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Abstract

It is shown that small, local disturbances of entropy in the atmosphere may give rise to
”sound” waves propagating with a velocity which depends on the amplitude ratio of the local
relative variations of temperature and volume. This velocity is much smaller than the mean
molecular velocity and the usual, adiabatic sound velocity.

It is well-known[1]−[4] that the balance of entropy in the atmosphere is described by the
equation

∂ (ρs)

∂t
+ div (ρsc) = f , (1)

where ρ is the density of the air, s is the entropy per unit mass, c is the transport velocity and
f is a source term, including the heating rate due to the radiation, diffusion, evaporation and
condensation, as well as the internal friction. The detailed content of this source term (which can
be found, for example, in Ref.5) is not relevant for the present discussion, since we shall focus
ourselves on the homogeneous part of (1). Using the mass continuity the homogeneous part of the
equation above becomes

∂s

∂t
+ cgrads = 0 , (2)

which expresses the conservation of entropy. As it is well-known,[6] the entropy of a closed ther-
modynamic system may only increase as a result of the intermolecular collisions (the H theorem).
For an open system however, as the small regions in the atmosphere, the entropy may vary locally
by the transfer of the entropy from one region to another, by the free motion of the molecules.
This variation is expressed in equation (2) above. This mechanism of local transfer of entropy
requires the transport velocity |c| be much smaller than the mean molecular velocity. For a con-
stant velocity c = const equation (2) admits plane waves for the general solution.[7] Indeed, with
c oriented along the x-axis (2) amounts to the wave equation

∂2s

∂t2
− c2 ∂2s

∂x2
= 0 , (3)
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whose general solution is a superposition of plane waves with frequency ω = cq, where q is the
wavevector. This suggests that small, local perturbations of entropy may propagate in atmosphere
with a velocity c. We show below that these entropic waves are actually an entropic ”sound”.

Indeed, suppose that we have such an entropic wave s exp [i (qx− ωt)], with the amplitude
much smaller than unity; we may also assume that the system is in thermodynamical equilibrium,
so that the first principle of thermodynamics (with usual notations) reads

dE = −pdV + Tsei(qx−ωt) . (4)

Further on, we assume an ideal gas model for the atmosphere, such that the energy is given by
E = ncvT + const, and the equation of state is pV = nT , where n is the number of molecules
per unit mass, and cv is the heat capacity (per molecule) at constant volume. We remark that
the number of molecules per unit mass is constant, n = 1/m, where m is the mass of a molecule.
Under this assumption (4) becomes

cv
dT

T
+

dV

V
= s0e

i(qx−ωt) , (5)

where s0 = s/n = sm is the variation of entropy per molecule. Equation (5) implies that the
relative variations of temperature and volume may be represented as

dT

T
=

A

cv

ei(qx−ωt) , (6)

dV

V
= Bei(qx−ωt) , (7)

with
A + B = s0 , (8)

the coefficients A and B being otherwise undetermined. Similarly, we get the relative variation of
pressure

dp

p
= (A/cv −B) ei(qx−ωt) . (9)

Equations (6), (7) and (9) indicate that an entropic ”sound”, i.e. small, local variations of volume
and pressure (and of temperature, as well), is produced by the entropy disturbances, propagating
with the velocity c.

On the other hand, it is well-known[8] that such disturbances propagate in a fluid with the
velocity v given by

v2 = 1/κρ , (10)

where κ = −(1/V )∂V/∂p is the fluid compressibility. For A/cv −B 6= 0 we get from (7) and (9)

κ =
1

p
· B

B − A/cv

. (11)

The (actual) sound proceeds by adiabatic, local compressions and dilations, which correspond to
putting s0 = 0 in (8); this leads to A = −B and, we can check that we obtain from (11) the
adiabatic compressibility κad = 1/pγ, where γ = cp/cv is the adiabatic exponent and cp = cv + 1
is the heat capacity at constant pressure. We get also from (10) the well-known sound velocity
cs given by c2

s = pγ/ρ. We can also check that we get from (11) the isothermal compressibility
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κis = 1/p for A = 0, which is indeed, according to (6), the condition for an isothermal process.
Making use of (10) and (11) we may express, therefore, the velocity of the entropic ”sound” as

p

ρ
· B − A/cv

B
= c2 , (12)

whence one can see that the velocity c is determined by the amplitude ratio A/B of the local
relative variations of temperature and volume. Assuming c known equations (8) and (12) can be
solved for the coefficients A and B, and we obtain

dT
T

= c2s−γc2

c2s−c2
· s0

cp
ei(qx−ωt) ,

dV
V

= c2s
c2s−c2

· s0

cp
ei(qx−ωt) ,

dp
p

= − γc2

c2s−c2
· s0

cp
ei(qx−ωt) .

(13)

Since c is much smaller than the mean molecular velocity we have also c � cs, so that these
perturbations do propagate indeed as an entropic ”sound” with the velocity c, i.e. the entropic
”sound” does indeed exist. For c approaching cs we see from (12) that B approaches −A, i.e.,
according to (8), the entropy variations vanish (s0 → 0), and the entropic ”sound” becomes the
usual, adiabatic sound.

Equations (8) and (12), which were solved for the coefficients A and B above, i.e. for the small
amplitudes of the relative variations of the temperature and, respectively, volume (the relative
variations of the pressure are obtained from the equation of state), may also be viewed in another
way. We may either consider that the velocity c is given, and then we obtain the amplitudes A
and B, or consider these temperature and volume variations as being fixed (such as to satisfy the
first law of thermodynamics), by various, undetermined circumstances which caused the initial
entropy disturbance, and then we get the velocity c. One can see that the velocity c is therefore
not fixed, but depends on the relative magnitude of the original local disturbances of temperature
and volume (or pressure). In addition, we may also remark that if the masses of air in the
atmosphere are in motion with an additional transport velocity u, i.e. with a wind velocity u,
then the entropy waves may be written as s exp [i (q(x + ut)− ωt)], such that the frequency is
given by ω = (c + u)q, in agreement with the Galilei principle of translational symmetry. As is
well-known the wind velocity u itself is usually much smaller than the mean molecular velocity
(and the adiabatic sound velocity).
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