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Abstract

The nuclear cohesion is put in terms of the virial theorem, Weizsacker’s mass formula is
derived from free nucleons moving in a mean-field potential well, and the one-particle nuclear
ground-state and energy spectrum are shown to not be able to sustain an excited nucleus.

The generic nucleus. The nucleon in the atomic nuclei has a radius a = 1.5x 107%m (= 1.5 fm)
and an average binding energy ¢ ~ 8 Mel” (denoted also by u, or w, for "bulk", or —¢). On the
other hand, it has a rest energy £, = Mc? ~ 1GeV. It follows that the nucleon extends over
the Compton wavelength A\ = fic/Ej, ~ 107'%m = 0.1fm, and, consequently, it may move over
distance a with energy of the order ¢ ~ 8MeVl/. It has a momentum p ~ f/a and a velocity
v~ e/p=ca/h~2x10"m/s, such that v?/c?* ~ 1073, which indicates that the nucleon moves
non-relativistically (as expected from the ratio of the two characteristic energies € and FEy).

The virial theorem. Let §OT/0¢ = 2T be Euler’s identity for the kinetic energy T" of a generic
motion of coordinates ¢q. 1" is a homogeneous function of degree two of velocities ¢. Integrating
by parts over motion time ¢ we get

2T = (gp)¢/t — qp = (qp):/t + qOU [ Oq (1)

for time averages, where U is the potential energy and p denotes the momenta. For a bound
motion the momenta are finite at time ¢t — 0o, so we are left with 27" = qoU/dq.

This is the well-known theorem of the virial. For matter cohesion it may have a particular sig-
nificance. First, we note that ¢0U/0q is an oscillatory function of time, due to the oscillatory
behaviour of the coordinates in a bound motion. Therefore, the time average of ¢0U/0q retains
only the uniform component of this function, which corresponds to certain initial values of the co-
ordinates. These values correspond to the integrals of the motion, like energy, number of particles,
etc. Next, the cohesion of the matter exhibits the phenomenon of saturation, i.e. energy, volume
and number of particles are proportional to each other. It follows that coordinates ¢ correponding
to a certain energy define the volume of the body corresponding to that energy. This implies inde-
pendent particles moving in a mean-field and purely attractive short-range forces. Then, matter
cohesion is a statistical average over all the mechanical energies, as all the corresponding motions
are possible. It is different from short-range forces with minima of potential energy. It follows
that we have to average over ¢ in equation (1) over the motion volume enclosed by a surface S
and get the corresponding average with respect to number of particles, or energy. The result is
the energy asociated with cohesion.
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Doing so, and integrating by parts in equation (1) we obtain
2T +U = (qU)s/q (2)

for space averages, where g denotes the range of the spatial average. This is the virial theorem for
matter cohesion. The averages in equation (2) corresponds to the energy of matter aggregation
via attractive short-range interaction. In addition, the derivation given above presupposes the
quasi-classical description of matter aggregation.

Mechanical energies £ = un, where u is a constant and n number of particles, are distributed
in cohesion with equal weights dn/N, so that the mean energy is £ = ulN/2 and the mean
square energy is B2 = u’N 2/3. The dispersion is therefore 1/ V3, independent of the size N.
Macroscopic matter is statistical, so that the sum of dispersion is governed by the 1/ V/N-law:
(3°6£)% = S2(6£))> ~ N, and dispersion goes like 1/v/N, where N is now the number of sub-

ensembles.

All this applies to attractive short-range forces. The situation is different for cohesion by long-
range Coulomb forces. In this case, the relevant coordinates are collective ones, related to the
electron density. This change the dependence of the kinetic and potential energy, so the virial
theorem has different coefficients (though numerically, of course, the energies are the same). In
addition, the long-range Coulomb cohesion results in effective short-range binding with minima
of the potential energy, and the corresponding collective, global dynamics removes the statistical
character of the cohesion, so that the resulting mechanical energy is the cohesion energy.

If the surface is a virtual one in the bulk, the term (qU)s/q is negative. We denote it by —FE; and
have the binding energy for the bulk

Ey=T+U=-T—E,<0. (3)
For a real surface the term (qU)s/q vanishes in equation (2) and we get the binding energy
E=T+U=-T=F,+E,<0, (4)

on account of the same value of the kinetic energy in both cases. One can see that the binding
energy of a body is higher than the binding energy of the bulk by the surface term E,. Indeed, in
order to break down a body we have to supply the fracture with its surface energy.

It is easy to see from (2) that the surface energy goes like number N2/3 of surface particles, since
(qU)s/q involves a summation over those particles only (which is the integration over the surface),
while the bulk energy goes like N. Therefore, we can write F, = u,N 2/3 and E, = —uy N , and
notice that the coefficients u, and wu, are close in value to each other. For large N we can see that
the surface energy can be neglected in comparison with bulk energy. For instance, averaging over
large N we get (E,) / (F,) = 6/5N'/3 ~ 0.2 for N = 200.

We apply these results to the cohesion of the atomic nuclei, which indeed exhibit the saturation
phenomenon. There, N is of course the mass number A.

Weizsacker’s mass formula. It is customary to view the nucleons as free fermions, embedded
in a square potential well U = —Ng, and write down N = gVpl/672h3, or pr = (672/9)"/°h/a,
where V denotes the volume of a sphere of radius R = aN'/?, pp is the Fermi momentum and g is
a statistical weight (for instance, g = 4, spin and isotopic spin included). Then we get the Fermi
energy 5 = p%/2M and the kinetic energy 7' = 3Nex/5. It is worth noting that in employing such

!See L. C. Cune and M. Apostol, Metallic Binding, apoma, MB (2000).
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formulae, the thermodynamic limit N — oo is assumed, so that the surface energy is vanishing.
According to (4) we get the binding energy of the bulk £ = —Ney + 3Nep/5b = —3Nep/5. We
are interested in estimating the change ¢ in energy for a change 6N = 1 in number of particles
at constant concentration. It is easy to see that it is given by ¢ = —3er/5. We emphasize that ¢
differs from the chemical potential 1 = ep. Using a = 1.5- 107%m we get ep = u = 46MeV (for
g = 4), the potential depth parameter —cq = —6er/5 = 55.2MeV and ¢ = —3ecp/5 = 27.6MeV .
(The fermions have also a pressure p = 2¢r/5a3, compensated by the pressure produced by the
potential well £).

In order to compare these results with the empirical mass formula we average over number of
nucleons, in compliance with the requirement of the virial theorem (2) for matter cohesion. This
average with respect to NV amounts to taking half of the figures given above ([ NdN/N = N/2).
We get therefore the (average) Fermi energy (ep) = 23MeV, the depth parameter of the potential
well — (eg) = 27.6MeV and up, ~ —us = —q = 3 (ep) /5 = 13.8MeV, a figure which compares
well with the experimental fits. It is worth noting that ¢ = —13.8MeV differs from the empirical
binding energy per particle ¢ = E/N ~ —8MeV on account of additional energy contributions,
like surface energy and the Coulomb repulsion, not included herein.

Weizsacker’s mass formula reads therefore untill now
E = —uyN +u,N*3 + .. | (5)

where u, = u, ~ 13.8MeV.

The Coulomb interaction for atomic nuclei can be written as E. ~ Z(Z — 1)e*/2R = Z(Z —
1)N~1/3¢2 /2a, where e is the electron charge (the factor 2 has been introduced in the denominator
in order to account for the distribution over the volume R?). Writing E. = u.Z(Z — 1)N~/> we
get the coefficient u, = ¢?/2a = 0.48MeV, which agrees with the empirical value. Weizsacker’s
mass formula (5) becomes

E = —uyN +u,N*3 fu.2(Z - 1)N3 4 | (6)
where u, = 0.48MeV.

The last contribution to the mass formula comes from the symmetry effect, which is a consequence
of the exclusion principle. It should increase the energy from a g = 4-degenerate energy level under
a transform which replaces a proton by a neutron, or conversely, a neutron by a proton. This
energy contribution, denoted FE,, should read E, = u,(Z — N)?/A, where Z denotes the number
of protons, N denotes now the number of neutrons and A = Z + N is the mass number. In
the limit A — oo this term should compensate the bulk contribution, so that we get a value
Upp ~ —up = 13.8MeV. Actually, this value should be somewhat larger, because E, can also be
written as E, = u,(A — 22)*/A = u,Az* < u, A, where v = 1 —2Z/A. We average z* around
x = 1, over the range described by the tangent to 2% at z = 1. We get (z?) = 7/12 and the second
value u,o ~ 23MeV. Finally, we get the mean value u, = (u,1 + u,2)/2 = 18.4MeV, which agrees
well with the empirical value. Weizsacker’s mass formula becomes finally?

E = —upA+u, AP v u Z(Z - 1)A Y3 4 u,(Z - N)?/A | (7)
with u, ~ 18.4MeV .

Statistical equilibrium. For a consistent description of the statistical equilibrium of an ensemble
of particles a series of inequalities of the type

Eeqg > T > def > ey > 0eq > 0€,ps (8)

2C. F. von Weizsacker, Z. Phys. 96 431 (1935).
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must be satisfied, where ¢, is a mean (scale) energy, T is the temperature, de; = T(0s/OT)/? is
the thermal fluctuation energy, dc., is the uncertainty in the energy of the elementary excitations,
deq is the spacing between the quantal energy levels and, finally, de.s is the uncertainty in the
observed (measured) energy, all per particle. For a large number of particles such inequalities are
fulfilled, in general, but for small numbers of particles they may not be satisfied, which means
that the ensemble is not in equilibrium, since, for instance, €., may be comparable with de, in
this case. The meaning of such inequalities resides in the succession of time intervals

Teq < Teh < T5 < Tiife K Ty < Tobs 9)

required for measuring consistent mean values of various quantities, according to the generic
uncertainty relationship 7 ~ hA/de. In (9) 7, = h/ey, is the time needed to establish the thermal
equilibrium, and 7. is the lifetime of the elementary excitations.

For fermions at zero temperature ., is of the order of the mean energy per particle, or Fermi
energy £p, the next two terms in (8) do not appear, while the rest of inequalities in (8) keep
their meaning. It is interesting to note that even in the absence of the thermal equilibrium we
may still have a statistical equilibrium. Indeed, the mean energy is €., = 3¢r/5, while its mean
square is €2 = 3¢2./7, which is comparable with &?gq. It shows how effective the establishing of the
statistical equilbrium can be in this case, by exchanging energy during collisions. The fact that
the statistical equilbrium may be independent of temperature originates in describing ensembles
by probabilities, which is unavoidable when talking about such ensembles of particles in terms of
particles. For a degenerate gas of fermions the discussion is similar, and for high temepratures
the gas behaves classically. In both cases the meaning of (8) is defined.

For bosons at low temperature the scale energy e, is the temperature Ty ~ h%/mr? of the Bose-
Einstein condensation, where r is the mean inter-particle distance and m is the particle mass.
Above the condensation temperature the role of the ., is played by the chemical potential (its
absolute value), which for high temperatures becomes again that of a classical gas. A similar
discussion holds also for other ensembles of particles (of an academic interest in this context might
be the Bose-Einstein condensation of relativistic particles, more exactly relativistic corrections to
the Bose-Einstein condensation), the black-body radiation included.

According to the discussion given above, the nucleons may be brought into statistical equilibrium
in time 7., = h/e, providing energy ¢ is shared among a large number of energy levels. This is not
the case for the atomic nucleus with mean-field nucleons, the "shell-model" included. Indeed, the
momentum of free fermions is given by p = hn/R, where R = aN'/? is the radius of the nucleus,
and the Fermi momentum is pr ~ hng/R = hnp/aN'/3, hence the Fermi number np ~ N'/3 ~ 6
for N ~ 200. The energy levels are given by ¢, = (h?/MR*)n* = (h?/Ma*)n?/N?3, and for
n = np we get the Fermi energy cp ~ h*/Ma? (~ 15MeV).2 We see that only a few energy
levels are occupied (np ~ 6), as a consequence of the spatial degeneracy. The energy separation
is e ~ (h?/MR?*)n, and 6cp ~ (h?/Ma?)/N'/? ~ ¢ /6, which is comparable to the Fermi energy.
Consequently, we cannot have a statistical equilibrium. The free nucleons in a square potential
well are purely a quantal ensemble, unable to sustain thermalization.

A self-consistent potential well of a mean field does not change the situation. The nucleons may
accommodate to each other through mutually correlated motions over the entire volume of the
nucleus, such as to produce a mean field acting as an external potential. It is usually a central-force
field, like an oscillator potential, and it explains satisfactorily the nuclear shells and magic numbers.
The energy separation is then reduced to somewhat extent (1 — 2MeV'), but the degeneracy is

3 Actually, this value of the Fermi energy is changed to somewhat extent by specific numerical factors, see the
previous section.
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still present, as indicated by the ~ 7 nuclear shells. The equilibrium is still unattainable. Even if,
ideally, we distribute all the nucleons uniformly over an energy of the order €z, and get an energy
separation de ~ /N , this separation is still insufficient for a consistent statistical equilibrium,
in the sense that we would have then large fluctuations (~ 7% for N ~ 200).

The atomic nucleus is too small to have a statistics of quasi-independent particles. It is cold, and
there is no nuclear temperature, as long as such a gas-like ground-state and energy spectrum are
maintained. In order to get a thermodynamics, and the nucleus to be able to get excited, the
atomic nucleus must change its ground-state and enery spectrum.*
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4The mean field may still work for special excitations, like the radiative capture of slow neutrons, where the
neutron is gently accommodated. On the other hand, as it is well-known, one-particle nuclear models describe
satisfactorily the nuclear shells, magic numbers, and even the mass formula.



