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Abstract

A growth model for accumulating seismic energy in a localized seismic focus is described,
which introduces a fractional parameter r» on geometrical grounds. The model is employed
for deriving a power-type law for the statistical distribution in energy, where the parameter
r contributes to the exponent, as well as corresponding time and magnitude distributions
for seismic events. The magnitude distribution is applied to Vrancea earthquakes, in order
to assess relevant statistical parameters for this seismic region. The accompanying seismic
activity of foreshocks and aftershocks is also discussed in connection to this approach, the
associated Omori distributions are derived, and the time dependence of the magnitudes and
the rate of released energy are given. It is shown that Omori’s distribution arises from a self-
replication process of a generating distribution, the two distributions being inter-related by
Euler’s transform. The self-consistency of the process generating the accompanying seismic
events requires an exponential law for the generating distribution. A generalization of Omori’s
law is also included.

PACS: 91.30.Bi, 91.30.Dk, 91.30.-f, 91.835.Cb
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1 Introduction

The physical mechanisms of the seismic sources are largely unknown, and the patterns exhibited
by earthquakes in space and time are still a matter of debate (see, for instance, Bak et al.,
2002; Sornette, 2003). The present paper introduces a model of accumulating seismic energy in
a localized critical focal zone, and derives statistical distributions of earthquakes in time, energy
and magnitude, which seem to enjoy a certain consensus, at least partially. The focus model
includes a fractional parameter r, derived on geometrical grounds, which turns out to be an
Omori-type parameter in the power-law distribution of earthquakes with respect to energy. It
affects also the distribution in magnitude, the recurrence law and the mean recurrence time of
the earthquakes. The magnitude distribution is employed for analyzing a set of 1999 earthquakes
with magnitude greater than M = 3, which occurred in Vrancea, Romania, between 1974 and
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Figure 1: Reduced energy vs reduced time, as given by equation (6) for various values of the
parameter r

2004, in order to assess statistical parameters which are relevant for this seismic zone. The
associated regime of seismic activity in the neighbourhood of a main, "regular" sesimic shock is
also discussed, the corresponding Omori distributions in time, magnitude and energy are derived,
and the time dependence of magnitudes and the rate of released energy are given. It is shown that
Omori’s law originates in a self-replication process for a generating distribution of accompanying
seismic events, and the self-consistency of the generating process requires an exponential law for
the generating distribution. The two distributions are inter-related by Euler’s transform, which
provides a generalization of Omori’s law.

It is widely agreed that the seismic energy F released in an earthquake is related to the earthquake’s
magnitude M by the Gutenberg-Richter-type relationship (Gutenberg and Richter, 1944, 1954;
Kanamori and Anderson, 1975)

InE=a+0bM . (1)

Statistical analysis of moderate and strong earthquakes (5.8 < M < 7), which are probably
most prone to represent a statistical ensemble, indicates values a ~ 10 and b ~ 3.5 (in decimal
logarithms a ~ 4.4 and b ~ 1.5) for energy measured in J (Bullen, 1963). (The error in seismic
energy may be up to a factor of 10). These numerical values may be adopted for the present
purpose,! although the considerations made herein do not depend critically on such numerical
values. Parameter a in (1) indicates the existence of a threshold energy Fy = e® (Ey ~ 4.4-10J),
so that equation (1) can be recast as E/Ey = M.

It is customary to assign a region of characteristic length R to the seismic energy FE, through
E ~ R3, and, similarly, a characteristic threshold length R, can be associated to the threshold
energy Fy ~ R}, leading to

where § = b/3 = 1.17. The two characteristic lengths R and R, have a double meaning, at least:
on one side, they may be associated with the central core of the critical focal zone where the

LThere are various representations for energy E and magnitude M in the Gutenberg-Richter relationship (1),
as depending on various practical conventions, the most used being related to the seismic moment. All of them
obey a general relationship of the form given by (1), and their specific definitions are immaterial for the present
purpose .
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Figure 2: Energy probability distribution vs reduced energy, as given by equation (9), for various
values of the parameter r

seismic energy accumulates, and, on the other, R may correspond to the characteristic length of
the seismic region disrupted by the earthquake, Ry being in this case a scale length. The empirical
evidence in the latter case seems to support an equation of the type (2) (Buffe and Varnes, 1993;
Bowman et al., 1998, and references therein).

2 A model of seismic focus

It is assumed that the characteristic lengths R and Rycorrespond to a localized critical focal region
where the seismic energy builds up by mechanical tension. It is also reasonable to assume that
the process of accumulating energy in the seismic focus exhibits a uniform velocity v, so that the
accumulation of the seismic energy in focus obeys the continuity equation

OE /ot = —vgradFE (3)

where t denotes the accumulation time. Further on, the same value v of the velocity may be as-
sumed along all three spatial coordinates, and the spatial variation of energy along each coordinate
is represented as (E + Ey)/(R+ Ry). By such assumptions equation (3) becomes

E+ FEy
, (4)

R+ Ry

where = 1/3. The factor 1/r = 3 in front of (4) arises, therefore, from pure geometric reasons.

Since for other, more special, geometries of the critical focal zone this factor may differ from 3,

notation r is preferred in the interest of the generality of the treatment. For the present purpose the

value of this parameter is taken as r = 1/3. Equation (4) leads also to consider the accumulation
time t = R/v as well as the threshold time ¢y = Ry/v, so it becomes

E+ E,
t+ty

dE/dt = (1/r)v

dE/dt = (1/r) (5)

The solution of (5) is obtained straightforwardly as
1+t/to=(1+E/Ey)" . (6)
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For large values of energy E (E > Ey) solution (6) reads t/ty ~ (E/Ey)" = R/ Ry, or
t~ to(E/Eo)r = toeﬁM y (7)

where the Gutenberg-Richter law (1) is used and § = br = b/3 = 1.17. Equations (6) and (7)
are the basic equations of the present model of seismic focus. According to equation (5), such a
model looks like a growth model, with a typical power-law as given by (6). The reduced energy
E/Ey is shown in Fig.1 as function of the reduced time t/t; as given by (6), for several values of
the parameter r.

3 Statistical distributions

Let Ny be the number of earthquakes during a long time 7', characterized by the average threshold
time tqg = T'/Ny, where N is very large. The cutoff parameter ¢, may be viewed as the seismicity
rate. Similarly, the frequency of N earthquakes characterized by time ¢ can be written as N/Ny =
1/(1+t/ty).2 Hence, it follows straightforwardly the temporal probability distribution

I 1
1 +t/to) — (1+t/t)

P(t)dt = —d( Sdt/ty (8)

or, making use of (6), the probability distribution in energy

r
(1+ E/Eog)t*"

P(E)dE = dE/Ey . 9)
Similar power-law distributions in energy have been derived recently by employing Tsalis entropy
for the fragmentation of a dynamical fault-planes model (Sotolongo-Costa and Posada, 2004).
Such distributions are sometimes called Omori-type distributions, where r is an Omori parameter.
The energy probability given by (9) is shown in Fig.2 as function of the reduced energy F/FE for
various values of the parameter r.

Making use of the energy distribution (9) and the Gutenberg-Richter law (1) the magnitude
distribution
P(M)dM = e "MdaM (10)

is obtained straightforwardly, for large energies £ > FE,. The number AN of seisms with magni-
tude between M and M + AM is given by AN/NoAM = P(M), or

1g(AN/T) = A— BM | (11)

where A = 1g(BAM/ty) and B = [3/2.3. Such a linear relationship has been checked for a large
amount of earthquakes, and A ~ 4.6 and B ~ 0.6 were obtained, for instance, for 5.8 < M < 7.3
(and AM = 0.1) (Bullen, 1963). These values may be adopted here for the present purpose,
though the numerical values of such quantities do not affect the results presented herein. Making
use of the value for the parameterB, it is obtained J ~ 1.38, in fair agreement with the value
3 = 1.17 given here. Similarly, a global rate of seismicity 1/t, ~ 10%® per year is obtained from
the value of the parameter A, which is consistent with estimations of cca 10° — 10%arthquakes
per year, on average (Bullen, 1963). There are appreciable deviations from the Gutenberg-Richter

2The total number of earthquakes may also be taken as N =~ (T'/to) In(T'/to), which amounts to renormalizing
the threshold time to tg = to/In(T/ty) — 0 for T — oo. A similar renormalization holds also for the threshold
energy Fjy, the results being thereby free from arbitrary cutoff parameters.



J. Theor. Phys 5

s

LR R RN Rl RN R ARl RN AR > ARl RN RRRN RN RRRN RARRRRRRE=
x E

X

‘HH\%H‘mmm‘mmm‘\mmH‘Hm\m‘mm

X

X

X

X X

N
¢ o
- %S
\H\H‘H\HHH‘HH\HHT’NH\HH

PO SR Lo Lo Lo Lo Lo Lo Lo Lo
% 261 262 263 264 265 266 267 268 269
LONG

Figure 3: Geographical distribution in longitude and latitude of Vrancea earthquakes between
1974-2004 (magnitude M > 3, Romanian Earthquake Catalogue, 2005)

linear relationship (11) for extreme values of the magnitude.® For low values of M such deviations
are consistent with the exact relationship P(M) = be®™ /(14 ¢"™)1*" derived from the distribution
given by (9) and the Gutenberg-Richter law, but for large values of the magnitude these deviations
may indicate either that large seismic events are not statistical events, or the deviations may be
ascribed to a magnitude saturation phenomenon.

It is also convenient to introduce the so-called recurrence law, or the excedence rate, which gives
the number N, of earthquakes with magnitude greater than M. The corresponding probability is
readily obtained from (10) as P., = e "M, so the excedence rate reads

In(Ne,/T) = —Inty — M . (12)

This relationship is currently employed for analyzing the earthquake statistical distributions in
magnitude. A recent analysis seems to indicate a certain universality in the value of the (3 slope
(B =3/2.3 ~0.6) (Kagan, 1999; Rabinovitch et al., 2001).

It is worth noting that equation (7) may be viewed as providing the mean recurrence time t, =
toe®™ for the occurrence of earthquakes of magnitude M (energy E > Ej). In fact, the mean
recurrence time of earthquakes with magnitude in the range M to M+AM is of interest. According
to (10) the rate of such earthquakes is given by AN/T = (BAM /ty)e "M so the mean recurrence
time can be obtained as

t, = (to/ BAM )M (13)

If the seismicity rate ¢y is known, this equation may be used to predict the mean recurrence times.
However, it must be noted that the accuracy of such predictions is, in fact, very poor. Indeed,
imposing a mean recurrence time ¢,, the temporal distribution (1/t,)e"*/*" is obtained immediately
from the maximum of the entropy, for instance. The deviation in the recurrence time defined as
(t2)1/2 — £ is (v/2 — 1)t, for such distributions, which amounts to cca 41% of the mean recurrence
time ¢,. It is a very large deviation to be of practical use.

3For instance, parameter B in (11) may double its value, becoming B ~ 1, for very strong earthquakes
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Figure 4: Depth distribution of Vrancea earthquakes between 1974-2004 (magnitude M > 3,
Romanian Earthquake Catalogue, 2005)

| M=30 [31]32]33[34]35[36]37[38][39]4.0]4.1]
| AN=245 | 230 | 362 [ 143 | 176 | 230 [ 109 | 72 | 147 | 56 | 48 [ 41 |

| M=4.2 [43|44[45]46[47][48[49]5.0[5.1]52]53]5.4]
|AN=33]23 27| 7 [15]8[6[3[2]2]2]4]0|]

| M=5.5 5.6 [5.7]58[5.9]6.0[6.1]62[63]64[65]|6.6][6.7|
|AN=1| 1o ]J1[o]J1[o]JofJo]1[o]o][oO]

| M=6.8 69 [-|71[-[74]
[AN=0] 1 |-[1[-]1]

Table 1: Magnitude distribution of Vrancea earthquakes from 1974 to 2004 (magnitude M > 3,
Romanian Earthquake Catalogue, 2005)

4 Statistical analysis of Vrancea earthquakes

In order to illustrate the statistical distributions given above, as well as to derive statistical
parameters of interest, the magnitude distributions (10)- (12) are applied to the seismic region
Vrancea, Romania. The seismic focal zone in Vrancea is located approximately at 45.7°N latitude
and 26.6°E longitude. This focal zone is the source of a noteworthy seismic activity, ranging in
depth from 80km to 150km, with earthquakes greater than M = 7 in (moment) magnitude
sometime (for instance, M = 7.4, March 4, 1977, depth 94km, or M = 7.1, August 30, 1986,
depth 131km). A set of 1999 data is used, comprising Vrancea earthquakes in period 1974-2004
with magnitude greater than M = 3, as given in Romanian Earthquake Catalogue (2005). The
geographical distribution in latitude and longitude of Vrancea earthquakes with magnitude M > 3
from 1974 to 2004 is shown in Fig.3, while de depth distribution of the same set of data is shown
in Fig.4. The distribution AN(M) of these data is given in Table 1, for AM = 0.1 (magnitude
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Figure 5: Recurrence law In N, = In Ny — M fitted to cumulative distribution of data given in
Table 1.

error 0.1).%

The recurrence law (12) is employed in the form
InN.,, =InNy — M (14)

to fit the cumulative data, as shown in Fig.5. The fit gives In Ny = 12.39 and § = 1.76, with
12% accuracy. It corresponds to a rate of seismicity — Inty ~ 8.99 (for 30 years) and to coefficient
B = 3/2.3 ~ 0.76. The logarithmic distribution (11) is used in the form

InAN =InC — M (15)

for a similar fit, where C' = BNyAM, InC = 13.19, = 2.36 with ~ 10% accuracy (AM = 0.1),
as shown in Fig.6. It follows a seismicity rate —Inty ~ 11.23 and a coefficient B = (5/2.3 ~ 1.03.
A third fit is reported by using the magnitude distribution A(M) = Cexp(—FM) as given by
(10) directly for the data AN (M) given in Table 1. It is shown in Fig.7, the parameters being
InC = 10.35 and (§ = 1.54 (accuracy 32%). It corresponds to a seismicity rate —Int¢, ~ 8.82 and
a coefficient B = (3/2.3 ~ 0.67.

The three fits shown in Figs.5-7 are of different quality and accuracy. Their results must be
taken with great caution. The direct exponential fit to the data is probably of the best quality,
because it takes into account all the data, in contrast to the logarithmic fits were vanishing data
are excluded. Unfortunately, its accuracy is poor, due to the abrupt variation of the exponential
function and data scattering. Similarly, the best accuracy (10%) is for the logarithmic fit given
by equation (15), as the function variation is the smallest. However, the quality of this fit is
poor, as it loses the greatest number of data (all vanishing data). Finally, the recurrence law (14)
produces a fit which is situated in the middle of such an estimation, of moderate accuracy and
quality. Under these circumstances, it is reasonable to use an average value for the seismicity
rate —Inty, = (8.99 + 11.23 + 8.82)/3 = 9.68 and an average 3 = (1.76 + 2.36 + 1.54)/3 = 1.89

4The data employed here, as collected from the Romanian Earthquake Catalogue (2005), correspond to location
45°N to 46°N latitude and 26°E to 27°E longitude. A few surface, or middle depth, earthquakes reported for
Vrancea region are also included in the data set. Magnitude M,, in Romanian Earthquake Catalogue (2005) is
taken here for the moment magnitude denoted by M.
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(accuracy ~ 18%). It is worth noting that a close value 3 = 2.1 is obtained by using directly
the mean SAM = In(AN;/AN;,,) for data in Table 1. The value 3 = 1.89, which corresponds
to a coefficient B = (3/2.3 = 0.82, indicates a value r = /b = 0.54 for the parameter r of the
focus model, where b = 3.5 is used. This may show that the geometry of the Vrancea focus is
different from a point-like source accumulating seismic energy with a uniform velocity, resembling
more a two-dimensional geometry (1/r = 1.85), probably with slightly different accumulating
velocities. Such a conclusion can be corroborated with the spatial distributions shown in Fig.3
and Fig.4. Making use of the values obtained here for the average seismicity rate and average
[-parameter, one may attempt to estimate the mean recurrence time, by using equation (7).
The value t, ~ 34.9years is obtained this way, for the mean reacurrence time of earthquakes
with magnitude M > 7 in Vrancea region. It must be recalled in this context that the error
of such an estimation is ~ 41%, i.e. ~ 14.3years (leaving aside the errors in determining the
statistical parameters ¢ty and (). This periodicity can be checked against data in Fig.8, where
Vrancea earthquakes with (moment) magnitude M > 6 are shown for the last two hundreds years
(Romanian Earthquake Catalogue, 2005).

Finally, it may be worth noting the oscillations in In V., in Fig.5, as well as similar oscillations
in In AN in Fig.6, or in Fig.7 (though of different periodicity and poorer quality), whose origin is
still debated. Such oscillations may be associated, for instance, with the logarithmic oscillations
in the critical-point theory distributions (Sornette, 1998; 2003).

5 Accompanying seismic activity. Omori’s law

The above description may be viewed as pertaining to "regular" earthquakes, characterized by
a mean recurrence time. Similarly, the energy associated to such times, as given by (6) or (7),
may be viewed as a mean energy. Such "regular" seismic events may be accompanied by an
associated seismic activity, like foreshocks and aftershocks, in which case a "regular" earthquake
is referred to as the main shock. Since 1894, when Omori suggested that seismic aftershocks
are distributed according to ~ 1/77, where v = 17 and 7 denotes the time elapsed from the
main shock (Omori, 1894), the seismic activity accompanying a major earthquake is a matter
of debate. One of the major difficulties in advancing knowledge in this subject is the lack of
means for distinguishing between seismic events genuinely accompanying a main shock and other,
"regular" seisms, superposed over the associated seismic activity, which may possibly belong to
other "regular" time series of seismic activity, without any relationship with the main seismic
shock. Statistical distributions of such events, both in time, magnitude and energy, may help in
operating such a distinction, and it was precisely in this direction where progress has been recorded
recently, especially in connnection with the critical-point theory of foreshocks and aftershocks, as
based on self-organized criticality (Sornette at al., 1992; Sornette, 1998).

It is assumed here that there may exist an associated seismic activity accompanying a main seismic
event, as seismic foreshocks and aftershocks, and this whole "secondary" seismic activity forms a
statistical ensemble, i.e. is described by probability distributions.

Let the main shock occurs at a critical time ¢, = 0, and measure time 7 of the accompanying
seismic activity with respect to this initial moment of time. Time 7 takes both positive values,
for aftershocks, and negative values, for foreshocks. As this seismic activity corresponds to pairs
of events separated by time 7, then the corresponding statistical distributions are functions of the
absolute value |7| of time 7, as pointed out in earlier studies (for instance, Papazachos, 1975).
It is shown in Appendix that the associated seismic activity proceeds by the self-replication of
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Figure 6: Logarithmic distribution In AN =1InC — M fitted to data given in Table 1.

a generating distribution of accompanying events, the self-consistency of the process requiring
an exponential form for the generating distribution. It amounts to viewing the accompanying
seismic activity as a relaxation to equilibrium of the seismic zone, and the corresponding statistical
distribution p(7) can be obtained formally by using the principle of the maximal entropy S =
— [dr - p(7)Inp(7). In order to fully characterize this associated seismic activity, a mean value
t!. of its duration may be introduced, where ¢, may be viewed as a characteristic scale time. By
standard procedure the temporal probability distribution

p(r) =ae @ o= 1/t (16)

is obtained straightforwardly, as the generating distribution for seisms accompanying a main
shock. In general, the characteristic time ¢, may depend not only on the nature of the seismic
source and the seismic zone, but also on the magnitude of the main shock. On the other hand,
the distribution of the accompanying events can be obtained directly from (8) by expanding the
temporal probability of the main shocks in powers of |7| in the neighbourhood of a main shock
with mean recurrence time ¢,. It is easy to see that replacing ¢t = ¢, by t = ¢, + |7| in (8), where
|7| < t,, the time distribution p(7) ~ (1 + |7| /t,)™2 ~ e~ 2I"l/t can be extracted from the pair
distribution, as corresponding to the accompanying seismic activity. It follows that parameter «
in (16) is given by o = 2/t,, and the characteristic time ¢/, = ¢, /2, where ¢, is the mean recurence
time of the main shock, as given by (7) or (13). For large values of time ¢, the distribution of
the accompanying events has a long tail, but the corresponding time probability is very low. In
contrast, the acompanying seismic activity ends quickly for small main shocks, characterized by a
small value of the mean recurrence time #,.

It is shown in Appendix that the self-replication process of the generating distribution given
by (16) leads to the distribution P(7) = a/(e®"l — 1) for the seismic events accompanying a
major earthquake, which is Omori’s law P(7) = 1/|7| for a7 < 1. It may be extended to
T — oo as P(r) = 7771/ |7|”, where v = 17 and 7. is a lower-bound cutoff. This result is valid
in general, for any finite generating distribution p, the two distribution p and P being inter-
related by Euler’s transform. This relationship provides also a generalized Omori’s law, which
is included in Appendix. According to Omori’s law, the accompanying events are concentrated
in the neighbourhood of the lower-bound cutoff 7.. It might also be noted, according to Omori’s
law, that number n of associated seismic events goes like dn/dr ~ 1/ |7| (Utsu, 1961; Sornette et
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Figure 7: Exponential distribution AN = C'exp(—/SM) fitted to data in Table 1.

al., 1992). An exponential distribution p(7) of the form given by (16) is shown in Fig.9, together
with its corresponding Euler’s distribution P(7). For comparison, it is also shown in Fig.9 the
normalized distribution P(7) as well as the normalized Omori’s law (y — 1)777!/|7|”. These
distributions illustrate the singular character of the self-replication process at origin, their abrupt
decrease when normalized, together with a possible long tail.

A distribution similar to (16) holds also for the difference in magnitude of the associated seisms
with respect to the main shock. Indeed, according to (10), the magnitude distribution can be
written as ~ e #™e M for a main shock of magnitude M, where m = M, — M is the difference in
magnitude between the main shock and an accompanying seismic event of magnitude M. Negative
values for the statistical variable m = M — M, must be allowed in such a distribution, which leads
to Be~PIml for the distribution in magnitude difference, as suggested previously (Vere-Jones, 1969).
It may also be noted that such a distribution can be obtained by the principle of the maximal
entropy as e 7™ and, since this probability is equal to the probability of the main shock at
m = 0, it follows that 5’ = (3. Another observation might also be that associated seisms do follow
the same exponential distribution in magnitude like the "regular" earthquakes.

It is worth noting that, by making use of the exponential distribution in magnitude difference
and the temporal distribution given by (16), the time dependence |m| = (a/() |7| is obtained,
or dm/dr = «/f3, or, equivalently, the time dependence M = M, — («/f3)|7| of the magnitude
of the accompanying seisms. It may be estimated that the associated seismic activity is extinct
in time 79 = fMy/a = [Myt.,, though the long-tail values of the probability distributions of the
accompanying seismic activity are very small. As described above, for small values of m (|m| <
1/3) the distribution in magnitude difference obeys the same Omori-type law ~ dm/|m| (the
lower bound correponding to m. = (a/3)7.). The mean difference in magnitude /m vanishes for the
distribution Be#™! (m = 0), so it is reasonable to employ the dispersion dm = (m?2)'/2 = /2/33
as a measure of the average deviation in magnitudes of the accompanying seismic activity. Such
an estimation is also consistent with the assumption that the associated seismic activity represents
a relaxation regime of the seismic activity. Making use of 3 ~ 1.17 the value dm = v/2/3 ~ 1.2
is obtained, which is suggestive for the numerical value indicated by Bath’s empirical law (Bath,
1965). A similar analysis, though on a different conceptual basis, was made recently for the
accompanying seismic activity (Helmstetter and Sornette, 2002; Console et al., 2003; Helmstetter
et al., 2004). It might be noted that the self-replication process is not included in estimating the
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Figure 8: Vrancea earthquakes with (moment) magnitude M > 6 in the last two centuries (Ro-
manian Earthquakes Catalogue, 2005)

magnitude dispersion, and the variance dm = /2/3 occurs in time 75 = (3/a)dm = /2t..

The energy distribution given by (9) can also be written as P(F) = (rEj/E'™™")(1 + Ey/E)~'",
where the factor in the first paranthesis may be assigned to energy F,,,. of the main seismic shock,
while the factor in the second paranthesis may be assigned to energy ¢ = E corresponding to an
accompanying seism. Such an approximation is valid for values of the energy E close to the energy
E,..z, and serves to disentangle the accompanying seismic activity from the main shock. It is
consistent with the afore-reached conclusion that the associated seismic activity is governed by the
same distribution in magnitudes as the main activity. The resulting decomposition indicates that
the statistical variable corresponding to energy for the accompanying seisms is actually x = 1/¢,
so that the "energy" distribution p(x) ~ (1 + Ey/e) " = exp[—(1 + r)In(1 + Ey/e)] can be
written down for the associated seismic activity, or

pr) = By(1+r)e +0Br o 1/ (17)

It may be noted that this distribution is similar to the exponential distributions in time, or magni-
tude, with a characteristic scale energy (1+r)FEy. By comparing (17) and (16) the time dependence
e = (14 7r)Ept./ |7| of the released energy is obtained straightforwardly, which corresponds to the
rate

de/d|r| = —(1 4+ r)Egt. /7 (18)

of the energy released in the accompanying seismic activity. Such an ~ 1/72- law seems to
be supported by empirical data (Utsu, 1961; Sornette et al., 1992). Similarly, the magnitude
dependence ¢ = (1 +1r)Ey /3 |m| is obtained for the released energy, as well as an Omori-type law
~ dx/x ~ —de /e for small values of = (large values of released energy ¢).

In conclusion, it may be said that a model is introduced here for the accumulation of the seismic
energy in a localized focus, which implies a geometric parameter r. Statistical distributions in
time, energy and magnitude are derived on this basis for regular earthquakes, and corresponding
Omori’s distributions are also derived for the seismic activity accompanying a main seismic shock.
Time dependence (18) of the released energy in an accompanying seismic activity is given. It
is also shown that Omori’s law implies a self-replication process for a generating distribution of
accompanying seismic events, which is given by an exponential law. The two distributions are
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Figure 9: Exponential distribution aexp(—ar) for a« = 0.75 (curve a), self-replication distribution
afl(exp(ar) — 1] for 7 > 7. = 1 (curve b), normalized self-replication distribution (curve c)
and normalized Omori’s law (y — 1)7)"!/77 for v = 1 — 1/In(a7.) (curve d). The normalized
distributions exhibit a sudden fall, and a possible long tail for small a.

inter-related by Euler’s transform, which provides also a generalized Omori’s law. It is also shown
how to employ such theoretical considerations for analyzing the seismic activity, by making use of
the seismic data of Vrancea region.
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Appendix

Generalized Omori’s law and Euler’s transform

Let p(x) = dn/dx be a finite distribution over the range x > 0. The number dny = podz of events
placed at origin, where p(0) = pg, can be viewed as the number of main events, while the rest
of events, distributed over x > 0, can be viewed as being produced by the main events at a rate
r(z), such that

p(x) = por(z) . (19)

Since the events are not differentiated otherwise except by their position x, it follows that distri-
bution p is also produced at = + y by its value at  multiplied by rate r(y), i.e.

plx +y) =plx)ry) , (20)

for any x,y > 0. This is a self-generating distribution, and equation (20) expresses a self-
consistency character of distribution p(x). It may also be written as p(x + Az) = r(Az)p(x),
which leads to dp/dxz = (—p1/po)p(x), where —p; = p’(0) < 0 is the first derivative of p(x) at
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origin. It follows immediately, from (19) and (20), that distribution p(z) is given by an exponen-
tial law p(z) = poe P1%/Po, which can be transformed into a normalized probability distribution

p(x) = poe Po%.

The self-replication process implies a distribution P(x), giving the total number of events P(z)dx
in the range x to x + dx, which obeys the relationship

Px) = p(x) +r(x)P(r) = p(z) + = —P(z) . (21)

It follows that the distribution P(x) is given by

__ p@)
L—p(x)/po

which is Euler’s transform between p(z)/py and —P(x)/ps. The distribution P(z) as given by
(22) corresponds to all the events generated in the process of producing accompanying events by
the main events placed at z = 0. It is worth noting that P(x) is singular at origin. Introducing
the exponential distribution p(z) = pee ?°* in (22) the distribution

P(z) (22)

Plz)= 2 (23)

~oepor — 1

is obtained, which is Omori’s law P(z) = 1/x for poxr < 1. It is customary to introduce a
lower-bound cutoff z. and to extend 1/z to infinite as 277! /x7, where v = 1T, such that

/:) o —— /;o dx(z)~t/27) . (24)

epor — 1 .

Equation (24) gives the exponent v =1 — 1/In(ppz.) = 1T in the limit x. — 0.

It might be noted that P(x) as given by (23) is, formally, a Bose-Einstein-type occupation number
(in two dimensions) for an exponential, Boltzmann-type, distribution p(z). The self-replication
equation (21), which describes a geometric series, has also a formal resemblance to Dyson’s
equation in the theory of interacting many-body ensembles. Distributions P(z) as given by Eu-
ler’s transform (22) can be considered for a general form of generating distributions p(z), which
amounts to including only the self-replication process for the accompanying events produced by
p(z) = por(x). For this general case, the series expansion p(z) = py — p1z... can be considered in
the neighbourhood of z = 0, leading to Omori’s law P(z) = pozo/z for x < xog = po/p;. Euler’s
transform (22) provides a general representation P(z) = po/h(z) for such singular distributions,
where h(0) = 0 and h(co) — oo (such that, preferrably, P(z) is integrable at infinite). It implies
p(z) = po(l — h) =~ po/(1 + h) for x — 0. Such a representation may be regarded as a general-
ized Omori-type distribution. Equation (23) gives, actually, such a generalized Omori’s law. For
h(z) ~ x7, v > 0, power-law distributions P(x) ~ 1/z" are obtained (an upper-bound cutoff D is
necessary for 0 < v < 1, as well as a lower-bound cutoff z. for 1 < 7).
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