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Abstract

A series expansion in powers of eccentricities is set up for the motion in central-field
potentials, which connects such movements to anharmonic oscillators. The method is used
to rederive the solution of Kepler’s problem, describe the motion of a particle in a general
central-field potential, and discuss the closed orbits and the first sign of "chaos". Similarly,
Moon’s problem is tackled by the same method, where the motion turns out to be described
by triple series in powers of eccentricities, inclination against the ecliptic and the gravitational
interaction originating in Sun. Newton’s results are thus rederived in the first-order of the
perturbation theory, regarding the "four Moons" and four periodicities, as known as early
as from the classical Greeks. The method can also be applied to the Jupiter-Saturn couple,
where their mutual gravitational interaction may be viewed as a perturbation. The missing
integrals of motion, Poincare’s "weak chaos" and trajectory "strong-chaotical" instabilities
are also introduced. Finally, a new route of quantizing the motion in central-field potentials
is presented, as based on the eccentricities expansion.

Introduction. The Moon’s motion on the sky was recorded from ancient times. The four
periodicities associated with this motion were known cca 3000 years ago, with one second of
time accuracy (which means five decimals, and 1lkm in position), and are the first historical
measurements in Natural Sciences. Newton’s Natural Philosophy was obviously motivated by the
Planetary System of Celestial Bodies, like Earth rotating about Sun, and, firstly, Moon’s motion
as the only one amenable to accurate empirical observations. Mathematical Physics was born
from the Celestial Mechanics, and the great mathematical tools developed by mathematicians
like Euler, Lagrange, Hamilton, Jacobi, etc, of the 18th and 19th centuries, were occasioned
by the three-body problem like Sun, Earth and Moon. It was this problem where Poincare
noticed particular signs of complex motion which later became known as "chaos". The three-
body problem, ergodic hypothesis and anharmonic oscillators are the three basic pillars that
illustrate a chaotical behaviour. In particular, endless trajectories that never repeat, sensitivity
upon the initial conditions, non-linearity, instabilities, bifurcation, fractal dimensions, etc, are all
typical of "chaotical issues". Apollo program of aselenization was based on such calculations of
the three-body complex Sun-Earth-Moon, and modern computers brought new insights into such
complex movements.

Kepler’s problem. Kepler's problem is the description of the motion of a particle of mass m
in the gravitational potential —a//r, where o > 0. Like any other central-field potential, the
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gravitational potential conserves the angular momentum L, so the motion is confined to a plane,
and
L =mr*p (1)

where ¢ is the angular coordinate. Equation (1) shows that the motion sweeps equal areas in
equal times (Kepler’s second law).

The energy of the motion reads
E=mi?/2 +mr?p?/2 — afr = mi? /2 + L?)2mr® — afr (2)
as if the particle moves in an effective potential
U=L*2mr* —a/r , (3)

exhibiting the centrifugal 1/r%- energy. The orbits proceed between r; = a(1—e¢) and ry = a(1+e¢),
where a = /2 |E| and

e =+/1—2L2|E| /ma? (4)
is the eccentricity, for negative energies above E,.;,, = —ma?/2L2.

The effective potential (3) reaches its minimum value E,,;, for
ro = L?/ma | (5)

where the eccentricity vanishes and the orbit is circular with radius ro. By (4), the energy can
also be represented as
Q@

E| = —(1—¢?) , (6)

2T0

or ro = a(l — €?).

The expansion of the effective potential U given by (3) around its minimum value gives
! « !

U:_2_m+2—7~g<7“—7“0)2_%("’_””O)?’ﬂL---? (7)

i.e. a small-oscillations expansion valid for |r — r¢| < 7.
It is convenient to write r — ry = Au, where u is dimensionless, and cast the energy given by (2),
(3) and (7) into the form
E = —a/2rg + mA*0i* /2 + (aA?)2r)u? — (aA® [ro)u’ + ..., (8)
or
E = —a/2rg + mA%[i?/2 + w*u?/2 — (A)ro)wu® + .., 9)

where w? = a/mr3 and A/ry = ¢ can be viewed as a small perturbation parameter. Equation (9)
can also be written as

,  2&?
e’ ="
2

(%2 + wu?/2 — ew®u® + ...) | (10)

which tells that the eccentricity e is related to the perturbation parameter €. Equation (9) leads
to the motion
i + w?u — 3ewu® + ... =0 (11)

of an anharmonic oscillator. Within the harmonic approximation the solution of equation (11)
can be represented as u(®) = — coswt, and

70 =ry — Acoswt . (12)
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The amplitude A can be derived from energy F = —a/2ro+mA%w? /2 given by (9) or, equivalently,
from equation (10). It leads to
e=Alrp=e< 1, (13)

i.e. the eccentricity e of the orbit is the ratio ¢ of the amplitude A of the harmonic oscillation to
the original orbit radius ry. The small-oscillations treatment is valid for small eccentricities.

Therefore, the solution of the motion given by (12) can be written as

@ = 7(1 — ecoswt) , (14)

and, by (1),'
© = wt+ 2esinwt . (15)
It describes a circular motion, shifted by roe. Indeed, = rge + r® cos¢ and y = r@ sin o,

such that z? + y* = 72 within the harmonic approximation. In addition, w? = a/mr3 shows that
the square of the motion period is proportional to the third power of the linear size of the orbit
(Kepler’s third law).? By (15), wt = ¢ — 2esin .

The first-order cubic correction to equation (11) leads to
u=u" +euV = — coswt — e coswt + %(3 — cos2wt) (16)

and equation (10) gives € = e(1 — ¢e). The corresponding radius reads
o2
r=ro[l — ecoswt + 5(3 — cos 2wt)] (17)

which, by (1), leads to
2

b}
© = wt+ 2esinwt — %(?wt b sin 2wt)] . (18)

Equation (18) can easily be inverted to give

, 3e? 1.
wt:g0—2681ng0+7(<p+§sm2<p) : (19)
which transforms (17) into
r=r1o(l —ecosp+e*cos’ o+ ...) . (20)

Within this approximation, equation (20) describes an ellipse,

r/ro=1—ecosp+elcos’p+..=1/(1+ecosyp) , (21)

with the semi-major axis a = ro/(1 —e?) = ro(1+€?+...), the semi-minor axis b = ro/(1 —e?)1/? =
ro(1 4 €?/2 + ...) and the origin displaced by ae = roe + ... in the focus ae (Kepler’s first law).?

According to equation (19) the period T' of the motion is given by

wT = 27(1+3e*/2) , (22)

'Noteworthy, L = wl, where I = mr3 is the moment of inertia.
2J. Kepler, Harmonices Mundi, Linz (1619)
3Indeed, from (21), cos p = x/(ro — ex) and sinp = y/(ro — ex), hence the ellipse equation.
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which shows that frequency w is shifted to Q = w(1 — 3¢2/2) = (a/ma®)"/2. The frequency shift
Aw/w = —3e?/2 ensures the cancellation of the resonant contributions to the second-order cubic
correction and first-order quartic correction to the anharmonic motion.

General central-field potential. Let v(r) be an attractive central-field potential, such that the
radial motion proceeds between rjand r, given by*

L?/2mrt y 4+ v(r2) =E <0 . (23)

The effective potential U(r) = L?/2mr?+wv(r) has a minimum value —uy = rov;(1/2+vy/rovi) < 0

for 7o given by L? = mrdv;, where vy, v1, v2, ... denote the potential and, respectively, its

derivatives for ro. Making use of r — ry = Au and A/ry = ¢, the energy E can be written as

E = —ug+mA?[i?/2 + wu? /2 — efuwu® + 2qwut..] | (24)

where mw? = 3v; /1o +va, = (21 — rdv3/6)/(3v1 +rove) and v = (5v1 /2 + rivy/24) /(3vy + rov2).
Making use of the eccentricity e defined by e¢* = §(1 — |E| /ug), where § = —(vy + 2vy/79)/(3v1 +
rov2), equation (24) can be rewritten as

2e?
¢ — F(u2/2 + w?u?/2 — eBwu® + 2ywiut + .. | (25)

The equation of motion given by (24) reads
il + wu — 3efwu® 4+ 4e?yw*ud.. =0 | (26)

and its solution is given by
Be?
r=rg[l — ecoswt + 7(3 — cos 2wt)] (27)

to the first-order of the cubic anharmonicity, where e = (1 + [¢). Similarly, the angular variable
is given by

2 2 3
© = /v1/ (301 + rovy){wt + 2esinwt — %[3(25 — Dwt — b+

sin 2wt} . (28)

One can see that, in general, the trajectory of the motion is not closed, except for

\/Ul/(3111 +rov2) = p/q (29)

where p/q is a simple fraction. The gravitational potential v(r) = —«/r gives p/q = 1, while the
spatial-oscillator potential v(r) = const + ar? gives p/q=1/2 (5 =1/2, v = 5/8).

Denoting 1/v = \/v1/(3v; + rovy) and introducing the new phase Y = vy, equation (28) can be

rewritten as )

2 3
X = wt + 2esinwt — %[3(2ﬁ— Dwt — b+

sin 2wt] , (30)

and it can easily be inverted to give

. e? 2
wt = x — 2esin x + 5[3(2ﬁ— )x —

sin 2] . (31)

“In order to avoid the fall on the centre the potential v(r) must be less singular at the origin than —L?/2mzr2.
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Making use of (31) the equation of the trajectory (27) becomes
ro[1 — ecos x + (2 — B)e* cos x] (32)

where ), = ro[1 —2(1—f3)e?]. For the gravitational potential 5 = 1, and equation (21) is recovered
from (32), while for the spatial oscillator § = 1/2, x = 2¢ and (32) becomes

3e 2
r=ry[l —ecos2p + — 5 s 22¢] . (33)

Since (33) is equivalent to r* = riZ/(1+2e cos 2¢p), it is easy to see that the corresponding trajectory
is an ellipse centered at the origin. One can see from (30) that the spatial oscillator does not shift
the frequency, but reduces it instead to w/2.

Closed orbits and the first sign of "chaos". Higher-order contributions of the anharmonicities
may lead, in general, to a shift in frequency, in order to avoid, at each step of the perturbation
calculations, the resonant terms.> Equation (27) for the radius gets thereby a shifted frequency
', and equation (1) for the phase motion reads now ¢ = (L/mwr?)(w/w’')w’, which changes, in
general, the prefactor 1/v in equation (28). ¢ This is valid as long as the calculations are confined
to finite orders of perturbation series, as for small oscillations and eccentricities, for instance.
In the limit of the series summation the orbits are closed only for two power-law potentials:
the gravitational potential —«/r and the spatial-oscillator potential const + ar?. Indeed, this
can be seen easily on the equation of motion for the trajectory r(y), as given by (1) and (2),
whose integration requires a quadratic form of the integrand, the only one able to lead to circular
functions.” In general, the trajectories are closed provided the potentials are such as to cancel
recurssively the frequency shifts in the formal perturbation series. However, for sufficiently large
p and ¢, and a large number of cycles, the orbits are practically closed for any potential.® This
is another illustration of the "ergodic hypoyhesis", and is viewed sometimes as the first sign of
"chaos" and "chaotical" behaviour.

Moon’s problem. Let r; and ro be the positions of two bodies of mass m; (Earth, m; ~
6 x 10**Kg) and, respectively, my (Moon, my ~ 7 x 102K g), subjected to gravitational poten-
tials —Gmgomy/r1, —Gmgms/r2 and interacting through —Gmyms/ |r1 — ra|, where G ~ 6.7 X
1071m3/Kg - s? is the gravitational constant. The body of mass mg (Sun, my ~ 2 x 103°Kg) is
at rest. The energy is given by

E = mlrf/Q + TTLQI‘%/Q — Gmoml/'f’l — GmomQ/T’g — Gmlmg/ |I'1 — 1‘2‘ s (34)
and the angular momentum reads

Ltot = miry X 13'1 + Mory X i'2 . (35)

5Such terms are also called "secular terms", and the shift in frequency is also known as the Poincare-Lindstedt
expansion (H. Poincare, Les Methodes Nouvelles de la Mecanique Celeste, Gauthier-Villars, Paris (1892); A. Lind-
stedt, Uber die Integration einer fur die Storungstheorie wichtigen Differentialgleichung, Astron. Nach. 103 211
(1882)).

6Equation (29) is the first term of the series expansion of the well-known closure condition

A@/Qﬂi(l/ﬂ)/r (L/r?)/ \/3m —L?/r2=p/q.

"Making use of the substitution » = 1/u the equation for the trajectory u(y) reads v’ +u = —(m/L?)0v/du,
whose solution is given by circular functions only for the gravitational potential v ~ u and the spatial oscillator
potential v ~ 1/u2. This observation is called sometime "Bertrand’s theorem" (J. Bertrand, Mecanique Analytique,
Comptes Rendus, Acad. Sci. 77 849 (1873)).

8To the extent to which an irrational number is approximated by a rational number.
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It is easy to see that Ly, is conserved. However, there are no other constants of motion (at least
analytical),? and, consequently, the problem is termed "non-integrable". Making use of the center-
of-mass coordinate R = myry/M + mors/M, where M = m; + ms, and the relative coordinate
r =ry — ry, the angular momentum becomes

Lyt = MR XR+mr x T | (36)
where m = mymgy/M is the relative mass. Similarly, the energy can be written as
E = MR?/2 4+ mi?/2 — Gmgmy/ |R — mor /M| — Gmgmy/ |R + myr/M| — Gmymg /1. (37)

Since r < R (Sun-Earth distance 7, ~ 15 x 10"K'm, Moon-Earth distance r ~ 380 000Km) it is
convenient to expand the gravitational potentials in (37) in powers of rR/R?. Keeping only the
quadrupolar contribution the energy becomes

E = MR?/2+mi?/2 — /R — 3/r —~[3(rR)?/R? — r?]/R® | (38)

where a = GmoM, f = GmM and v = Gmom/2, or

E=FE+E+v, (39)
where )
E, = MR?/2—a/R , Ey=mi*/2—8/r | (40)
and
v=—r?(3cos’x — 1)/R* . (41)

The angle x in (41) is the angle between the two vectors r and R. Since r/R ~ 3 x 1072 for
Moon-Earth-Sun (and (r/R)? ~ 107°) the interaction v may be viewed as a small perturbation,
and v in (39) may act as a formal perturbation parameter. The solutions of the equations of
motion corresponding to (39) are written in the generic form u = u(®) +~yuY) + ... It is convenient
now to employ polar coordinates and rewrite (40) as

Ey = MR*/2 + MR*(©* 4+ ®*sin’0)/2 — a/R , (42)

and, similarly, ‘
Ey = mi? /2 + mr?(0* + ¢*sin® 0) /2 — B/r | (43)
where cos x = sin © sinf cos(® — ¢) + cos © cosf in (41). The angular momentum of the relative

motion reads

l, = —mr2(fsin ¢ + ¢ sin 0 cos 0 cos ) | l, = mr2(0 cos ¢ — psin cos fsin ) |
(44)

I, = mr?psin?o |

or I, =0, lg = —mr?psinb, I, = mr20. Similar expressions hold for the angular momentum L of
the center of mass, and L;,; = L + 1.1°

Perturbation theory. The ratio of the perturbation v to energy a/R is of the order of 107".
Consequently, the motion of the M-body can be considered as being unperturbed, and described by
an independent Kepler’s problem of the form given by (17) and (18), where the frequency is given

9This is sometime referred to as a Bruns-Poincare theorem.
10Tn view of the great disparity between m; and mg, the center of mass is located practically on the first body
(Earth, M ~ m;), and the relative motion corresponds practically to the second body (Moon, m =~ msy).
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by Q2 = a/MR3,'' the parameter R, is given by Ry = L(®2/Ma (where L is the unperturbed
angular moment of the M-body motion) and the eccentricity eis given by |Ei| = 53-(1 — e}).
Similarly, the ratio of the perturbation vv to energy (/r is of the order of 1073, and first-order
corrections in < are retained in the m-body motion. Its zeroth order trajectory is described
by equations similar with (17) and (18), where the frequency w is given by w? = 3/mr3,'? the
parameter 7 is given by 7o = (92 /m3 (I being the unperturbed angular momentum of the m-
body motion) and eccentricity e, is given by |Ey| = %(1 — €3). In addition, in order to preserve
the generality, the unperturbed m-body orbit must be rotated both by an angle ¢q (about the
z-axis) and by an angle 6, (about one of the x- or y-axis). The latter gives the inclination of
the m-orbit with respect to the plane of the M- body orbit.'”® The former (y,-) rotation can be
accounted for by changing the initial moment of time. The fy-rotation (about the z-axis) leads
to the new coordinates ' = r, and ', ¢ given by

cosf' = sinfysiny , tany' = cosbytanp . (45)

One can check easily that (d6'/dp)? + (dy'/dp)?sin? @' = 1, which expresses the conservation of
the angular momentum under this rotation. Equations (45) lead to

o' =p— i@g sin2¢p + ... = wt + 2eg sin wt — i@g sin 2wt + ...,

0 =7/2—6bysinp+..=m/2 —ysinwt + ..., (46)

" =r=ry(l —eycoswt+...) .

These are the zeroth order contributions u(?) to the general solution u = u(®) +~u(® + ... for the
m-body motion. One can check easily that they do indeed verify the unperturbed equations of
motion.

Equations of motion. The equations of motion for the m-body, as given by (39) to (41), read

mit — mr(0% + ¢2sin® 0) + 5/r2 = 2v(r/R®)(3cos? x — 1) |
d(mr20) /dt — mr2? sin 0 cos 6 = 6(r%/ R?) cos x[sin © cos f cos(® — @) — cosOsinf] , (47)

d(mr?sin? 0¢) /dt = 6(r?/R?) cos x sin © sin 0 sin(® — ¢) .

To the lowest order of perturbation theory the coordinates R = Ry, © = w/2, & = Qt and r = r,
0 = m/2, p = wt are inserted in the rhs of (47), and only the linear terms in eccentricity e, and
quadratic in inclination angle 6, are retained.'* Within this approximation the m-body motion
reduces to a Kepler’s problem in an external field.!> . In addition, 2 may be droped out in
comparison with w, since 2 < w.'® Doing so, equations (47) become

mit — mr (62 + ¢ sin 0) + B/r? = ~y(ro/R3)(1 4 3 cos 2wt) |
d(mr20)/dt — mr?¢®sinfcos =0 | (48)

d(mr?sin?0¢) /dt = —3y(r2/R3) sin 2wt .

HErom Q2 = a/M R} one can check easily the Earth’s year ~ 365 days.

12Moon’s period ~ 27 days is checked from w? = 8/mr3.

131t corresponds to Moon’s orbit inclination against the ecliptic, which is approximately 0y = 5° = 7/36.

MEarth’s orbit eccentricity is e; ~ 0.017 and Moon’s orbit eccentricity is es ~ 0.055.

15The corrections brought about by this approximation amount to the second decimal, or the first decimal at
most, in relevant quantities.

16The ratio of these Earth-Moon frequencies is Q/w ~ 1/13.
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The solutions of these equations are looked for in the form r = ' +~yr; + ..., 0 = 0 + 0, + ...
and ¢ = ¢/ + vy + ..., where ', 0" and ¢’ are given by (46). The presence of the constant term
in the first equation (48) gives rise to secular terms, so the frequency w is renormalized to w’ in
the zeroth order solutions given by (46). This renormalization implies a shift in frequency of the
order of 7, which, as it is well known,'” is computed by requiring the cancellation of the secular

terms.

It is easy to see that equation on the third row in (48) leads to the integral of motion

mripsin® = F(t) + 1, (49)
where
F(t) = v(3rf /2wRy) cos 2wt (50)
and
I =mriw'(1 —65/2) (51)

is a constant of integration. It is reminiscent of the z-component of the unperturbed angular
momentum lgo), renormalized by ~-interaction (through frequency w’). Equation (49) expresses
the motion of the z-component of the angular momentum in the presence of the perturbation. It
leads to equation

2mwry + mrop1 = (3rg/2wR}) cos 2wt (52)

for the functions r; and ;.

Similarly, by making use of (49), equation on the second row in (48) leads to another integral of
motion

. l/2
(mr?0)* + —— =17, (53)
sin” 0
where
' = mrid’ (54)

is another constant of integration (reminiscent of the unperturbed angular momentum /®), renor-
malized by 7-interaction). Equation (53) has the same form as the one corrresponding to the
unperturbed motion, so it gives no equation for r; and 6, as it can be checked easily.

Finally, by making use of the two integrals of motion given by (49) and (53), the first equation in
(48) leads to
mi’ — 1% /mr" + B/r"* = y(ro/ R3) (55)

and
mity + (312 /mry)ry — (28/r3)r1 = 6(ro/ Ry) cos 2wt . (56)

Equation (55) gives the shifted frequency
W' =w(l — 78 2BR3) = w(1 — Q% /4w?) (57)

and the unperturbed solution ' in (56), with eccentricity e}, corresponding to another constant
of integration F) (unperturbed energy). Equations (52) and (56) can now be easily solved. Their

solutions read
ry = —(2r¢/BRY) cos 2wt |

(58)
o1 = —(5r3 JABRY) sin 2wt .

17This is the usual Poincare-Lindstedt procedure.
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The solution of the m-body motion within this approximation is now complete. It is given by (46)
and by (58), with shifted frequency w’ given by (57). Within this approximation ¢#; = 0. One can
check that the total energy Fy +yv = Ej — v(r2/R3) is constant. The corrections to the angular
momentum 1, as given by (49) and (53), are compensated by similar corrections to the angular
momentum L, such taht the total momentum L;,; conserves. The motion is characterized by three
basic frequencies: €2, w and ', though the bare frequency w is not observable. The calculations
can be extended to higher-order terms, where combined frequencies appear, as well as additional
contributions to the frequency shift. The method can also be applied to other situations of
three bodies interacting through gravitational potentials, like, for instance, two bodies gravitating
around a third one (Jupiter and Saturn, for instance, where a natural perturbation is just their
own interaction, since their mass is much lighter than Sun’s mass, and they do not get too close
to each other).!8

The "four Moons" and four periodicities. It is well known that Moon’s orbit exhibits four
periodicities, beside T ~ 365.26days of the year corresponding to frequency (2. There is, first,
the sideral Moon 77 ~ 27.32days, then the anomalous Moon T, ~ 27.55days, the nodal Moon
T3 ~ 27.21days and the synodal Moon T, ~ 29.53days. Making use of the numerical data given
herein (m ~ 7 x 10%2Kg, M ~ 6 x 10**Kg, my ~ 2 x 103Kg, 79 ~ 384 000Km, R ~ 150 000Km)
and the gravitational constant G = 6.7 x 107''m3/Kg - s*, one gets easily Ty ~ 364.78days
from 02 = a/MR3, and the bare period T ~ 27.28days, corresponding to the bare frequency
w? = B/mry. The sideral Moon corresponds to frequency w’ given by (57), and one can check easily
that it implies a frequency shift dw/w = —Q%/4w? ~ —1.4 x 1073, Tt corresponds to a difference of
0T ~ 0.04days, which gives the sideral Moon T} = T+dT ~ 27.32days. In the rotating frame of the
Earth the periodicity is w’—€, which corresponds to a change dw/w’ = —Q/w ~ 0.08 in frequency.?
It implies a change 07T ~ 2.2days, corresponding to the synodal Moon T = T} + 0T ~ 29.52days.
The nodal Moon is associated with the periodiciy of the z coordinate in the rotating frame. It is
easy to see, by using directly the transcription of the hamiltonian given by (38) in the rotating
frame, that this frequency is given by @? = w? + Q? = W?(1 + Q?/2w?) + Q2 which implies
a change dw/w’ = 30%/4w?. Tt corresponds to 6T ~ —0.11days, which gives the nodal Moon
T3 =T, — 0T ~ 27.21days. This correction gives also (4w /32)T ~ 18years for the slow motion of
Moon’s nodal plane.?’ According to (46) and (58) the angle o reads p ~ W't — (5Q%/4w)t+... in
the limit of short times, which amounts to a change dw/w’ = —30?/2w? in frequency. It leads to
0T ~ 0.22days, i.e. a difference twice as much as the difference between the nodal Moon and the
sideral Moon, which may be associated with Moon’s anomaly 75 = T7 + 0T ~ 27.54.

A few "chaotical" considerations. In general, the three-body problem is not integrable. How-
ever, non-analytical behaviour may exist, as, for instance, an infinite phase velocity ¢ for a van-
ishing polar angle ¢. This may imply an abrupt change in the trajectory (for instance, instead of
rotating very fast around the pole, the trajectory may take suddenly a longitudinal circle). Apart
from particular initial conditions, such chaotic behaviour of the three-body problem would require
an external perturbation, usually time dependent, a situation sometime referred to as "Moon’s
problem", where Earth’s coordinates act like time-dependent external fields. Nevertheless, the
motion described above, very likely, by four fundamental frequencies (as well as by the corre-
sponding "combined" frequencies and their higher harmonics), may look already very complicated

18 An analytical series expansion in terms of known functions for the coordinates of the Planets was suggested
by Weierstrass as a problem in the contest held around 1890 in honor of Sweden’s King. Poincare won the contest
without solving the problem, though pointed out possible instabilities. A formal series expansion has been given
later by Sundman.

9Tn general, in the rotating frame the coordinate r is the same, while de velocity is obtained by using # — Q x r
for time derivative.

20Correction 30Q?/4w? was known to Newton.
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to warrant the adjective "erratic", or "chaotic", though over very small scale of magnitude.?! It
is sometime called Poincare’s "weak chaos", in contrast to trajectory instabilities that are termed

"strong chaos".??

Laborious contributions to Newton’s y-correction to the motion of Moon’s nodes (nodal Moon) and
the derive of Moon’s perigee (anomalous Moon) were brought by d’Alembert and Clairaut around
1750, while Delauney set about to compute about 500 perturbation terms around 1840 (published
in about 2000 print pages). Hill (~1880) studied Moon’s problem in the rotating frame of the
Earth, while Poincare (~1890-1900) developed further insights into such a complicated mechanical
behaviour of the 3-body problem. Modern computers (employed especially in connection with
aselenization plans) brought additional insights. The difficulties reside in the slow convergence,
resonant terms, a required accuracy rather high (a small error on the Earth may result in a
big failure on the Moon!), and computing algorithms. Meanwhile, chaotical behaviour was left
to be looked for in the quantal behaviour, where quantization is attempted for erratic classical
trajectories.

A particular motion in Coulomb potential. The energy in Coulomb (or gravitational)
potential —«a/r reads
E=mi?/2+ L*/2mr* — afr | (59)

where m is the particle mass and L is the angular momentum. Let L = 0 for the moment, and
E = —a/ry. The particle will pass through the origin up to the second rg, then will return to the
former ry, in a periodic movement. Formally, it can be viewed as oscillating between r = 0 and
r = rg, around ry/2. By (59), it is easy to get

mi? /2 + a(r —ry)/rro =0 | (60)

or, by r =ro/2+ p,
mp* /2 + alp —10/2) /To(p +10/2) =0 . (61)
It is also convenient to use p = rou/2, so (61) becomes

W+ wiu—1)/(u+1)=0, (62)

where
w? = 8a/mr} . (63)

It is easy to integrate equation (62). One obtains

2arcsin /(1 —u)/2 + V1 —u2 =wt | (64)

and the solution must be periodically extended to any ¢. It describes a periodic motion with
period T' = 47 /w, as if the frequency would be w/2.

Quantization. Equation (61) gives also
mp® /2 +mw?p? /2 + ... —a/rg =0 (65)
by expansion in powers of p, which describes a linear harmonic oscillator. It follows

hw(in+1/2)/2 =a/rg , (66)

2In particular, the corresponding orbits are not closed (or "periodic") anymore.
22The latter are similar with well-known parametric resonance, or non-linear resonance, in the theory of the
linear oscillators, driven by an external control parameter.
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where frequency w/2 is used (as for the complete motion) and n = 0,1,2,... According to the
quantal hypothesis, one can also write it as

hwon/2 = |E|, (67)

where on = n = 1,2,3...and E, is the quantized energy. Making use of w = (8 |E|§ /ma?)/? one

gets

mao?

Bl = 2h2n? "’
i.e. the quantized energy of the Hydrogen atom. The anharmonic corrections to (65) do not
contribute, as it can be seen from the variation equation (67). The corresponding approximate
wavefunctions of the linear oscillator must be displaced so as to be peaked on the origin.

(68)

Similarly, for L # 0, the effective potential in (59) has a minimum value for
ro = L*/ma (69)

and energy reads
E=mi?/2 4 (a/2r3)(r —ro)* + ... — a/2ry . (70)

The frequency is given by mw? = a/r3, and
hwin+1/2)/2 =a/2ro+ E . (71)

Since L?/21 = L?/2mr§ = a/2rg = | E|, it is easy to see that (71) leads to

\/2R2 |E[] /ma2en = |E|, (72)

which is again the quantal energy (68) of the Hydrogen atom, for on = n = 1,2,3.... The
corresponding approximate wavefunctions of linear harmonic oscillator are now peaked on ry.

The method can be generalized to any central-field potential v(r). The minimum of the effective
potential is reached for ry given by

—L?/mrd +v, =0 (73)
where v;is the first derivative of v for 5. The energy expansion reads
E =mi?/24 (3v1/ro +v2)(r —10)*/2 + ... + L*/2mrg + vy (74)

where v is the potential function for ry, v, is the second derivative of v for rj, and frequency is
given by
w? = 3vy /mrg + vo/m . (75)

The quantization relation reads
hw(n+1/2)/2=FE — L?/2mri — vy . (76)

Making use of (73) the energy can be related to ro by |E| = L*/2mri = viro/2. Tt follows the
quantized energy is given by

R*[3o(|Bl,) /mro(|El,) + va(| ) /m]n® /4 = |E]; (77)

where n =1,2,3....
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