Journal of Theoretical Physics

Bound states in short-range potentials

M. Apostol

Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Abstract

The bound states in short-range potentials are obtained by solving approximately the integral Schrodinger equation.

We look for bound states of negative energy $E=-\hbar^{2} k^{2} / 2 m$ of a particle of mass m in a shortrange potential well $-|V|$, where k is the wavevector associated with energy E. Schrodinger's equation reads

$$
\begin{equation*}
\left(\Delta-k^{2}\right) \psi=-4 \pi U \psi \tag{1}
\end{equation*}
$$

where $U=m|V| / 2 \pi \hbar^{2}$. Solutions of this equation can be represented by

$$
\begin{equation*}
\psi(\mathbf{r})=\int d \mathbf{r}^{\prime} \cdot U\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \frac{e^{-k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{2}
\end{equation*}
$$

which is the integral Schrodinger equation. The asymptotic behaviour of this solution reads

$$
\begin{equation*}
\psi(\mathbf{r})=\int d \mathbf{r}^{\prime} \cdot U\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) e^{\mathbf{k}^{\prime} \mathbf{r}^{\prime}} \cdot \frac{e^{-k \mathbf{r}}}{r} \tag{3}
\end{equation*}
$$

where $\mathbf{k}^{\prime}=k \mathbf{r} / r$.
For small values of the potential U equation (2) can be approximated by

$$
\begin{equation*}
\psi(\mathbf{r})=\int d \mathbf{r}^{\prime} \cdot U\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \cdot \frac{e^{-k b}}{b} \tag{4}
\end{equation*}
$$

where b is the range of the potential. We get immediately the energy level given by

$$
\begin{equation*}
k^{2}=\frac{1}{b^{2}} \ln ^{2}\left\{\frac{1}{b} \int d \mathbf{r}^{\prime} U\left(\mathbf{r}^{\prime}\right)\right\} \tag{5}
\end{equation*}
$$

We can see that it does not exist unless the potential U exceeds the minimum value given by

$$
\begin{equation*}
1=\frac{1}{b} \int d \mathbf{r}^{\prime} U_{0}\left(\mathbf{r}^{\prime}\right) \simeq 4 \pi b^{2} U_{0} / 3 \tag{6}
\end{equation*}
$$

where U_{0} is the mean value of the potential. For this threshold value of the potential the energy level is vanishing. For an increase δU the energy level increases (in absolute value) by

$$
\begin{equation*}
k^{2} \simeq \frac{1}{b^{2}}\left(\delta U / U_{0}\right)^{2}=(4 \pi / 3) U_{0}\left(\delta U / U_{0}\right)^{2} . \tag{7}
\end{equation*}
$$

For deeper potential wells we notice that the main contribution to the eigenvalues equation (2) comes from $\mathbf{r}^{\prime} \sim \mathbf{r}$. Consequently we write it as

$$
\begin{equation*}
\psi(\mathbf{r})=U \int d \rho \cdot \psi(\mathbf{r}+\rho) \frac{e^{-k \rho}}{\rho} \tag{8}
\end{equation*}
$$

where U is the mean potential and integration is now performed over a range β which depends on r. Equation (8) admits plane waves $e^{i \kappa \mathbf{r}}$ as approximate solutions. Carrying out the integration we get

$$
\begin{equation*}
1=4 \pi U\left\{\frac{1}{\kappa^{2}+k^{2}}-\frac{\cos \kappa \beta+(k / \kappa) \sin \kappa \beta}{\kappa^{2}+k^{2}} e^{-k \beta}\right\} \tag{9}
\end{equation*}
$$

for $\kappa \beta \gg 1$. At the same time, equation (2) gives for $\mathbf{r}=0$

$$
\begin{equation*}
1=4 \pi U\left\{\frac{1}{\kappa^{2}+k^{2}}-\frac{\cos \kappa b+(k / \kappa) \sin \kappa b}{\kappa^{2}+k^{2}} e^{-k b}\right\} \tag{10}
\end{equation*}
$$

By (9) and (10), for infinitely large potential wells $\beta, b \rightarrow \infty$ we get the free, continuos spectrum $k^{2}=4 \pi U-\kappa^{2}$, as expected.
Equation (9) should not depend on \mathbf{r} (through β). For this, its derivative with respect to β must vanish. It gives $\kappa \beta=n \pi$ for all non-vanishing integers $n \neq 0$. The only way to satisfy both equations (9) and (10) is to put $\beta=b$ and quantize κ through $\kappa b=n \pi$. We get the dispersion relation

$$
\begin{equation*}
1=4 \pi U\left\{\frac{1}{\kappa^{2}+k^{2}}-\frac{(-1)^{n}}{\kappa^{2}+k^{2}} e^{-k b}\right\} \tag{11}
\end{equation*}
$$

Making use of (6), it is easy to see that this equation has solutions only for odd integers n. We write therefore the dispersion relations (11) as

$$
\begin{equation*}
e^{-k b}+1=\frac{\kappa^{2}+k^{2}}{4 \pi U} \tag{12}
\end{equation*}
$$

for $\kappa b=(2 n+1) \pi, n=0,1,2, \ldots, 4 \pi U b^{2} \geq 3$ and $\kappa b \gg 1$. We note that κ may run up to a maximum value given by $\left(\kappa_{m} b\right)^{2}=8 \pi U b^{2}$.
For $U b^{2} \gg 1$ the upper bound states are dense; by (12), their energy is given by $k b=2-\kappa^{2} / 4 \pi U$. With $\kappa=\kappa_{m}-\delta$ and $\delta b=2 \pi \delta n$ we get the top spectrum $-E=\left(2 \pi \hbar^{2} / m b^{2}\right)^{2}(\delta n)^{2} /|V|$ for a deep potential well.
For deep potential wells $\left(U b^{2} \gg 1\right)$ the above spectrum is applicale also for the ground state (high values of k), correspondig to the lowest $n=0$, i.e. $\kappa b=\pi$. The ground state energy is easily obtained from (12) in this case as $-E_{0}=|V|-\pi^{2} \hbar^{2} / 2 m b^{2}$.
Spectrum (12) is also applicable for shallow U, when there is only one bound state. It is given by $k b=2-\kappa^{2} / 4 \pi U$ for $\kappa b=\pi$. The critical depth is given by $U_{0} b^{2}=\pi / 8$, which differs slightly from (6) $\left(U_{0} b^{2}=3 / 4 \pi\right)$. The level goes like $k b=2\left(\delta U / U_{0}\right)$, or $k^{2}=(32 / \pi) U_{0}\left(\delta U / U_{0}\right)^{2}$, which again differs from (7) by a numerical factor.
According to the derivation given above the approximate eigenstates are plane waves, with spatial degeneracy. They are more appropriate for s-waves for central potentials, as the l-waves depend more on the details of the potential shape. For deep potential wells the number of energy levels is $\sim\left(8 \pi U b^{2}\right)^{1 / 2}$ (so that the mean distance between energy levels is $\delta E \sim\left(U b^{2}\right)^{1 / 2}$) and the number of states is $\sim 4 \pi\left(8 \pi U b^{2}\right)^{3 / 2} / 3$. They read $(|V| / \varepsilon)^{1 / 2}$ and, respectively $\sim(|V| / \varepsilon)^{3 / 2}$, where $\varepsilon=\hbar^{2} / m b^{2}$ is the localization energy in the potential well.

