¢, may be viewed as a characteristic scale time. By standard procedure the
temporal probability distribution

p(r) =ae ™ o =1/t (14)

is obtained straightforwardly, as the generating distribution for the seisms accompanying a main
shock. In general, the characteristic time ¢, may depend not only on the nature of the seismic
source and the seismic zone, but also on the magnitude of the main shock. On the other hand,
the distribution of the accompanying events can be obtained directly from (8) by expanding the
temporal probability of the main shocks in powers of |7| in the neighbourhood of a main shock
with mean recurrence time ¢,. It is easy to see that replacing ¢t = ¢, by t = ¢, + |7| in (8), where
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|7| < t,, the time distribution p(7) ~ (1 + || /t,)"% ~ e 27/t can be extracted from the pair
distribution, as corresponding to the accompanying seismic activity. It follows that parameter «
in (14) is given by o = 2/t,, and the characteristic time ¢/, = ¢,/2, where ¢, is the mean recurence
time of the main shock, as given by (7) or (13). For large values of time ¢, the distribution of
the accompanying events has a long tail, but the corresponding time probability is very low. In
contrast, the acompanying seismic activity ends quickly for small main shocks, characterized by a
small value of the mean recurrence time ¢,.

It is shown in Appendix that the self-replication process of the generating distribution given
by (14) leads to the distribution P(7) = a/(e®™ — 1) for the seismic events accompanying a
major earthquake, which is Omori’s law P(7) = 1/|7| for a7 < 1. It may be extended to
7 — oo as P(r) = 7771/ |7|”, where v = 17 and 7. is a lower-bound cutoff. This result is valid
in general, for any finite generating distribution p, the two distribution p and P being inter-
related by Euler’s transform. This relationship provides also a generalized Omori’s law, which is
included in Appendix. According to Omori’s law, the accompanying events are concentrated in
the neighbourhood of the lower-bound cutoff 7.. It might also be noted, according to Omori’s law,
that number n of associated seismic events goes like dn/dr ~ 1/ |7|.[]16, 20]

A distribution similar to (14) holds also for the difference in magnitude of the associated seisms
with respect to the main shock. Indeed, according to (10), the magnitude distribution can be
written as ~ e #™me~#M for a main shock of magnitude M,, where m = M, — M is the difference in
magnitude between the main shock and an accompanying seismic event of magnitude M. Negative
values for the statistical variable m = M — M, must be allowed in such a distribution, which leads
to Be ?ml for the distribution in magnitude difference, as suggested previously.[21] Tt may also
be noted that such a distribution can be obtained by the principle of the maximal entropy as
Be=?Iml and, since this probability is equal to the probability of the main shock at m = 0, it
follows that 3’ = 3. Another observation might also be that associated seisms do follow the same
exponential distribution in magnitude like the "regular" earthquakes.

It is worth noting that, by making use of the exponential distribution in magnitude difference
and the temporal distribution given by (14), the time dependence |m| = (a/f3)|7| is obtained,
or dm/dr = «a/f3, or, equivalently, the time dependence M = My — («/f3)|7| of the magnitude
of the accompanying seisms. It may be estimated that the associated seismic activity is extinct
in time 79 = GMy/a = [Myt.,, though the long-tail values of the probability distributions of the
accompanying seismic activity are very small. As described above, for small values of m (|m| <
1/3) the distribution in magnitude difference obeys the same Omori-type law ~ dm/ |m| (the
lower bound correponding to m. = (a/3)7.). The mean difference in magnitude /m vanishes for the
distribution ge~?™! (7 = 0), so it is reasonable to employ the dispersion dm = (m?2)1/2 = \/2/43
as a measure of the average deviation in magnitudes of the accompanying seismic activity. Such
an estimation is also consistent with the assumption that the associated seismic activity represent
a relaxation regime of the seismic activity. Making use of 3 ~ 1.17 the value dm = 2/ ~ 1.2
is obtained, which is suggestive for the numerical value indicated by Bath’s empirical law.[22] A
similar analysis, though on a different conceptual basis, was made recently for the accompanying
seismic activity.[23, 24] It might be noted that the self-replication process is not included in
estimating the magnitude dispersion, and the variance §m = v/2/3 occurs in time 75 = (3/a)d0m =

V2t

The energy distribution given by (9) can also be written as P(E) = (rEj/E"")(1 + Ey/E)~',
where the factor in the first paranthesis may be assigned to energy F,,.. of the main seismic shock,
while the factor in the second paranthesis may be assigned to energy ¢ = E corresponding to an
accompanying seism. Such an approximation is valid for values of the energy E close to the energy
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E,.qz, and serves to disentangle the accompanying seismic activity from the main shock. It is
consistent with the afore-reached conclusion that the associated seismic activity is governed by the
same distribution in magnitudes as the main activity. The resulting decomposition indicates that
the statistical variable corresponding to energy for the accompanying seisms is actually x = 1/e,
so that the "energy" distribution p(z) ~ (1 + Ep/e) " = exp[—(1 + r)In(1 + Ey/¢)] can be
written down for the associated seismic activity, or, finally,

p(x) ~ E,(1 4 r)e”tHnEor g — 1 /¢ (15)

It may be noted that this distribution is similar to the exponential distributions in time, or
magnitude, with a characteristic scale energy (1 + r)E,. By comparing (15) and (14) the time
dependence ¢ = (1 + r)Egt./ |7| of the released energy is obtained straightforwardly, or the rate

de/d|t| = —(1 4+ r)Ept. /7> (16)

of the energy released in the accompanying seismic activity. Such an ~ 1/7%- law seems to be
supported by empirical data.[16, 20| Similarly, the magnitude dependence ¢ = (1 + r)Ey /3 |m| is
obtained for the released energy, as well as an Omori-type law ~ dz/x ~ —de/e for small values
of = (large values of released energy ¢).

In conclusion, it may be said that a model is introduced here for the accumulation of the seismic
energy in a localized focus, which implies a geometric parameter r. Statistical distributions in
time, energy and magnitude are derived on this basis for regular earthquakes, and corresponding
Omori’s distributions are also derived for the seismic activity accompanying a main seismic shock.
Time dependence (16) of the released energy in an accompanying seismic activity is given. It
is also shown that Omori’s law implies a self-replication process for a generating distribution of
accompanying seismic events, which is given by an exponential law. The two distributions are
inter-related by Euler’s transform, which provides also a generalized Omori’s law.
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Appendix

Generalized Omori’s law and Euler’s transform

Let p(x) = dn/dx be a finite distribution over the range x > 0. The number dny = podz of events
placed at origin, where p(0) = po, can be viewed as the number of main events, while the rest
of events, distributed over x > 0, can be viewed as being produced by the main events at a rate
r(z), such that

p(x) = por(z) . (17)

Since the events are not differentiated otherwise except by their position x, it follows that distri-
bution p is also produced at = + y by its value at x multiplied by rate r(y), i.e.

plz+y) =plx)ry) , (18)
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for any x,y > 0. This is a self-generating distribution, and equation (18) expresses a self-
consistency character of distribution p(x). It may also be written as p(x + Azx) = r(Az)p(x),
which leads to dp/dxz = (—p1/po)p(x), where —p; = p/(0) < 0 is the first derivative of p(x) at
origin. It follows immediately, from (17) and (18), that distribution p(x) is given by an exponen-
tial law p(x) = poe P1%/P0_ which can be transformed into a normalized probability distribution

p(x) = poe Po%.
The self-replication process implies a distribution P(x), giving the total number of events P(z)dx
in the range x to x + dx, which obeys the relationship

P(x) = plz) + r(x)Plz) = p(a) + %P@) | (19)

It follows that the distribution P(z) is given by

_ =)
L—p(z)/po

which is Euler’s transform between p(z)/py and —P(x)/po. The distribution P(z) as given by
(20) corresponds to all the events generated in the process of producing accompanying events by
the main events placed at = = 0. It is worth noting that P(x) is singular at origin. Introducing
the exponential distribution p(z) = pee 7°* in (20) the distribution

P(z) (20)

. Po
Pla)= -2 (21)
is obtained, which is Omori’s law P(z) = 1/z for pox < 1. It is customary to introduce a

lower-bound cutoff z. and to extend 1/z to infinite as 277! /27, where v = 1T, such that

/:) o —— /;o dx(z)~1/27) . (22)

epor — 1 c

Equation (22) gives the exponent v =1 — 1/In(pgz.) = 17 in the limit z, — 0.

It might be noted that P(x) as given by (21) is, formally, a Bose-Einstein-type occupation number
(in two dimensions) for an exponential, Boltzmann-type, distribution p(z). The self-replication
equation (19), which describes a geometric series, has also a formal resemblance to Dyson’s
equation in the theory of interacting many-body ensembles. Distributions P(z) as given by Eu-
ler’s transform (20) can be considered for a general form of generating distributions p(z), which
amounts to including only the self-replication process for the accompanying events produced by
p(z) = por(x). For this general case, the series expansion p(z) = py — p1z... can be considered in
the neighbourhood of z = 0, leading to Omori’s law P(z) = pozo/z for © < o = po/p;. Euler’s
transform (20) provides a general representation P(z) = po/h(z) for such singular distributions,
where h(0) = 0 and h(co) — oo (such that, preferrably, P(z) is integrable at infinite). It implies
p(z) = po(l — h) =~ po/(1 + h) for x — 0. Such a representation may be regarded as a general-
ized Omori-type distribution. Equation (21) gives, actually, such a generalized Omori’s law. For
h(z) ~ x7, v > 0, power-law distributions P(x) ~ 1/z" are obtained (an upper-bound cutoff D is
necessary for 0 < v < 1, as well as a lower-bound cutoff z. for 1 < 7).
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