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Abstract

Elastic scattering in short-range potentials is formulated in terms of the theory of the

potential, and the scattering amplitude is obtained by constructing an approximate represen-

tation of the solution of the equation of the potential (Born scattering). The basic features

of the scattering amplitude are identi�ed on this representation of the solution. The solution

is exact for δ-potentials. The e�ective-range theory of scattering is obtained (Fermi scat-

tering length), and the resonance scattering is derived, both for high bound states and low

virtual levels (Wigner formula). The resonance scatering on "quasi-discrete" levels is derived

(Wigner-Breit formula). The quasi-classical solution for high-energy scattering is presented.

Scattering problem. The typical scattering experiment consists in free particles moving along
the z-direction, as described by a plane wave eikz, where the wavevector k is related through
k =

√
2mE/~2 to the energy E and mass m of the particles; and a potential V (r) which modi�es

the motion of the particles, in particular scatters them ellastically, as described by the outgoing
wave eikr/r at large distances. The scattering is conveniently treated in the center-of-mass frame,
so m is the reduced mass of the colliding particles interacting through the potential V (r). The
elastic scattering means that the internal states of the particles do not change during collision. In
addition, scattering means also E > 0.

Therefore, the wavefunction describing the scattering must have the asymptotic form

ψ(r) = eikz + f · e
ikr

r
, (1)

where f is the scattering amplitude. The number of scattered particles across the surface of area
dS = r2dΩ per unit time is v |f |2 dΩ, where v is the particle velocity and dΩ is the solid angle.
The number of incoming particles per unit area and unit time, i.e. the �ow of particles, is v,
assuming the velocity does not change, as for elastic scattering. The ratio of these two quantities
is the di�erential cross-section dσ = |f |2 dΩ, and σ is the total cross-section. It is an area. The
scattering problem is to �nd out the asymptotic form of the wavefunction ψ for the motion in
potential V (r) with energy E > 0, in order to get the scattering amplitude f and the cross-section.
It is assumed this way that we get information about the potential V (r).

Phase shifts. It is generally assumed, following the classical theory of waves, that the incoming
wave changes its phase during the scattering process. This phase shift may depend on energy
and on the impact parameter of the collision, i.e. the angular momentum, for central potentials,
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but otherwise it is a constant. The scattering amplitude can be expressed by means of these
phase shifts according to well-known formulae. The phase shifts can in general be estimated by
solving in fact the Schrodinger equation, which is not always possible. Quasi-classical formulae are
often used to this end. Obviously, this picture assumes that there is more or less a well-de�ned,
internal region where the potential acts and a corresponding external region where the potential
is practically zero, so that the continuity conditions for the wavefunction at the border of these
two regions lead indeed to a constant phase shift in the free wave, one for each partial wave, i.e.
depending on the angular momentum and depending also on energy. The scattering amplitude
depends then on the scattering angle θ only. The phase shift theory follows the example of the
Schrodinger motion in a potential well, i.e. it obviously refers properly to short-range potentials.
It is favourable for the phase shift representation to have a potential that vanishes exactly beyond
a certain �nite range. If not, second-order corrections may appear, which amount to limiting the
validity of the well-known representation exp(2iδ) to 1 + 2iδ, where δ is a generic phase shift.
The consequence of such a limitation is the loss of the imaginary part of the scattering amplitude,
which a�ects the "optical theorem".

Not surprisingly, this phase- shift theory must be employed with caution for two most important
potentials we know in classical physics, namely the zero-range δ-type potential and the long-range
Coulomb potential. In the former case, associated very closely with nuclear forces for instance,
special care must be taken in order to compute the phase shifts, with reference to particular
procedures of taking the limit. Particularly interesting it is in this context the Born approximation,
which is not valid. For the Coulomb potential, the theory of the phase shifts gives in�nite shifts,
and their regularization must be done. Indeed, for a δ-type potential there is no inside region
of interest, and motion is free in the entire space. In the latter case it is easy to see that for
slowly decreasing potentials, like the long-range Coulomb potential, the shifts may change with
distance, albeit slowly, re�ecting the non-vanishing scattering at small angles even for large impact
parameters.

We approach the scattering theory herein by employing the theory of the potential.

The theory of the potential. The Schrodinger equation reads

(∆ + k2)ψ = 4πU(r)ψ , (2)

where k2 = 2mE/~2 and U(r) = mV (r)/2π~2. According to (1), we write the solution of equation
(2) in the form ψ(r) = eikz + ϕ(r), where ϕ(r) behaves as an outgoing wave at in�nity. As it is
well-known from the theory of the potential, this solution reads

ϕ(r) = −
∫
dr′ · U(r′)[eikz′ + ϕ(r′)]

eik|r−r′|

|r− r′|
. (3)

It is the integral Schrodinger equation, and its rhs contains the Green function of the Schrodinger
operator. If the potential U(r) decreases conveniently fast at in�nity we may disentangle the
integration with respect to r′ in (3) from the r-dependence, by writing |r− r′| ' r − rr′/r for
r � r′, and get the asymptotic form of solution

ϕ(r ∼ ∞) = −[U(q) +

∫
dr′ · U(r′)ϕ(r′)e−ik′r′ ]

eikr

r
, (4)

where

U(q) =

∫
dr · U(r)e−iqr (5)
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is the Fourier transform of the potential, k′ = kr/r is the wavevector of the scattered wave (k being
the wavector of the incoming wave) and q = k′ − k is the wavevector transfer, q = |k′ − k| =
2k sin θ/2. Equation (4) represents the Born scattering theory, and −U(q) is the well-known
Born's scattering amplitude.

In order to solve completely equation (3) for ϕ(r) we need also the wavefunction ϕ(r) for small
values of r, i.e. for r comparable with the range of the potential. Let us denote it by ϕ(r ∼ 0)
and the range of the potential by b. We can write from equation (3)

ϕ(r ∼ 0) ' −[U(−k) +

∫
dr′ · U(r′)ϕ(r′)]

eikb

b
, (6)

or

b′ϕ(r ∼ 0) ' −U(−k)−
∫
dr′ · U(r′)ϕ(r′) , (7)

where b′ = be−ikb ' b(1−ikb); b′−1 is an order-of-magnitude estimation for the factor eik|r−r′|/ |r− r′|.

According to equation (7) function ϕ(r ∼ 0) does not depend on r. It follows that the approxi-
mation used is valid for rather weak potentials. Equation (3) is an eigenvalue integral equation.
For positive potentials V > 0 its eigenfunctions behave like exponentials near origin, with char-
acteristic exponents κ ∼

√
V ; for negative potentials V < 0 its eigenfunctions are periodic with

characteristic period κ ∼
√
−V . It follows, in the latter case, that ϕ in equation (3), and the scat-

tering amplitude in equation (4), may become in�nite, periodically, for su�ciently deep potential
wells. This corresponds to resonance scattering on upper bound states, or on low virtual levels.
The approximation employed in equation (7) is valid for potentials which are su�ciently weak,
as, for instance, potential wells that may have one bound state at most.

We multiply equation (7) by U(r) and integrate to get

b′
∫
dr · U(r)ϕ(r) ' −U(k = 0)U(−k)− U(k = 0)

∫
dr′ · U(r′)ϕ(r′) , (8)

whence ∫
dr · U(r)ϕ(r) = −U(k = 0)U(−k)

b′ + U(k = 0)
, (9)

and

ϕ(r ∼ 0) ' − U(−k)

b′ + U(k = 0)
. (10)

The asymptotic solution (4) becomes now

ψ(r ∼ ∞) = −[U(q)− U(−k)U(k′)

b′ + U(k = 0)
]
eikr

r
. (11)

It follows that the scattering amplitude of the Born theory can be represented as

f = −U(q) +
U(−k)U(k′)

b′ + U(k = 0)
. (12)

The general scheme of estimating the scattering amplitude given by (12) is to notice that U(k) can
be represented as U(k) ∼ b(V/ε), where V is the average interaction and ε ∼ ~2/mb2is the localiza-
tion energy over the potential range; then, the scattering amplitude reads f ∼ −b(V/ε)/(1+V/ε).
It is worth noting its non-perturbational character.
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We note that the second term in the scattering amplitude given by (12) di�ers formally from the
well-known higher-order terms of the perturbation theory. This tells that the usual expansion of
the wavefunction as a perturbation series is not warranted in general, as the closed, �nite result
obtained above indicates.1 However, these two results do coincide in fact, when the conditions
are met for the perturbation theory to be applicable.2 In addition, we note that the "reciprocity
theorem" f(k,k′) = f(−k′,−k) (time-reveral symmetry) holds for the scattering amplitude given
by equation (12). For central potentials the angular dependence in equation (12) comes through
k2 cos θ in Born's amplitude, so that in an expansion

∑
(2l + 1)flPl in Legendre polynomials, the

partial-wave amplitudes fl go like k2l ∼ E−l, where l is the angular momentum.

Equation (12) implies a fundamental result for the scattering theory. We arrive at it by making
use of b′ = be−ikb ' b− ikb2. Then, we get straightforwardly that the scattering amplitude f given
by equation (12) can be written as

f ∼ 1

g − ik
, (13)

where g is a real function of k and k′. According to (12) it is expressible in terms of the interaction.
This is a basic result, that can be inferred from equation (4). It shows that f is �nite and never
singular.3 Finally, it can be checked on equation (12) that the "optical theorem" Imf(k,k) =
Imf(0) = kσ/4π is conveniently satis�ed; the partial-wave amplitudes are then such that fl =
(gl−ik)−1. In the long wavelengths limit kb� 1 the Fourier transform of the potential in equation
(12) has a weak k-dependence, so we may neglect it;4 the "optical theorem" is then satis�ed. In
the short wavelengths limit equation (12) gives the same results as the quasi-classical theory of
scattering, "optical theorem" included, for the second-order of the perturbation theory, as it is
shown at the end of this paper. In the intermediate range kb ∼ 1 the main contribution to (12)
comes from Born's amplitude. Its partial waves must then be corrected by fl → fl/(1 − ikfl) in
order to satisfy the "optical theorem". This is a small correction, of the order of the second term
left aside in equation (12).

This completes the basic result of the scattering theory for reasonable, short-range potentials.

δ-potential. Let us assume a potential V (r) = Cδ(r), i.e. U(r) = mCδ(r)/2π~2 = U0δ(r).
Equation (3) has then the exact solution

ϕ(r) = −U0[1 + ϕ(0)]
eikr

r
. (14)

This equation has no acceptable solution; for instance, ϕ(r) = 0 for any �nite r, and ϕ(0) = −1.
We write C = V b3 where b → 0 and V → ∞ such that C is �nite. Then, we get ϕ(0) =
−U0/(b

′ + U0) ' −1 + b′/U0 + ... and

ϕ(r) = − b′U0

b′ + U0

· e
ikr

r
' −b′ e

ikr

r
, (15)

1The general scheme of such a statement is that from a generic expression like x = 1 + ax, i.e. x = 1/(1− a),
is not always permissible of course to write x = 1 + a + a2 = .... The situation described herein is similar with the
non-perturbational solutions of Dyson equations in quantal electrodynamics ("Landau's pole").

2These conditions are the "low-energy" regime kb � 1 where the inequality |U | � 1/b2 must be satis�ed (i.e.
V/ε � 1), and the "high-energy" regime kb � 1 where the inequality |U | � (kb)k2 must be satis�ed. In both
cases the zero-th order approximation of the perturbation theory is Born's amplitude.

3
i.e. the scattering amplitude is analytic in energy, for E > 0; it may be extended to E < 0, where it has discrete

poles, corresponding to bound states (which can also be approached with the integral equation of the potential);
the origin E = 0 is a branch point, and since the imaginary part for ReE > 0 cannot be changed, it follows that a
cut must be practised on the right half of the energy axis.

4A short-range potential has a weak k-dependence for kb � 1 and a decreasing oscillatory tail for kb � 1. The
s-wave amplitude given by equation (12) is very close to the exact result for a spherical potential well.
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and the corresponding scattering amplitude f = −b′U0/(b
′ +U0) ' −b′, which coincides with (12)

for U(k) = U0 and b→ 0. The representation (13) reads

f =
1

−U−1
0 − b−1 − ik

' 1

−b−1 − ik
. (16)

This is an exact solution.

E�ective-range theory and resonance scattering. For central potentials the Fourier trans-
forms in equation (12) can be expanded as

U(k) =

∫
dr · U(r)e−ikr = U0 − (k2/2)

∫
dr · U(r)r2 cos2 θ + ... = U0 − Ak2 + ... , (17)

where U0 = U(k = 0) and A > 0. Such an expansion holds for kb� 1. The scattering amplitude
given by (12) can then be written as f = 1/(g − ik), where

g = −b+ U0

bU0

− 2A
b+ U0

bU2
0

k2 + 2A

(
b+ U0

bU0

)2

k2 cos θ . (18)

Particularly interesting is the case U0 ∼ −b in equation (18), when g vanishes and the scattering
amplitude is very large. This is a resonance scattering (at low energy, kb� 1). We note that the
contribution of the p-wave is of second order in comparison with that of the s-wave, so we can
limit ourselves to the s-wave amplitude in equation (18). It can be written as

f0 =
1

−a−1 + r0k2/2− ik
, (19)

where

a =
bU0

b+ U0

(20)

is the scattering length and r0 = −4A(b+U0)/bU
2
0 is the parameter of the "e�ective range". The

s -wave amplitude is the e�ective range.

For U0 slightly below −b (U0 < −b) the scattering length is positive (a > 0) and r0 is positive
(r0 > 0). The dependence of the total cross-section on energy can be followed experimentally, and
the parameters a and r0 can be determined, characterizing thus the potential. It is likely to exist,
in this case, a bound state of small energy ε = −~2κ2/2m < 0 and radius R = 1/κ. The real part
of equation (19) reads then f−1

0 = −a−1 − r0/2R
2 = −1/R. This may provide another check for

the two parameters a and r0. Historically, this was the procedure employed for determining the
scattering length a ∼ 4fm for the triplet neutron-proton scattering, corresponding to a bound
state −ε ∼ 2MeV and a potential depth V ∼ −10MeV for a range b ∼ 1 − 2fm of the nuclear
forces (1fm = 10−15m).

Leaving aside the k2-term in equation (19), and writing −a−1 = −1/R = −κ, the scattering
amplitude reads

f0 = − 1

κ+ ik
= −(2m/~2)1/2 1√

|ε|+ i
√
E
. (21)

This is Wigner's formula for resonance scattering on an upper discrete level.

For U0 slightly above −b (−b < U0 < 0), the scattering length is negative (a < 0) and r0 is
negative also (r0 < 0). There is not likely to exist now a bound state, so the k2-term in equation
(19) can be left aside. Equation (21) reads now

f0 = − 1

κ+ ik
= −(2m/~2)1/2 1

√
ε+ i

√
E

, (22)
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where κ = a−1 < 0; ε > 0 is said to be a virtual energy level. Knowing the triplet scattering
length and measuring the coherent scattering of neutrons from hydrogen molecule, the scattering
length a ≤ −2fm was obtained for the singlet neutron-proton scattering.5 This suggested the
spin dependence of the nuclear forces, and the fact that the singlet neutron-proton nearly misses
a bound state. It has a virtual energy level.

For a partial-wave fl = 1/(gl − ik), the function gl starts with k−2l = E−l, and continues with
k−2l+2 = E−l+1. Keeping the �rst two terms in such an expansion, the partial scattering amplitude
reads

fl =
1

cE−l(−ε+ E)− ik
, (23)

where c and εare two parameters. For ε < 0 we have a pole E = − |ε|, i.e. a discrete level. The
scattering amplitude is however low, because of the small factor El. The resonance scattering
of higher-order partial waves on bound states is low. For ε > 0, there is no bound state, but
the resonance is high on the virtual level ε > 0. The scattering amplitude looks practically like
f = 1/(−ik) which, for low energies, means a very long lifetime. By (23), the width of this
resonance is given by ∆E/ε ∼ Elk/k2 = k2l−1. For low energy, this is a very sharp resonance.
The centrifugal barrier leaves little chance for the motion to escape too soon. This is di�erent
from the resonance in s-wave.

Wigner-Breit formula. During collision, particles can be absorbed for a while on the target,
and additional particles can be released by the target after a while, by disintegration. Additional
contribution is then present in the scattering amplitude.

Equation (22) can be written generically as f = (~2/2m)1/2/
√
E (negative scattering length). Its

variation is therefore δf = −(δE/2k)/E. Near a resonance level E0 (E0 > 0) the denominator E
means E−E0. On the other hand, the level E0 is only a "quasi-discrete" level, i.e. it is represented
as E0 − iΓ/2, such that its uncertainty (the width) is δE = Γ(Γ > 0). We get

δf = − Γ/2k

E − E0 + iΓ/2
. (24)

This is the Wigner-Breit formula for resonance scattering on a "quasi-discrete" level. Obviously,
the width Γ must be much smaller than the levels separation. On the other hand, E is close to
E0.

The wavefunction of the "quasi-discrete" (and quasi-stationary) level goes like ψ ∼ exp(−iE0t/~−
Γt/2~), i.e. |ψ|2 ∼ exp(−Γt/~); the level decays with the probability w = ~/Γ per unit time,
and has a lifetime τ = Γ/~ = 1/w. The decaying levels are positive, and their spectrum is
quasi-continuous in fact. The second-order perturbation theory gives the energy correction

δE =

∫
|Vnν |2 dν

En − Eν + i0
(25)

with usual notations, and, since 1/(x+ i0) = P (1/x)− iπδ(x), we get

Γ = 2π

∫
|Vnν |2 δ(En − Eν)dν . (26)

The scattering amplitude reads then f = f0 + δf , where f0 is the potential part of the scattering
amplitude derived before; δf is the resonance part.

5Similar negative scattering lengths are known for (singlet) neutron-neutron and proton-proton.
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For resonance level E0 close to zero, its width must vanish, since E → 0. It follows that in

δf = (~2/2m)1/2δ(1/
√
E) = − ~√

2m

δE/2
√
E

E
(27)

the width Γ = δE must have the form Γ = 2γ
√
E, where γ is �nite. The Wigner-Breit formula

becomes

δf = − ~√
2m

γ

E − E0 + iγ
√
E
. (28)

For E → 0 this δf is now �nite, in contrast with equation (24).

If E � γ2 it is easy to see that in (28) we may neglect the E-term. Equation (28) recovers then
the resonance sacttering on a vanishing level, either positive or negative. Indeed, the scattering
amplitude can then be writen as

δf = − 1

ik −
√

2mE0/~γ
. (29)

We de�ne −κ =
√

2mE0/~γ, and get δf = −1/(κ+ik). This corresponds to a resonance scattering
on a virtual level for κ < 0 (a < 0, according to (22)), or a true discrete level for κ > 0 (accccording
to (21).

The limit of high energy. In the high-energy limit k → ∞ the second term in equation (12)
goes to zero (U(k) → 0). The �rst term in equation (12) (Born's amplitude −U(q)) vanishes
also for any �nite θ in q = 2k sin θ/2 in the limit k → ∞. It follows that the scattering proceeds
mainly forwards, θ → 0, such that q ' kθ stays �nite and small for k →∞. The small momentum
transfer q is perpendicular to k. Born's amplitude reads then

U(q) =

∫
dr · U(r)e−iqr =

∫
dρ · [

∫ +∞

−∞
dz · U(z, ρ)]e−iqρ , (30)

where ρ is the transverse variable with respect to the wavevector k. For central potentials, the
integral in (30) can be estimated by noting that the rapidly oscillating exponential is not vanishing
over a radius ρ only, given by 〈(qρ)2〉 = q2ρ2/2 = 2, i.e. ρ = 2/q = 2/k∆θ. 6 The corresponding
area is therefore πρ2 = 4π/k2(∆θ)2. We get

U(q) =
4π

k2(∆θ)2

∫ +∞

−∞
dz · U(z, 0) . (31)

Similarly, the total cross-section is given by

σ =

∫
|U(q)|2 dΩ =

∫
dzdz′dρdρ′ · U(z, ρ)U(z′, ρ′)e−iq(ρ−ρ′)dΩ , (32)

or

σ =
4π2

k2

∫
dρ · (

∫
dzU)2 , (33)

and the optical theorem gives Imf(0) = kσ/4π. One can see that Imf(0) is a second-order
correction to Born's amplitude in equation (12). Equation (32) is the classical expression of the
cross-section integrated with respect to the impact parameter ρ.

6〈exp(iϕ)〉 = 1 −
〈
ϕ2

〉
/2 = 0, i.e.

〈
ϕ2

〉
= 2, which means

〈
(qρ)2

〉
= q2ρ2/2 = 2, and ρ = 2/q; the area factor

is therefore πρ2 = 4π/q2 = 4π/k2(∆θ)2.



8 J. Theor. Phys.

Obviously, the forward scattering is the eikonal regime, and Schrodinger's equation (2) can be
written as

[∆ + k2 − 4πU(r)]ψ = (∆ + κ2)ψ , (34)

where κ2 = k2 − 4πU . For large k the solution reads

ψ = exp(i

∫ z

dz · κ) , (35)

providing the potential has a smooth variation (quasi-classical approximation). Indeed, the terms
neglected in the laplacean of (35) are of the order of ∂κ/∂z which must be compared to κ2 (and
similar derivatives with respect to the other coordinates). That means ∂λ/∂z � 1, which is
the typical condition of validiy for the quasi-classical approximation. It can also be written as
∂U/∂z � κ3, or |U | � (κb)κ2, a condition which may also be read as |U | � (kb)k2, since k is much
greater than κ. However, it is worth noting that this condition is much weaker that |U | /k2 � 1,
in virtue of kb� 1. Therefore, we may use (35) with this weaker condition, without resorting to
approximating κ by k − 2πU/k. It is worth noting that such a �rst-order approximation in (35)
renders in fact ψ = exp(i

∫ z
dz · κ) = exp(ikz)[1 − (2πi/k)

∫ z
dz · U ], and it would not give an

imaginary part of the scattering amplitude.

Equation (35) can also be written as

ψ = eikzS(z, ρ) , (36)

where

S(z, ρ) = exp[i

∫ z

dz · (κ− k)] = exp[−4πi

k

∫ z

dz · U√
1− 4πU/k2 + 1

] . (37)

One can see from equation (37) that the phase variation is of the order of |U | b/k. It holds
for |U | � k2. The quasi-classical approximation is still valid (|U | � k2(kb)), even for kb ∼ 1,
providing this stronger condition is satis�ed. We get then |U | b/k � 1, or, since U = mV/2π~2,
|V | � (~2/mb2)kb = ~v/b, where v is the particle velocity.7 This condition tells that U can be
treated as a perturbation, and, again, ψ can be approximated by exp(ikz)[1− (2πi/k)

∫ z
dzU ].

The scattering amplitude can be obtained from equation (3), written as

ϕ(r) = −
∫
dr′ · U(r′)ψ(r′)

eik|r−r′|

|r− r′|
, (38)

which becomes asymptotically

ϕ(r) = −
∫
dr′ · U(r′)e−iqr′S(z′, ρ′) · e

ikr

r
. (39)

Hence, the scattering amplitude

f = −
∫
dρdz · U(z, ρ)S(z, ρ)e−iqρ , (40)

where S(z, ρ) is given by (37) with the lower limit of integration −∞. One can see that the �rst
term in (40) is Born's amplitude. We may de�ne∫

dz · U(z, ρ)S(z, ρ) = (ik/2π)[S(ρ)− 1] (41)

7For a Coulomb potential e2/r it means e2 � ~v, i.e. the "Bohr radius" ~2/me2 is much larger than the
wavelength λ. The Coulomb potential may then be treated as a perturbation to the scattering in a short range
potential.
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and write the scattering amplitude as

f = −(ik/2π)

∫
dρ · [S(ρ)− 1]e−iqρ . (42)

Then we get Imf(0) = −(k/2π)
∫
dρ ·Re[S(ρ)− 1] and the total cross section

σ = −2

∫
dρ ·Re[S(ρ)− 1] . (43)

As regards an advanced computation of S(ρ) in (41) we note that it is S(+∞, ρ) providing S(z, ρ)
in (37) is approximated by

S(z, ρ) = exp[−2πi

k

∫ z

−∞
dz · U ] ; (44)

indeed, we have then, formally, US = (ik/2π)dS/dz and the integration in (41) gives (ik/2π)[S(+∞, ρ)−
1]. However, as it was said above, retaining only U in (37) amounts to write

S(ρ) = S(+∞, ρ) = 1− 2πi

k

∫ +∞

−∞
dz · U , (45)

which leads to Re(S−1) = 0, i.e. no imaginary part in the scattering amplitude, and no scattering
according to the "optical theorem".

The actual computation in equation (40) gives in fact

f =
1

−k2(∆θ)2/4πA− ik(∆θ)2/4
, (46)

where A =
∫
dz · U(z, 0) and S(z, 0) = 1 − (2πi/k)

∫ z
dz · U(z, 0) is used. The partial-wave

amplitudes fl in the expansion f =
∑

(2l + 1)flPl(cos θ), where Pl are the Legendre polynomials,
are given by

fl =
1

−k2/πA− ik
, (47)

in accordance with the "optical theorem".

Similarly, making use of (40), we get

f(0) = −
∫
dρ · A(1− iπ

k
A) , (48)

where A =
∫
dz ·U(z, ρ) and Imf(0) = (π/k)

∫
dρ ·A2. By (40) also, the total cross-section reads

σ = π(∆θ)2

∫
dρdρ′dzdz′ · USU ′S ′e−iq(ρ−ρ′) =

4π2

k2

∫
dρ(

∫
dz · US)2 , (49)

which is 4π/k)Imf(0) in agreement with the "optical theorem" and Born's scattering amplitude.

It is worth estimating the contribution of the second term in equation (12) for high-energy scat-
tering. We employ the following successive approximations

U(k) =
∫
dr · U(r)e−ikr =

∫
dρdz · U(z, ρ)e−ikz =

= πb2
∫
dz · U(z, 0)e−ikz = (πb2/bk)

∫
dz · U(z, 0)

(50)
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in this case, and

U(k′) =

∫
dρdz · U(z, ρ)e−ikze−iqρ = [4π/k2(∆θ)2](1/bk)

∫
dz · U(z, 0) . (51)

Then, U(k = 0) can be neglected in the denominator of (12) and b′−1 = b−1 + ik. The contribution
of b−1 can also be neglected within this approximation, so we get �nally

f = −U(q) + ik
4π2

k4(∆θ)2
[

∫
dz · U(z, 0)]2 , (52)

which coincides with (46). We may say that the representation given by equation (12) for the
scattering amplitude can be viewed as a fairly adequate one, within the given conditions.
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