Journal of Theoretical Physics

Founded and Edited by M. Apostol 133 (2006)

ISSN 1453-4428

Inelastic collisions
M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,
Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract
The theory of the inelastic collisions with applications in nuclear physics is briefly reviewed.

The scattering (S) matrix. The scattering amplitude in the asymptotic scattering wave

eikr

6ikr + f .

(1)

can be viewed as a matrix f(n,n’) for unit vectors n = k/k and n" = r/r, defined as f —
(1/47) [dQ - f(n,n’)- A similar integration of the plane wave over angles takes (1) into

e—ikr eikr
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where
S =1+2ikf . (3)

This S in equation (3) is the scattering, or the S-, matrix.!

For elastic scattering SS* = 1 in order to conserve the number of particles, so that Imf(n,n) =
Imf(0) = ko/4n, where ¢ = [dS2-|f]* is the cross-section. This is the optical theorem. For
central potentials the partial-wave amplitudes are therefore of the form f = 1/(g —ik), where g is
a real function of k, as, for instance, fo = 1/(—a~! — ik) for the s-wave, where a is the scattering
length. Making use of (3) we get S = (g + ik)/(g — ik) = exp(2iJ), where ¢ is the phase shift,
with tand = k/g.

Inelastic scattering. Inelastic scattering changes the internal states of the colliding particles,
even destroying or creating some. Beside the elastic scattering, there are more reaction channels
of inelastic scattering. S has not modulus unity anymore, and function g is now complex. The
partial-wave cross-section for elastic channel is o, = (7/k2) |1 — S|*. The partial-wave cross-section
for reaction channels are obtained from (2) as o, = (7/k2)(1 — |S|*) (because the outgoing wave
has the coefficient S), such that the total cross-section is given by o, = 0. +0, = (2r/k*)(1— ReS).
For S = 1 there is no scattering, for S = 0 there is only total absorption (no outgoing wave in
(2)), and |S| < 1. One can see by (3) that the optical theorem reads now Imf(0) = ko;/4m,
and the partial-wave amplitudes read f = 1/(g — ik), where g is now a complex function of k2.
Indeed, making £ — —k in (2) one can see that S — 1/5, so that, eliminating S in (3) and the
corresponding equation for —k, it is easy to get function g as g(k?).

IW. Heisenberg, Z. Phys. 120 513, 673 (1943).
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Attenuation. High-energy beams of particles are attenuated through inhomogeneous media by
forward scattering of amplitude, say, f. For particle wavelengths much shorter than the average
inter-particle distance in the medium the scattering proceeds by individual scatterers. For f much
shorter than the inter-particle distance in the medium an effective potential V' may give f through
Born formula f = (m/2wh?) [dr -V , where m is the mass of beam particles. A weak average
potential V = (N/V) [dr-V = (2rh*f/m)(N/V) acts in the medium, where N/V is the particle
density of the medium.

Such a potential is felt by highly excited alkali atoms in a gas, and the excitation level of the
valency electron is shifted by (27h%f/m)(N/V) = —(2rh*a/m)(N/V), where f = —a is the
scattering length, since the valency electron is slow.

The propagation wavevector is given by k = /2m(E — V)/h? ~ k(1 — V/2E), where ky =
2mE/h%. A refractive index n can be defined through k = nkg, and n = 1 — V/2E = 1 —
(rh%f/mE)(N/V). Its imaginary part is given by I'mn = (xh*Imf/mE)(N/V) = 2xImf/k2)(N/V) =
= (01/2ko)(N/V), by the optical theorem. The beam wave goes like exp(ikz) ~ exp|—o(N/2V)z].

High-energy beams of fast neutrons with energy ~ 100M eV can be atenuated in this way on
their passing through the atomic nuclei. Fast-particles scattering proceeds classically, the total
cross-section is 4w [ dp- p = 2ma?, where p is the impact parameter and a is the scattering sphere
radius. Fast particles have one chance in two to be absorbed or elastically scattered, so that
0. = 0, = ma®. This is the Fraunhofer diffraction by a sphere.

Scattering of slow particles. Slow particles scatter in s-wave providing kb < 1, where b is the
range of the potential. (For Coulomb potential this b is replaced by Colomb length D = h?/me?,
where ¢ is the (common) charge of the colliding particles).? The scattering amplitude is f =
1/(—a™' —ik) = —a/(1 + iak), where a = o’ + i is the scattering length, now complex. The
phase factor reads S = (1 —iak)/(1+iak) and |S|> = (1+2a”k+|af* k2)/(1—2a"k+ |a|* k?), such
that o/ < 0 since |S| < 1. The elastic cross-section is o, = 47 |a|?, while the inelastic (reaction)
cross-section is given by o, = 4m || /k for || k < 1. This is the 1/v-law of inelastic scattering,
which tells that the reaction cross-section increases for slow particles, with vanishing velocity v.
(Similarly, for non-vanishing angular momenta [, f ~ —a ~ k%, and o, ~ k¥, o, ~ k?~1).

In general, the probability to have a reaction is proportional to the ratio of the square modulus
of the wavefunction in the reaction range |¢)(r ~ 0)|> and the current density at infinity ~ v ||,
which explains the 1/v-law for slow particles, as, for instance, slow neutrons.

For repulsive Coulomb potential f ~ e '/¥P since k — ik in the reaction zone, > and the ratio

of the two square moduli of the wave functions is ~ e=2/*P /(1 — e=2/kP) ~ 1/(e¥*P — 1). The
reaction cross-section is therefore o, ~ 1/k%(e**P —1). For high energy kD > 1 we recover the
1/v-law o, ~ 1/k, as expected, since the Coulomb scattering plays no role in this limit. For slow
particles kD < 1 the reaction rate is exponentially small, o, ~ e~ /%P /L2,

For attractive Coulomb potential f ~ e'/*? in the reaction zone, and o, ~ 1/k*|e=?/kD —1|.

For kD > 1 we recover the 1/v-law, but for kD < 1 we get the limiting law o, ~ 1/k?. The
exponential factor e>/*” by which the repulsive potential differs from the attractive one for slow
particles is their probability of passage through the Coulomb potential barrier.

Reaction channels. Let i denote the input (elastic) channel, and f the output reaction (inelastic)
channels. The scattering amplitudes are given by the asymptotic waves
eikﬂ“

v =™+ fy - o (4)

2M. Apostol, J.Theor. Phys. 128, 131 (2006).
3M. Apostol, J. Theor. Phys. 131 (2006).
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and, respectively,

ik er
wfszi\/mf/mi'erf : (5)

where the relative masses m; ; are introduced for normalization reasons. Indeed, the cross-sections
read do;; = \f“\2 dS); and doy; = (pys/pi) |ff2-\2 dS2s, as defined by the ratio of the flows.

In order to introduce the generalized S-matrix, an angle integration must be performed in (4), as
in equations (1) to (3). We get

—ik;r ik;r

= — (1 + 2ik; fui) - ,

6ikir
= 2ikifyi it
Yy = 2ik; frin/my/m = (7)

where a further /v; factor is introduced for having unit flows. It follows immediately the gener-

alized S -matrix

Pi

(6)

and

The unitarity condition reads
Fri— £ =20 knfrmliy (9)
where summation is over all scattering states.

For partial-wave elastic scattering the relevant factors in cross-sections are |1 — S;;|°, while for
reaction cross-sections they are |Sy|”. Since the matrix is unitary, 3°|Sy|* = 1 — Sy, so that
we recover the reaction cross-section o, = 3 oy = (1/k2)(1 — |Si[?).

The amplitudes are symmetric under time reversal ¢, whereby ¢ «+— f and momenta and internal
angular momenta change sign. This symmetry implies

prdodQy = p?daffdQ,- , (10)

which is the reciprocity theorem or the principle of detailed balancing. An average over spin states
of the cross-sections are sometime useful.

Partial widths. The well-known Breit-Wigner formula for resonance scattering* has been red-

erived® with the result /o

— / : . (11)
E — Ey+il/2

They represent a special form of scattering amplitudes, corresponding to resonance on quasi-

discrete levels of a complex particle, like, for instance the compound nucleus.® They are both

elastic (diagonal in the input channel) and inelastic (non-diagonal) amplitudes.

f=

We define the generalized (multi-channel) amplitudes as

1
2ik,

1 ei(5a+6b) FMab
Wkaky E—Ey+il/2 "’

for a resonance scattering on level Ej, of width I', with multiple channels, including the input
non-resonant channel, for a definite angular momentum [, where M, remain to be determined.

fab = (€2i5a - 1)5116 - (12)

4G. Breit and E. P. Wigner, Phys. Rev. 49 519, 642 (1936).
SM. Apostol, J. Theor. Phys. 128 (2006).
6N. Bohr, Nature 137 344 (1936).
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Spins are left aside. The unitary condition (9) leads to the conclusion that M is a symmetric
matrix with unity eigenvalues, so it can be expressed as M,, = v/I',I',/I", where

Y r,=r (13)

are partial widths (for a non-degenerate quasi-discrete level).

Let I'. be the partial width of the input elastic channel and I',,.  the partial widths of the

reaction channels. The total elastic amplitude given by (12) reads

geor

2A+1 I,

—_ £(0) _ P
Je=1 ok ¢ E—E,t+il/2 !

(cos®) , (14)

where f© is the potential amplitude and P, are the Legendre polynomials. The reaction processes
are purely of resonance type, so that the corresponding cross-section reads

(20 +1)? ..,

P? Q. 1
07 (BBl costd (15)
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Similarly, the integral cross-section is given by

T r.r
o = (20 +1)— — , 16
g ( + )]{,‘2(E—E())2+F2/4 ( )
and the total reaction cross-section reads
m r.r
=20+ 1)— — : 17
S SR E (17)
where ', =" — I".. It can also be integrated over energy to give
212 T,

Slow neutrons. Slow neutrons scatter from nucleus in s-wave, so the elastic amplitude (14) reads

I

Je= 0 B By il

(19)

where —a is the scattering length. The total elastic scattering cross-section is given by

7 T2+ 4akT.(E — Ep)
624 2 — .= . 20
(o ma +k:2 (E — Eg) + 1%/4 (20)

The first term is the potential scattering, while the second one represents the resonance scattering.
There is an interference between these two terms, in the resonance region. Close to resonance the
potential scattering may be neglected, and we get

s 2
=T e . 21
7Tk (E—By)?+12/4 (21)
The inelastic cross-section is given by
r.r,
UT = 1 . (22)

k2 (E— Eo)? +12/4
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and the total cross-section reads

T r.r
I ¢ , 23
Ot Ot O S (B B2 +T2/4 (23)

since I' =I', + I',. These cross-sections can also be represented as
oo =o'/, 0,=0l,./T, (24)

which shows that the partial widths are probabilities, in agreement with their definition.

These formulae are valid for |F — Ey| < D, where D is the separation in the quasi-discrete
resonance levels. Similarly, they do not apply for a resonance with vanishing energy. There, a
special form of the Wigner-Breit formula must be used, which agrees with the general resonance
elastic scattering.”

Spins modify the formulae above. Each quasi-discrete level has an angular momentum j = i+1/2,
where i is the spin of the nucleus and 1/2 is the spin of the neutron. For random spins, the weight
g = (25 +1)/2(2i + 1) must be included in the cross-sections, including the potetial scattering
(where both j-values contribute).

Optical model. For many resonances it is preferable to employ an .S averaged over energies. This
way, we are left with elastic and inelastic collisions, while various reaction channels are lost. The
definitions of the cross-sections are preserved, i.e. o, = (7/k?)|1 — S }2 for the elastic cross-section,
o, = (r/k*)(1— ‘5}2) for the reaction (inelastic) cross-section, and o; = 0. +0, = (27/k*)(1— ReS)
for the total cross-section. Details of the elastic cross-section are lost, according to the average
procedure, which justify the term of "coherent" scattering. In particular, the part of elastic
scattering through the formation of the compound nucleus is now transferred to the inelastic
cross-section.

For low energies, where the quasi-discrete levels are well-resolved, the S-matrix reads

) 18
S = e (1 — e 25
e E—E0+z'r/2>’ (25)
by S =1+ 2tk f. Averaging over energies gives
S =¢e*(1 —nl./D) , (26)
so that the the total cross-section is given by
T 2nl,
= — : 2

It coincides in fact with the averaged o; given by (23). At high energies the averaged quantities
get close to the exact ones. An effective, complex maen-field potential may serve in the optical
model to represent the average S-matrix, according to the formulae given above.

Reaction threshold. The final reaction products may require a certain threshold energy F; to
be produced. According to the principle of the detailed balancing, for energies F slightly above
this threshold the cross-section is proportional to v”> multiplied by the time-reversed cross-section,
the latter going like 1/v’, where v ~ \/E — E, is the relative velocity of the reaction products.

"M. Apostol, J. Theor.Phys. 128 (2006).
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Therefore, for short-range potentials, the threshold reaction cross-section is o, ~ 1/v" ~ /FE — Fj.
Comparing it with o, ~ (7/k2)(1 — |S|?) for s-wave scattering, one obtaines

S| =1— A(k}/2n)\/E — E, , (28)

where E, = h’k?/2m and A is a constant. Let us suppose that below the threshold there exists
only elastic scattering, as, for instance, in production of slow neutrons. Then, |S| =1 for F < Ej,
and

S =e*[1 — A(k?/2m) E — E|] (29)
for all energies close to E, to the same accuracy. The scattering amplitude is therefore given by

f=fi— ﬁ.A\/E — B, (30)

4

where f; is the scattering amplitude at the threshold. The differential cross-section is then given
by

do/dQ = |f,)* + %A\/E — EJIm(fe ) | E>E, (31)
and L
do/dQ = |f,]” — ﬁA\/E — E,Re(fie™®9) | E<E, . (32)

Depending on the real and imaginary parts in (32) the cross-section exhibits characteristic cups
at the threshold. If spin is included, the resulting s-wave may arise from various j-values of the
original reacting particles, but the general cusp-like behaviour of the cross-section is preserved.
This holds also for vaious other reactions below the threshold.

All of this above holds for short-range potentials. For Coulomb potentials, as for instance, in
production of protons (repulsive Coulomb interaction) the cross-section tends exponentially to
zero above the threshold (o, ~ e=2/*P /k2 see above), and there is no singularity.

For attractive Coulomb interaction, the cross-section has a sudden, constant jump above the tresh-
old (o, ~ 1/k?, see above). Below the threshold, there must be resonances (similar to Wigner-Breit
ones), due to quasi-discrete levels correponding to bound states in attractive Coulomb poten-
tial. Making use of the principle of detailed balancing and of the cross-section for attractive
Coulomb interaction (o, ~ 1/k?*(e**P — 1), see above), we get o ~ 1/sin(1/xD), by changing
k — 1k ~ i/ E; — E. This cross-section exhibits oscillations below threshold, the faster the closer
the threshold.®

Interaction in the final state of reaction. If two slow nucleons are created in the final
state, the nuclear forces may affect their cross-section (probability of their occurrence), either by
their possible discrete or virtual level. The probability is given by dw = |z/1|2 dp in the reaction
region, where p is their relative momentum, much smaller than the momentum pg of the center
of mass. The corresponding energies are F and, respectively, Ey. The wavefunction is given
by [1/(k + ik)]e’*" /r, where the well-known resonance scattering amplitude for small energies is
employed. It leads to dw ~ dp/(|e| + E), where e < 0 is a discrete level and € > 0 is a virtual
level. All the same, dw ~ /EdE/(|¢| + E). We can see that the cross-section has a maximum for
E ~ [¢].

8Such oscillations are related to the ionization of a neutral atom by an electron with an energy FE sligtly above
the ionization threshold I. This process has a cross-section ~ (E — I)®, where a ~ 1 (G. H. Wannier, Phys. Rev.
90 817 (1953)).
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In the laboratory frame the momenta are py = p; + p2 and p = (p2 — p1)/2. We have py X p =
P1 X P2, and pop, = pip2sin @ = p2f/4, since py > p; 0 = 4p, /py < 1 is the angle between the
two momenta p; 2 and p; is the transverse component of p. The probability distribution becomes

pidpidp
dw ~ ———— 1 (33)
(p1 +pj)/m + €]
or, integrating over p;, we get
0do
~ (34)

\/92+4|€|/E0 ’

it has a maximum for nearly-forward scattering 6 ~ \/|e| /Ey. It may give |e].
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