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Schrodinger's equation for Coulomb potential V = α/r reads

(∆− 2

Dr
)ψ = −k2ψ , (1)

where D = ~2/mα is the Coulomb localization length ("Bohr" radius) and k2 = 2mE/~2 > 0 is
the wavevector of the energy E for the scattering of a particle of mass m.

According to the de�nition of D, the localization energy ~2/mD2 compares with Coulomb energy
α/D, so that the Coulomb potential can be viewed as a perturbation for large D, i.e. for kD =
~v/α � 1, where v is particle's velocity. It means α � ~2k/m = ~v (the opposite limit is the
quasi-classical limit).

Writing r =
√
ρ2 + z2, one can see that ψ is singular for ρ → 0. This happens either for z = r

or for z = −r. We choose z = r, corresponding to an incoming plane wave eikz for z → −∞.
Equation (1) becomes asymptotically

d2ψ/dz2 − (2/Dr)ψ = −k2ψ , (2)

whose solution is
ψ = eikz+(i/kD) ln k(r−z) . (3)

One can see that the plane wave is distorted by forward scattering because of the long range of the
Coulomb potential. In addition, the distortion is vanishing for kD � 1 for any �nite scattering
angle. A series expansion in powers of 1/D corrects also the amplitude of the plane wave, not
only its phase.

Leaving aside the centrifugal potential, the spherical wave ψ = χ/r satis�es

χ′′ − (2/Dr)χ = −k2 ; (4)

in compliance with the scattering boundary condition, we write r → A− z, where A = const→ r.
The wavefunction becomes ψ = χ/(A− z) and equation (4) reads now

d2χ/dz2 − (2/Dr)χ = −k2χ ; (5)

its solution is
χ = eik(A−z)−(i/kD) ln(r−z) → eikr−(i/kD) ln(r−z) . (6)

Similarly,

ψ =
1

A− z
eikr−(i/kD) ln(r−z) → 1

r − z
eikr−(i/kD) ln(r−z) . (7)
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The full scattering solution reads then

ψ = eikz+(i/kD) ln k(r−z) + f · eikr−(i/kD) ln(2kr)/r , (8)

where the scattering amplitude is given by

f = − 1

2k2D sin2 θ/2
e−(2i/kD) ln(sin θ/2) . (9)

The prefactor in (8) is chosen by dimensional arguments, such as to agree with the 1/D-expansion.
Additional phase factors depending on k are also present in the scattering amplitude.

Equation (9) gives the Rutherford cross-section dσ = 1/4k4D2 sin4 θ/2. Up to an in�nite quantity,
the scattering amplitude (9) is expandable in partial waves, and the corresponding amplitudes
satisfy the optical theorem. If the sign of α changes (repulsive or attractive potentials), the
scattering amplitude gets complex conjugate.

For identical particles we note that an interference term appears in |f(θ)± f(π − θ)|2, of the form
cos[ 1

kD
ln tan2 θ/2].

If an additional potential is present, as the nuclear potential for instance, then it contributes its
own scattering amplitude. For s-wave at resonance, it reads f0 = a/(1 − iak), where a is the
(large) scattering length (and k ∼ 0). This scattering amplitude can also be written as f0 = aeiδ

for ak ∼ δ, such that an interference term appears in the scattering cross-section, of the form
cos{ 2

kD
ln sin θ/2+δ}. This interference term may serve to correct the additional scattering length

a (through δ) by terms of the form (1/D) lnD, for right-angle scattering where D sin2 θ/2 ∼ const.
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