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Abstract

A model is suggested for a classical liquid, based on local vibrations of molecular concen-

tration.

In contrast with gases or solids, or even more complex quantal ensembles, the classical liquids
exhibit no particular distinction. Gases are rare�ed ensembles of molecules moving freely, solids
are made of molecules vibrating around regular positions. In contrast, all what we know about
classical liquids is a general and rather vague picture of an ensemble of molecules, moving around
and interacting strongly. This is why the thermodynamics of classical liquids lagged behind other
statistical ensembles. Though it is true, on one side, that such a thermodynamics would not be
very telling, it is also true, however, that we still lack it, in fact.

Actually, a closer scrutiny of the classical liquids may provide nevertheless some elements which
may be helpful in building up such a thermodynamics.

First, we note that the molecules in a classical liquid are more or less bound together, albeit in a
lose way, because we need a de�nite amount of energy ε0 to take a molecule out of such a liquid.
Therefore, we may assign a cohesion energy −ε0 < 0 to each molecule in a classical liquid. Next,
the molecules in a liquid may assume a pretty dense energy levels in their movement, at least
over a certain energy range. We may imagine that their energy depends on the local inter-particle
spacing a, and write it as ε(a). During the motion the parameter a changes by small amounts δa
with respect to its equilibrium value, so that we may set up a series expansion

ε = −ε0 + A(δa)2 + ... (1)

for the molecule energy, where the �rst-order term is absent, as for equilibrium, and A is some
expansion coe�cient. The change δa represents certainly a vibration, and for a macroscopic
occupation the vibration energy goes like εvib ∼ n ∼ (δa)2, where n is a large quantal number of
vibrations. We extend this number down to quantal levels too (because the quantal motion is in
there!), and set up n = 0, 1, 2.... The energy given by (1) becomes therefore

ε = −ε0 + ε1n + ... , (2)

where ε1 is the separation between the energy levels. For large vibrations the higher-order terms in
(1) are certainly important, as corresponding to anharmonic vibrations, so we restrict the running
of number n to some cuto� nc, corresponding to a cuto� energy ε2 = ε1nc, if we do not want to
include explicitly the anharmonic corrections. This is the most simple particle spectrum of the
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molecules in a classical liquid, corresponding to a harmonic oscillator with one degree of freedom,
as given by equation (2).

Next we de�ne sub-ensembles in the liquid, labelled by j, each containg a large number Nj of
molecules, centered on some points rj in space and some numbers nj in the energy spectrum,
each consisting of a number of states Gj = ∆rj∆nj/b, where b is a characteristic volume. The
parameter b is reminiscent of the van der Waals excluding volume, plays the role of a volume cuto�
and accounts for the "impenetrability" of the classical molecules and their short-range correlations.
We set then the classical entropy

S =
∑
j

ln G
Nj

j /Nj! = −
∑
j

Gjρj ln(ρj/e) = −(1/b)
∫

drdn · ρ ln(ρ/e) , (3)

and view ρj = Nj/Gj = bdN/drdn = ρ as the probability density of the j-th statistical sub-
ensemble. We look, as usually, for the maximal value of the entropy given by (3) subjected to a
given number of molecules

N =
∑
j

Gjρj = (1/b)
∫

drdn · ρ , (4)

and a given energy

E = −Nε0 +
∑
j

Gjεjρj = −Nε0 + (1/b)
∫

drdn · ερ , (5)

where εj = ε1nj. The constrained entropy functional reads

S = −(1/b)
∫

drdn · ρ ln(ρ/e) + α[N − (1/b)
∫

drdn · ρ] + β[E + Nε0 − (1/b)
∫

drdn · ερ] , (6)

and we get straightforwardly the Boltzmann distribution

ρ = e−α−βε , (7)

where ε = ε1n. In addition, we get by (6) the inverse of the temperatureβ = 1/T = ∂S/∂E, the
chemical potential µ = ∂E/∂N = −αT − ε0 and the pressure p = −∂E/∂V given by

E = −Nε0 − pV + µN + TS , (8)

where V denotes the volume, i.e. the basic thermodynamics, dE = −pdV +TdS +µdN including.

The distribution given by (7) can also be written as

dN = (V/b)eβ(µ+ε0)e−βε1ndn . (9)

Equation (4) gives then the number of molecules

N =
V T

bε1

eβ(µ+ε0)(1− e−βε2) (10)

which determines the chemical potential

µ = −ε0 − T ln[T (1− e−βε2)/bε1n] , (11)

where n = N/V is the molecular concentration. In deriving (10) use has been made of the
cuto� energy ε2. In addition, ε2 ∼ T � ε1 in order to ensure the thermal equilibrium. These
inequalities establish a range of temperatures around ε2 over which the liquid behaves consistently
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and classically. Under these circumstances, the chemical potential given by (11) is close to µ ∼
−ε0 − T ln[ε2/bε1n], i.e. it acquires large, negative values.

Making use of the Boltzmann distribution (9) the energy given by (4) reads

E = −Nε0 + NT −Nε2/(e
βε2 − 1) , (12)

and the entropy given by (3) becomes

S = N ln[T (1− e−βε2)/bε1n]− βNε2/(e
βε2 − 1) + 2N . (13)

The free energy is then readily obtained as

F = E − TS = −Nε0 −NT −NT ln[T (1− e−βε2)/bε1n] . , (14)

so the pressure is given by
p = −∂F/∂V = NT/V . (15)

This is the equation of state for a classical gas, as expected (the dependence of ε0 on concentration
is neglected). The only di�erence consists in its large values in comparison with those in an ideal
classical gas, corresponding to the high concentrations in liquids. The latter is about 103 larger
than in gases, so is the liquid pressure. This tremendous pressure is compensated by the change in
the binding energy ε0, which depends on a ∼ (V/N)1/3, and, of course, the external (atmospheric)
pressure. This makes the liquid practically incompressible. It is worth noting that, rigurously
speaking, the parameters ε0,1,2 also depend on the concentration.

The heat capacity per particle at constant volume is

cV = T (∂S/∂T )V = 1− ε2
2e

βε2/(eβε2 − 1)2 , (16)

while the heat capacity per particle at constant pressure is cp = T (∂S/∂T )p = cV + 1. The Gibbs
potential is given by

Φ = µN = −Nε0 −NT ln[T 2(1− e−βε2)/bε1p] , (17)

and the volume
V = ∂Φ/∂p = −(N/T )ε′0(p/T ) + NT/p , (18)

where we view ε0 as a function of concentration ε0 = ε0(n) = ε0(p/T ). The coe�cient of thermal
expansion is given by

α = (1/V )(∂V/∂T )p =
1

T
+

p

T 3
ε′0(p/T ) +

p2

T 4
ε′′0(p/T ) (19)

and acquires positive values. Simialrly, the compressibilities can also be calculated from (18).

Making use of Boltzmann distribution (7) we can calculate the �uctuations δn in the quantal
number n in equation (2), and hence the �uctuations in molecular volume δv ∼ δa ∼ δn. We get

〈
n2

〉
/ 〈n〉2 = (1/bn)

eβε2

eβε2 − 1− βε2

[2 +
βε2(1− βε2)

eβε2 − 1− βε2

] , (20)

and get δv/v ∼ 1/
√

bn in the limit βε2 → ∞ and δv/v ∼ 1/
√

bn(T/ε2) in the limit βε2 → 0,
where n denotes the concentration.
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As one can see, at high temperatures the �uctuations increase inde�netely, as expected, and the
energy spectrum and the thermal equilibrium are gradually lost. The chemical potential given by
(11) reduces in this case to −ε0, which can be used to be compared with the chemical potential of
the gas, for phase equilibrium and liquid-gas transition. The transition from liquid to gas can be
described by forming free clusters made of new numbers nj of liquids, preserving the conservation
of molecules by N =

∑
njρj, and solving for equilibrium, and transition, from nj = ∞ to nj = 1.

This is the reverse process of condensation of gases.
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