Journal of Theoretical Physics

Coulomb scattering

M. Apostol

Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Schrodinger's equation for Coulomb potential $V=\alpha / r$ reads

$$
\begin{equation*}
\left(\Delta-\frac{2}{D r}\right) \psi=-k^{2} \psi, \tag{1}
\end{equation*}
$$

where $D=\hbar^{2} / m \alpha$ is the Coulomb localization length ("Bohr" radius) and $k^{2}=2 m E / \hbar^{2}>0$ is the wavevector of the energy E for the scattering of a particle of mass m.
According to the definition of D, the localization energy $\hbar^{2} / m D^{2}$ compares with Coulomb energy α / D, so that the Coulomb potential can be viewed as a perturbation for large D, i.e. for $k D=$ $\hbar v / \alpha \gg 1$, where v is particle's velocity. It means $\alpha \ll \hbar^{2} k / m=\hbar v$ (the opposite limit is the quasi-classical limit).
Writing $r=\sqrt{\rho^{2}+z^{2}}$, one can see that ψ is singular for $\rho \rightarrow 0$. This happens either for $z=r$ or for $z=-r$. We choose $z=r$, corresponding to an incoming plane wave $e^{i k z}$ for $z \rightarrow-\infty$. Equation (1) becomes asymptotically

$$
\begin{equation*}
d^{2} \psi / d z^{2}-(2 / D r) \psi=-k^{2} \psi \tag{2}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\psi=e^{i k z+(i / k D) \ln k(r-z)} . \tag{3}
\end{equation*}
$$

One can see that the plane wave is distorted by forward scattering because of the long range of the Coulomb potential. In addition, the distortion is vanishing for $k D \gg 1$ for any finite scattering angle. A series expansion in powers of $1 / D$ corrects also the amplitude of the plane wave, not only its phase.

Leaving aside the centrifugal potential, the spherical wave $\psi=\chi / r$ satisfies

$$
\begin{equation*}
\chi^{\prime \prime}-(2 / D r) \chi=-k^{2} ; \tag{4}
\end{equation*}
$$

in compliance with the scattering boundary condition, we write $r \rightarrow A-z$, where $A=$ const $\rightarrow r$. The wavefunction becomes $\psi=\chi /(A-z)$ and equation (4) reads now

$$
\begin{equation*}
d^{2} \chi / d z^{2}-(2 / D r) \chi=-k^{2} \chi \tag{5}
\end{equation*}
$$

its solution is

$$
\begin{equation*}
\chi=e^{i k(A-z)-(i / k D) \ln (r-z)} \rightarrow e^{i k r-(i / k D) \ln (r-z)} . \tag{6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\psi=\frac{1}{A-z} e^{i k r-(i / k D) \ln (r-z)} \rightarrow \frac{1}{r-z} e^{i k r-(i / k D) \ln (r-z)} . \tag{7}
\end{equation*}
$$

The full scattering solution reads then

$$
\begin{equation*}
\psi=e^{i k z+(i / k D) \ln k(r-z)}+f \cdot e^{i k r-(i / k D) \ln (2 k r)} / r, \tag{8}
\end{equation*}
$$

where the scattering amplitude is given by

$$
\begin{equation*}
f=-\frac{1}{2 k^{2} D \sin ^{2} \theta / 2} e^{-(2 i / k D) \ln (\sin \theta / 2)} . \tag{9}
\end{equation*}
$$

The prefactor in (8) is chosen by dimensional arguments, such as to agree with the $1 / D$-expansion. Additional phase factors depending on k are also present in the scattering amplitude.
Equation (9) gives the Rutherford cross-section $d \sigma=1 / 4 k^{4} D^{2} \sin ^{4} \theta / 2$. Up to an infinite quantity, the scattering amplitude (9) is expandable in partial waves, and the corresponding amplitudes satisfy the optical theorem. If the sign of α changes (repulsive or attractive potentials), the scattering amplitude gets complex conjugate.
For identical particles we note that an interference term appears in $|f(\theta) \pm f(\pi-\theta)|^{2}$, of the form $\cos \left[\frac{1}{k D} \ln \tan ^{2} \theta / 2\right]$.
If an additional potential is present, as the nuclear potential for instance, then it contributes its own scattering amplitude. For s-wave at resonance, it reads $f_{0}=a /(1-i a k)$, where a is the (large) scattering length (and $k \sim 0$). This scattering amplitude can also be written as $f_{0}=a e^{i \delta}$ for $a k \sim \delta$, such that an interference term appears in the scattering cross-section, of the form $\cos \left\{\frac{2}{k D} \ln \sin \theta / 2+\delta\right\}$. This interference term may serve to correct the additional scattering length a (through δ) by terms of the form $(1 / D) \ln D$, for right-angle scattering where $D \sin ^{2} \theta / 2 \sim$ const.

