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Abstract

The bound states in short-range potentials are obtained by solving approximately the

integral Schrodinger equation.

We look for bound states of negative energy E = −~2k2/2m of a particle of mass m in a short-
range potential well − |V |, where k is the wavevector associated with energy E. Schrodinger's
equation reads

(∆− k2)ψ = −4πUψ , (1)

where U = m |V | /2π~2. Solutions of this equation can be represented by

ψ(r) =

∫
dr′ · U(r′)ψ(r′)

e−k|r−r′|

|r− r′|
, (2)

which is the integral Schrodinger equation. The asymptotic behaviour of this solution reads

ψ(r) =

∫
dr′ · U(r′)ψ(r′)ek

′r′ · e
−kr

r
, (3)

where k′ = kr/r.

For small values of the potential U equation (2) can be approximated by

ψ(r) =

∫
dr′ · U(r′)ψ(r′) · e

−kb

b
, (4)

where b is the range of the potential. We get immediately the energy level given by

k2 =
1

b2
ln2{1

b

∫
dr′U(r′)} . (5)

We can see that it does not exist unless the potential U exceeds the minimum value given by

1 =
1

b

∫
dr′U0(r

′) ' 4πb2U0/3 , (6)

where U0 is the mean value of the potential. For this threshold value of the potential the energy
level is vanishing. For an increase δU the energy level increases (in absolute value) by

k2 ' 1

b2
(δU/U0)

2 = (4π/3)U0(δU/U0)
2 . (7)
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For deeper potential wells we notice that the main contribution to the eigenvalues equation (2)
comes from r′ ∼ r. Consequently we write it as

ψ(r) = U

∫
dρ · ψ(r + ρ)

e−kρ

ρ
, (8)

where U is the mean potential and integration is now performed over a range β which depends on
r. Equation (8) admits plane waves eiκr as approximate solutions. Carrying out the integration
we get

1 = 4πU

{
1

κ2 + k2
− cosκβ + (k/κ) sinκβ

κ2 + k2
e−kβ

}
, (9)

for κβ � 1. At the same time, equation (2) gives for r = 0

1 = 4πU

{
1

κ2 + k2
− cosκb+ (k/κ) sinκb

κ2 + k2
e−kb

}
. (10)

By (9) and (10), for in�nitely large potential wells β, b→∞ we get the free, continuos spectrum
k2 = 4πU − κ2, as expected.

Equation (9) should not depend on r (through β). For this, its derivative with respect to β must
vanish. It gives κβ = nπ for all non-vanishing integers n 6= 0. The only way to satisfy both
equations (9) and (10) is to put β = b and quantize κ through κb = nπ. We get the dispersion
relation

1 = 4πU

{
1

κ2 + k2
− (−1)n

κ2 + k2
e−kb

}
. (11)

Making use of (6), it is easy to see that this equation has solutions only for odd integers n. We
write therefore the dispersion relations (11) as

e−kb + 1 =
κ2 + k2

4πU
, (12)

for κb = (2n + 1)π, n = 0, 1, 2, ..., 4πUb2 ≥ 3 and κb � 1. We note that κ may run up to a
maximum value given by (κmb)

2 = 8πUb2.

For Ub2 � 1 the upper bound states are dense; by (12), their energy is given by kb = 2−κ2/4πU .
With κ = κm− δ and δb = 2πδn we get the top spectrum −E = (2π~2/mb2)2(δn)2/ |V | for a deep
potential well.

For deep potential wells (Ub2 � 1) the above spectrum is applicale also for the ground state (high
values of k), correspondig to the lowest n = 0, i.e. κb = π. The ground state energy is easily
obtained from (12) in this case as −E0 = |V | − π2~2/2mb2.

Spectrum (12) is also applicable for shallow U , when there is only one bound state. It is given by
kb = 2−κ2/4πU for κb = π. The critical depth is given by U0b

2 = π/8, which di�ers slightly from
(6) (U0b

2 = 3/4π). The level goes like kb = 2(δU/U0), or k
2 = (32/π)U0(δU/U0)

2, which again
di�ers from (7) by a numerical factor.

According to the derivation given above the approximate eigenstates are plane waves, with spatial
degeneracy. They are more appropriate for s-waves for central potentials, as the l-waves depend
more on the details of the potential shape. For deep potential wells the number of energy levels
is ∼ (8πUb2)1/2 ( so that the mean distance between energy levels is δE ∼ (Ub2)1/2) and the
number of states is ∼ 4π(8πUb2)3/2/3. They read (|V | /ε)1/2 and, respectively ∼ (|V | /ε)3/2,
where ε = ~2/mb2 is the localization energy in the potential well.

c© J. Theor. Phys. 2006, apoma@theor1.theory.nipne.ro


