Journal of Theoretical Physics

Founded and Edited by M. Apostol

ISSN 1453-4428

Coulomb scattering

M. Apostol Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Schrödinger's equation for Coulomb potential $V = \alpha/r$ reads

$$(\Delta - \frac{2}{Dr})\psi = -k^2\psi \quad , \tag{1}$$

where $D = \hbar^2/m\alpha$ is the Coulomb localization length ("Bohr" radius) and $k^2 = 2mE/\hbar^2 > 0$ is the wavevector of the energy E for the scattering of a particle of mass m.

According to the definition of D, the localization energy \hbar^2/mD^2 compares with Coulomb energy α/D , so that the Coulomb potential can be viewed as a perturbation for large D, *i.e.* for $kD = \hbar v/\alpha \gg 1$, where v is particle's velocity. It means $\alpha \ll \hbar^2 k/m = \hbar v$ (the opposite limit is the quasi-classical limit).

Writing $r = \sqrt{\rho^2 + z^2}$, one can see that ψ is singular for $\rho \to 0$. This happens either for z = r or for z = -r. We choose z = r, corresponding to an incoming plane wave e^{ikz} for $z \to -\infty$. Equation (1) becomes asymptotically

$$d^2\psi/dz^2 - (2/Dr)\psi = -k^2\psi , \qquad (2)$$

whose solution is

$$\psi = e^{ikz + (i/kD)\ln k(r-z)} . \tag{3}$$

One can see that the plane wave is distorted by forward scattering because of the long range of the Coulomb potential. In addition, the distortion is vanishing for $kD \gg 1$ for any finite scattering angle. A series expansion in powers of 1/D corrects also the amplitude of the plane wave, not only its phase.

Leaving aside the centrifugal potential, the spherical wave $\psi = \chi/r$ satisfies

$$\chi'' - (2/Dr)\chi = -k^2 ; (4)$$

in compliance with the scattering boundary condition, we write $r \to A - z$, where $A = const \to r$. The wavefunction becomes $\psi = \chi/(A - z)$ and equation (4) reads now

$$d^{2}\chi/dz^{2} - (2/Dr)\chi = -k^{2}\chi ; \qquad (5)$$

its solution is

$$\chi = e^{ik(A-z) - (i/kD)\ln(r-z)} \to e^{ikr - (i/kD)\ln(r-z)} .$$
(6)

Similarly,

$$\psi = \frac{1}{A-z} e^{ikr - (i/kD)\ln(r-z)} \to \frac{1}{r-z} e^{ikr - (i/kD)\ln(r-z)} .$$
(7)

131 (2006)

The full scattering solution reads then

$$\psi = e^{ikz + (i/kD)\ln k(r-z)} + f \cdot e^{ikr - (i/kD)\ln(2kr)}/r \quad , \tag{8}$$

where the scattering amplitude is given by

$$f = -\frac{1}{2k^2 D \sin^2 \theta / 2} e^{-(2i/kD) \ln(\sin \theta / 2)} .$$
(9)

The prefactor in (8) is chosen by dimensional arguments, such as to agree with the 1/D-expansion. Additional phase factors depending on k are also present in the scattering amplitude.

Equation (9) gives the Rutherford cross-section $d\sigma = 1/4k^4D^2 \sin^4\theta/2$. Up to an infinite quantity, the scattering amplitude (9) is expandable in partial waves, and the corresponding amplitudes satisfy the optical theorem. If the sign of α changes (repulsive or attractive potentials), the scattering amplitude gets complex conjugate.

For identical particles we note that an interference term appears in $|f(\theta) \pm f(\pi - \theta)|^2$, of the form $\cos[\frac{1}{kD}\ln\tan^2\theta/2]$.

If an additional potential is present, as the nuclear potential for instance, then it contributes its own scattering amplitude. For s-wave at resonance, it reads $f_0 = a/(1 - iak)$, where a is the (large) scattering length (and $k \sim 0$). This scattering amplitude can also be written as $f_0 = ae^{i\delta}$ for $ak \sim \delta$, such that an interference term appears in the scattering cross-section, of the form $\cos\{\frac{2}{kD}\ln\sin\theta/2 + \delta\}$. This interference term may serve to correct the additional scattering length a (through δ) by terms of the form $(1/D) \ln D$, for right-angle scattering where $D \sin^2 \theta/2 \sim const$.

[©] J. Theor. Phys. 2006, apoma@theor1.theory.nipne.ro