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Abstract

The liquids are described as correlated ensembles of particles, moving around and inter-
acting with strong, short-range forces. A spectrum of local vibrations is introduced for the
local, collective movements of particles in liquids. The resulting statistics is formally equiva-
lent with that of an ideal gas of bosons in two dimensions, which in turn, as it is well-known,
leads to a thermodynamics which is equivalent to that of an ideal gas of fermions in two
dimensions. The parameters used for describing the statistics of liquids are the spacing be-
tween the energy levels of local vibrations and a "constraining" volume, both originating in
the short-range character of the correlations. The corresponding thermodynamics is derived,
with explicit emphasis on both low- and high-temperature regimes. The condensation occur-
ring in the low-temperature limit is also discussed. It is suggested that such termodynamics
may apply to classical, common, liquids, and it may also be relevant for excited, heavy, atomic
nuclei, which may undergo a transition toward a solid state.

The liquids are represented as ensembles of particles moving around and interacting strongly
with short-range forces. In this respect the liquids differ both from gases, which, typically, are
weakly-interacting ensembles of particles, and from solids, where the particles move about fixed
positions. This particularity makes the motion of the particles in liquids to be highly correlated
over short distances, in the sense that the movement of one particle in a liquid entails appreciable
movements of the neighbouring particles. The local character of the short-range, strong, forces,
and the high correlations involved, have special consequences on the motion of the particles in
liquids. First, the particle movements in liquids are collective movements, and, as such, they may
imply comparatively small amounts of energy, in contrast with the highly-localized motion of a
free particle. Next, the particle movements in liquids are local, in the sense that they do not
propagate over large distances. Liquids sustain, of course, the propagation of the sound for long
wavelengths, like gases or solids, but the local movements of liquid’s particles absorb the sound
for shorter wavelengths. In addition, the strong character of liquid interactions gives rise to a
cohesion energy —eg < 0 for liquid particles, in the sense that one needs to give such an amount
of energy to the liquid in order to take one particle out of it. All these main characteristics of
the liquids distinguish them much from weakly-interacting gases, and bring them close to solids.
However, in solids the particle move about fixed positions, either regularly or irregularly arranged
in space, while in liquids the particles may still move around, although such motion is subjected
to certain restrictions.’

Tt is worth stressing here upon the meaning of "short-range forces". "Short-range" means that the range is
neither vanishing, as for non-interacting particles, nor extended to infinite, as for long-range forces, which, beside
decreasing strongly enough at infinite as to be integrable, need also a reduction in their effective range in order to
get a consistently stable ensemble of particles.
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The short-range correlations in liquids reduce the number of available spatial states of particles
moving in volume V of the liquid. The motion of each particle in a liquid is restricted by its
neigbouring particles, so that each particle moves along with its surrounding cloud of neighbours.
These short-range correlated configurations of particles are identified by their distinct positions
in space. It is convenient to associate a volume b to each of such local particle configurations,
such that the total number of available spatial states is V/b, and the corresponding density of
states can be writen as dV/b. In view of the short-range character of these local correlations the
"constraining" volume b is of the order of a®, where a is the mean inter-particle distance.

The energy of a liquid in equilibrium depends on this mean inter-particle distance a. An energy
£(a) may therefore be assigned to each particle in the liquid, such as the total energy of the liquid
can be written as Ne(a), where N is the number of particles in the liquid. This energy depend on
the nature of the liquid, i.e. on the forces acting between the particles, on their mass, etc. In order
to identify the possible movements of particles in a liquid, one may allow for small deviations da
of the mean inter-particle distance from its equilibrium value a, and write down a series expansion
of €(a) in powers of da. Such a series expansion reads

e=—eo+ A(da)* + ... , (1)

where A is some expansion coefficient. The first power in da is missing from (1), as for an
expansion around the equilibrium. Equation (1) suggests that the local spectrum of energy in
a liquid is a spectrum of vibrations with one degree of freedom. Higher-order terms may be
included in the expansion (1), as corresponding to anharmonic vibrations. The local, short-
range correlations make the vibration spectra given by equation (1) to be independent for each
local particle configuration, in the sense that these vibrations are not coupled to each other
for various particle configurations. At the same time, these vibrations do not corresponds to
individual particles, but to local particle configurations. Correspondingly they represent collective
movements, extended over relatively short distances, and the expansion coefficient in equation
(1) may correspond to vibration frequencies (and energies) much lower than the frequencies of
a free particle localized over distance a. The dynamics of the liquids is therefore represented
by local particle configurations, labelled by distinct positions in space, moving around over a
restricted number of spatial states and vibrating locally according to the vibration spectrum given
by equation (1). These particle configurations can be viewed as elementary excitations of the
liquids.

The spectrum indicated by equation (1) corresponds to an isotropic liquid, where local vibrations
do not depend on direction. More general assumptions can be employed in describing liquids.
Specifically, the range of the correlations may be extended, or the anisotropies may be taken into
account, or anharmonicities may be included, etc. The discussion herein is limited to the most
simple spectrum as the one described by equation (1), corresponding to a set of independent
harmonic oscillators with one degree of freedom. The corresponding energy levels are therefore
given by

e=—egot+e(n+1/2) (2)

where n = 0,1,2, ... is the quantal number of vibrations and &;is the spacing between the energy
levels. Both parameters 5 and ¢; in (2) depend on a. For a continuum spectrum the dependence
of €1 on a may be neglected.

The next step is to set up the statistics of the liquids, in order to establish their thermal properties.
The vibration spectrum given by (2) corresponds to a Bose-Einstein type of statistics. It is
associated with each local particle configuration in the liquid, these configurations being labelled
by distinct positions in space. Since these positions are different, and since the vibration spectrum
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given by (2) correponds to a collective motion, it follows that the Bose-Einstein statistics, as
defined by the energy spectrum (2) and by the motion of the vibrating configurations among
distinct positions in space, does not depend on the particular fermionic or bosonic character of
the constitutive particles of the liquid. It holds therefore for liquids, irrespective of the fermionic
or bosonic character of the underlying particles in the liquid. This is a consequence of the strong
interaction and the collective and correlated movements in liquids. As mentioned above, the
quanta of the vibration spectrum given by (2) associated with the particle configurations moving
around through the liquid may be viewed as the elementary excitations of the liquids.

Since the vibration spectrum given by (2) associates one degree of freedom to each particle, through
the mean inter-particle spacing a, it follows that the mean occupation number of vibrations of
each particle configuration is determined by the size of these configurations. Therefore, the Bose-
Einstein statistics has a determined chemical potential i, and, for a continuum spectrum of energy
with density de/eq, the number of particles in the liquid can be written as

Ve 1
N:—/d—————, 3
be1 Jo ° exp(fe) — 1 (3)

where § = 1/T is the inverse of temperature 7" and z = exp[—F(u + €o)] is the inverse of a
fugacity. The particle concentration is written as ¢ = N/V = 1/a®. The continuum-spectrum
approximation is valid for T > &;.

The statistics given by equation (3) corresponds to an ideal gas of bosons in two dimesnions. It is
well-known that it is equivalent with the statistics of an ideal gas of fermions in two dimensions,[1]-
[3] as expected from its applicability, irrespective of the fermionic or bosonic character of the
constitutive particles in the liquid, as noted above.

Equation (3) requires z > 1, i.e. p+ g9 < 0. With decreasing temperature the integral in (3)
decreases, so that 14 increases, in order to satisfy this equation. For the limiting value pi+¢9 = 0
(z = 1) the integral in (3) has a logarithmic singularity at ¢ = 0, so it is divergent, in contrast
with the three-dimensional case. Consequently, there is no critical temperature corresponding to
a Bose-Einstein condensation in two dimensions. However, a continuous, gradual condensation on
the zero-point vibration level occurs in the limit of the low temperatures, as it is shown below.

The integral in (3) can be performed straightforwardly. We get

be1/a’T =Y (n2")"' =nfz/(z —1)] , (4)

n=1

whence z = (1 — e~)~! and the chemical potential

p=—co+TIn(l—e) | (5)
where C' = bey/a*T = beic/T.
Similarly, the energy is given by
Iﬂ
E=—Negt+ G2 | (6)
b€1
where .
G2 = X2 = X (1 -0y (7
n=1 n=1

In the limit of low temperature e; < T < bey/a® it amounts to

E = —Ney+ n2VT?/6be; | (8)
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and for high temperature T > be/a®
E=—Ne+NT (9)
as for a classical ensemble. However, anharmonic corrections in the expansion (1) may be impor-
tant in this limit, which modify the simple T-law given by (9).
The entropy for the Bose-Einstein distribution introduced here is given by
V o0
S = b—/ del(n+1)In(n +1) —nlnn] , (10)
£1 J0

€

where n = (z¢7%¢ — 1)~1 is the mean occupation number. Tt leads to

2VT
b€1

S=—-Nln(l-e%)+ G(2) , (11)

the free energy
VT?

b€1

F=E-TS=—-Negy+ NTIn(l —e ) - G(2) (12)

and the thermodynamic potential

T T?
Q-F—punv=2YL [ dem(1 — e /z) = (B + Ney) = Everey (13)
bEl b61
The pressure p = —(0F/0V ) n is given by
jﬁQ
p=—cs+,—G(2) (14)
b€1

where ¢ is the derivative of the energy owith respect to concentration c¢.? This is the equation of
state of the liquid. The dependence of €; on concentration is neglected. We note that for suitable
values of ¢?cj, the equilibrium can be reached for low values of pressure, as is the case for liquids.

In the low-temperature limit ¢, < T < bey/a®, the pressure given by (14) reads p = —c%e) +
7212 /6be1, whence the isothermal compresibility

ky =V HOV/0p)r = W <0. (15)

It is worth noting that cd(c*c})/Oc must acquire large, negative values for the stability of the
ensemble, and for ensuring low values of the compressibility, in accordance with the behaviour of
the liquids. Similarly, the thermal expansion coefficient at constant pressure is given by

2

a=V"HoV/oT), = —;Tbg kr >0 . (16)
1

2The potential Q in the identity E—T5 — N —Q = 0is Q = —pV only for the thermal part of the pressure. The
general scheme of "practical thermodynamics" is as follows. Establish the kind of statistics (Bose, Fermi, classical),
then the constraints (number of particles N, energy E, etc), then write down the corresponding entropy S and
maximize it under those constraints, get the distribution, compute the constraints N (which gives the chemical
potential p), E (which gives temperature T'), etc, then the entropy S. Compute then the free energy FF = E— TS,
which is basic in variables V' (volume), T and N, then compute the pressure p = —9F/0V which gives the equation
of state. Compute the potential Q from @ = F — uN or from the partition function (it is related to energy E
through numerical factors, for classical gases is is, for instance, Q@ = —NT).
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The entropy (11) at low temperatures reads S = 72V'T/3be;, and the heat capacity at constant
volume is ¢y = T(0S/0T)y = S. The heat capacity at constant pressure is given by ¢, =
cy — Va?T/kr > cy. Similarly, the adiabatic compressibility is given by ks = V~1(0V/0p)s =
k(1 + 7T kp/3bey) > k. Tt is related to the sound velocity u by u? = —1/pkg, where p is the
mass density of the liquid. These quantities may give access to the experimental determination of
the parameters ¢ and be;.

In the high-temperature limit 7" > be;/a® the liquid behaves classically, with the entropy S =
N In(e?a®T /bey) and pressure p = —c?c; + NT/V. The compressibilities are given by

1 1 1 1
=——- =——" 17
T T o) jac ) T T2 T — (1/2)0(2<h) Joc (1)
the coefficient of thermal expansion is
1

_ 18
T T 9(2e) Joc (18)

and the heat capacities are ¢,y = N and

NT

cp=cy —VTa®/kr =cy + (19)

T — a(ceh) joc

These quantities correspond to classical, common, liquids. Their experimental determination gives
access only to the parameter ¢y. Likely, for high values of 7', anharmonic corrections have to be
included.

For values of the temperature 7' comparable with the spacing ¢; between the energy levels the
accuracy of replacing the summation over n in (2) by integral (3) must be checked, according to
MacLaurin’s formula

b+1/2

S f(xn) = / fla)da — (1/24) f25 2 4 . (20)

a—1/2
Applying this formula to function f = [ze#1("F1/2) — 1]71 we get

3 1
b/a = Xm0 sepertaria T =

(21)

_ 1 Be _ 1 Be
- fO dnzexp(ﬁsln)fl B 2741 ) (zjl)2 .= Eln zil B 2741 ’ (zjl)2 e

and we can see that the error made in approximating the summation by integral becomes compa-
rable with the integral for large values of Je; and z — 1. This inappropriateness arises from the
fact that the integral gives little weight to the value of the function at n = 0. Consequently, we
single out the term n = 0 in (21), and write

3 1 L Z/€ﬁ51/2 . @ Z/eﬁsl/Q
bja> = 75+ g In i — 5 e E T (22)

where 2’ = ze%1/2. In the low temperature limit Be; — 0o it is the first term in (22) that brings
the main contribution, and we have

z=(1+ad*/b)e /% Bey — o0 . (23)
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In the high-temperature limit 3g; — 0 the main contribution is brought by the In-term in (22),
and 37
p= L2 ppa , Be1 — 0. (24)
b€1
A fair interpolation between equations (23) and (24) gives

z=(1+a/b+ a®T/bey)ePe1/2 (25)
and the chemical potential
p=—eo+e1/2—TIn(l+a®/b+a’T/be;) . (26)

As one can see, although there is a condensation on the lowest state of zero-point vibrations in
the limit of low temperatures, there is no phase transition, i.e. no discontinuity, and z approaches
gradually zero (not unity!) for 7" — 0, in contrast to the Bose-Einstein condensation in the three-
dimensional case.|[4] The characteristic temperature of this continuous condensation is given by
Bey ~ 1. For such temperatures, the liquid may undergo, very likely, a phase transition to a solid
state. Such a solid state is characterized by the increase of the "constraining" volume b, which
becomes of the order of the volume V = Na?, such that the number of the available spatial states
for each particle in the ensemble reduces to unity. The ensemble becomes now rigid, and it can
only move as a whole. At the same time, the vibration spectrum changes correspondingly, from
one of local vibrations to global, collective oscillations. 3

The low-temperature behaviour derived herein has long been introduced for the statistical model
of the atomic nuclei.|5]-[7] Making use of (8), (11) and (12), we get

Q = E + Ney = —(F + Neg) = 72VT2/6be; (27)

S = m*VT/3be; = \/272V Q/3be, (28)

where @ denotes the excitation energy of the nucleus. The density of states p = dN/dQ =
e%(dS/dQ) gives the spacing between the energy levels

and

be = 0Q = \/6be,Q/m2V e VErVAeL (29)

These equations are valid in the low-temperature limit corresponding to e; < T' < bey/a®, where
T = /6be1Q/m?Na3. The distribution of the energy levels among states with different angular

3The chemical potential given by (26) can then be used for equating a similar chemical potential for the solid,
deriving thereby the liquid-solid transition temperature. In this respect, it may be worth noting that an important
parameter is the difference between the cohesion energies corresponding to the two states, the liquid and the
solid. In addition, in comparison with the liquid state, the thermal part of the chemical potential of the solid
may be neglected, usually. If the transition proceeds by a symmetry breaking, then the thermodynamic potentials
are continuous and their derivatives are discontinuous. It is a phase transition of second kind. If the transition
proceeds continuously from state to state, as, for instance, towards an amorphous solid, then the thermodynamic
potentials are discontinuous, there is a latent heat accounting for a remanent entropy, and the transition is of the
first kind. In both cases the parameter b can be viewed as a "macroscopic-occupation" parameter, changing from
a® to Na?, though it is also an order parameter for the case of a symmetry breaking. The difference consists in that
the macroscopic occupation is for a single state when (long-range, global) order is present, and for many, slightly
different, states, when order is absent. The disorder in the latter case is associated with a remanent entropy,
correponding to a latent heat. The phase transitions are characterized by a macroscopic occupation, which may be
associated with the breaking of the gauge symmetry, or not. If the state of macroscopic occupation is defined, then
there is such a symmetry breaking, and the thermodynamics (as well as the dynamics) can be done continuously,
as for superconductivity, superfluidity, crystalline phases, etc. If the macroscopically occupied state is not defined
the transition is discontinuous in thermodynamic potentials.
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momenta changes to a somewhat extent the prefactor in (29), without material consequences
for the estimations given here.|6] For heavy nuclei one may take approximately de ~ 5eV for
Q) ~ 8MeV, as derived from experiments of neutron scattering, resonances, or radiative capture.|6]
Equation (29) gives then be;/a® ~ 40MeV and temperature T' ~ 1MeV for N ~ 200. If volume
b is of the order of a3, this temperature would be much lower than the energy e; as derived
from bey/a® ~ 40MeV. Tt is likely, therefore, that a transition of the nucleus to a solid state
is expected, i.e. the volume b becomes of the order of b = Na® (the volume of the nucleus is
given by V = Na®, where a = 1.5 x 107'®m = 1.5fm). The energy ¢, acquires then the value
g1 ~ 40MeV /N = 200keV for N = 200, and it may be viewed as a mean separation of the energy
levels in the nucleus.* Allowing for such changes, the above thermodynamics remains valid for
such a solid state.’

A similar evaluation can be made for classical, common, liquids. A typical value for ¢; for such
liquids might be of the order of 1meV. The mean inter-particle spacing is a few A, and this is also
the order of magnitude of the molecular size and short-range forces. It follows that each molecule
has a number of spatial states of the order of N at its disposal, i.e. b is of the order of a®. This
situation is quite distinct from the atomic nuclei.

In conclusion, the liquids are described herein as correlated ensembles of particles, moving around
and interacting strongly with short-range forces. The correlations give rise to a "constraining"
volume b, which is one of the parameters of the thermodynamics of liquids. The local, collective
movements in liquids are described as a set of independent harmonic oscillators with one degree
of freedom, corresponding to vibrations of local particle configurations. The other parameter is
the distance £; between the energy levels of these vibrations. The statistics derived on this basis
is formally equivalent with the statistics of an ideal gas of bosons in two dimensions, which, as it
is known, leads to a thermodynamics which is equivalent with the one of an ideal gas of fermions.
This thermodynamics is explicitly derived, both in the low- and the high-temperature limits. The
limit of temperatures comparable with the distance e;between the energy levels is also discussed,
where a continuous, gradual condensation on the lowest energy level occurs, which may be the
precursor of a transition toward a solid state. It is shown that such a thermodynamics may apply
to classical, common, liquids, and it may also be relevant for excited, heavy atomic nuclei, which,
very likely, are in a solid state.
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