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Abstract

Weber’s proposal of detecting neutrinos by their coherent scattering on a stiff crystal is
analyzed, and the feasibility of the concept is assessed.
This paper is due to I. Cruceru, Magurele-Bucharest.

One of the most intriguing and controversial isssue in modern physics is Weber’s proposal of
detecting neutrinos by their coherent scattering on a stiff crystal.! We give here a brief review of
this issue, which points towards the feasibility of such a detection procedure.

Neutrinos. Neutrinos (actually antineutrinos) can be obtained, for instance, from a tritium
source, at energy ~ 10keV, with an activity of 3000C7 (1C% = 3.7 x 10'°Bq, 1Bq =one decay per
second). The nuclear reactors may generate antineutrinos with energies in the range of 1MeV
and flows (at close distance) of cca 10'2/cm? - s. Another source is provided by Sun, which gives
~ 10" /em? - s neutrinos (in all flavours) with an average energy ~ 300keV. Such sources have
been used in Weber’s experiments.

Notoriously, neutrinos interact extremely weakly with matter. For instance, their cross-section
with a nucleon is of the order of 0,4 ~ G2E?/h*ct, where G ~ 107*MeV - fm? is Fermi’s weak-
interaction coupling constant (1fm = 107'°m ). For an energy E = 1MeV this cross-section is
~ 107*em?2.2 Being given the available flows of neutrinos, their detection is extremely difficult.
Large amounts of suitable fluids are used in order to detect them.®> A more efficient method of
neutrino detection is highly desirable.

A first hint toward such a method is provided by the nuclear physics. The nucleons are held
together by strong forces in a nucleus, so, it is conceivable that if a certain amount of energy is
transmitted by a neutrino to a nucleon, then it is in fact transferred to the whole nucleus, which
will suffer the collision as a whole. The cross-section is a square of sum of scattering amplitudes
arising from all the nucleons, so it is conceivable that they add coherently to give a cross-section
oo ~ (G*E?*/h*c*)A?, where A is the mass number of the nucleus. Actually, the proton scattering
amplitude are of opposite sign with respect to the neutron scattering amplitude, and they are
also diminished by the (Weinberg’s) mixing angle 6 (~ 0.2). The nuclear cross-section reads then
oo ~ (G*E?/R*¢*)[N — Z(1 — 4sin? §))?, where N stands for the number of neutrons and Z for
the number of protons. The cross-section goes like the square of the number of scatterers, which

1J. Weber, Phys. Rev. C31 1468 (1985); Phys. Rev. D38 32 (1988).

2For comparison, nuclear cross-sections are of the order of 1barn = 10~ 2*cm?.

3Neutrinos have been discovered by such methods: F. Reines and C. L. Cowan, Jr., Nature 178 446 (1956); C.
L. Cowan, Jr., F. Reines et al, Science 124 103 (1956).
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enhances it appreciably in comparison with an incoherent scattering, where the cross-section is
thought to go like the first power of the number of scatterers.*

This observation opens up the way of investigating the coherent scattering of neutrinos on a larger
scale, like in a stiff crystal. It is worth noting that the only condition for coherent scattering seems
to be the stiffness of the target crystal.

Cross-section. With usual notations the rate of transition is given by the well-known Fermi’s
"golden rule" (Born approximation)

dw = (27 /h) |Hy|* 6(E — E")dv' (1)
where dv' = Vp?dp'dQ)/(2rh)3. H, in equation (1) denotes the matrix element

H, = z /dr -o(r)e!®PIr/h (2)
Vv
of the interaction v(r). We assume that the final state is that of the scattered particle with
E' = cp, as for elastic scattering, and integrate over final energies.® With the same notation, we
get
2

~ VAh(2rh)? / dr - v(r)e! PP/

Now we assume further that the interaction is given by a periodic array of )-functions,

v(r) = ua® Z o(r—r;), (4)

2
dw E”dQ . (3)

as for a crystal, where u is the strength of the interaction and a is a characteristic length of the
elementary cell, and get

2

2mulab ) /
dw = ——— — i(p—p’')ri/h El2dQ 5
v V3h(2rh)? ZZ: ‘ ’ (5)
with the well-known form-factor
F(p—p)=) ®Pr/t (6)

of the crystal in the modulus brackets. The flow of the incoming particle is & = ¢/V (for one
particle in volume V), so the differential cross-section do = dw/® is given by

2mu?a®

do = T
7 c4h(27rh)3‘

F(p—p)|"E®dQ . (7)

We can write og = [2mu?a®E"/c*h(27h)3] as coming from a single cell, and
do =0y |F(p — p')[* dQ . (8)

For neutrinos, the interaction potential is replaced by relativistic currents, and, up to numerical
factors, the matrix element of the interaction amounts to replacing ua® in (7) by Fermi’s weak-
interaction coupling constant G. We get for o the estimation oy ~ G2E"/c'h* as given above for
one nucleon (or one nucleus, or one elementary cell in the crystal, with suitable modifications).

4See J. Weber, loc. cit.
5Or notice that dp’d(E — E') = dp' /dE' = 1/c.
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The rate of collisions dw = (1/7)dS), where 7 is the collison time, is obtained from (1) and (8) as
dw = ddo = oy |F(p — p')[ d2 . 9)

For one particle the flow ® in (9) is numerically equal to unity. One can see that the collision
time is extremely long, of the order of 7 ~ 1/0¢ ~ 1045 for the elementary cross-section o, which
shows again that the detection of the neutrinos is extremely difficult indeed.

Evaluation of the form factor. The form factor in equation (6) consists of three components:
F(p—p') = Fi(pr —p)F(p2 — ph)F(ps — py), where 1,2, 3 denote the axes of coordinates. Their
evaluation is straightforward. We get

Fy = sin[(p1 — p})N'?a/h)/ sin[(p1 — py)a/h] (10)

and similar expressions for I 3, where N is the number of cells in the crystal.® As it is well-known,
in the limit of large N the form factor given by (10) reads

F=rY dp-p)/h+Gl, (11)
G

where G are the reciprocal vectors of the lattice. This is the well-known Laue’s diffraction on the
lattice. Equation (11) tells that summation are extended over those G’s which satisfy Bragg’s
condition p’ = p + hG, p = p/, i.e. hG = 2psinf/2, where 0 is the scattering angle between p
and p’; they are given by the well-known Ewald-sphere’s construction. For neutrinos they range
from a central peak to a great number of by-side diffraction spots, according to the extent of the
p = p/, i.e. of neutrino’s energy. For high energies this number of peaks is given approximately
by (p/hg)?~ (ap/h)?, where g ~ 1/a is the elementary reciprocal vector.

According to (10), the maximum value of the form-factor in a diffraction peak is F,., = N.
Therefore, the corresponding maximum cross-section is do,,., = 09/ N2dS). The N?-dependence is a
general characteristic of the diffraction, which makes it to be called coherent diffraction, or coherent
scattering. This dependence is not affected by phonons, or deffects, or additional modulations of
the lattice, etc, though the diffraction figure may be affected correspondingly in such cases; long-
range phonons brings an additional contribution, called the diffuse scattering, which is proportional
to N; but the scattering at the centre of the diffraction spot remains proportional to N2. For a
dispersion of the incoming particles either in energy or direction, or both, the by-side peaks of
diffraction decrease in intensity, with respect to the main peak.”

One can see from (10) that the spread of a diffraction peak has a linear size dp| ~ h/aN'/3,
so it shows an area ~ h?/a?N?/ within a solid angle AQ ~ h?/p?a?N?%3. Tt follows that the
cross-section for one peak of diffraction is

Tone—peak = 0oN? - (B2 /p?a®N?/?) ~ N3 (12)

This cross-section must be multiplied by the number of total peaks, which is ~ (pa/h)?, as
discussed above. It follows that the total cross-section can be estimated as

o~ aggN3 . (13)

It would appear that for large N this cross-section would increase indefinitely. However, it is
subjected to the condition that it must be much smaller than the area of the sample perpendicular

6We assume the crystal spatially uniform in size; for special geometries, the form-factor is different from the
one given by (10), as expected.
"M. Apostol, X-ray diffraction, unpublished.



4 J. Theor. Phys.

to the incident particles; the latter goes like N?/3, so N is in fact limited by this condition, though
fairly weakly (N < (a%/00)*?). Otherwise, the perturbation theory employed in deriving the
cross-section wouldn’t hold anymore. It is sometimes said that o goes like N; this is true, however,
for two-dimensional samples, where the spread of the spot is given by 6p) ~ h/aN'/2. The solid
angle has then a dependence on the by-side peaks also.®

For an amorphous solid (or for a gas, a liquid) the form-factor in equation (6) reduces to the
central peak corresponding to G = 0. The total cross-section is then given by (12)

O amorphous >~ 0p- (h/pa>2N4/3 ) (14)

and one can see that it is reduced by the square of the factor //pa in comparison with a crystal.

Giving a momentum to the crystal. If the scatterers are not fixed, they receive a momentum
and an energy from the incoming particles, the collision is inelastic, and these final states of
the scatterers must be included explicitly in equation (1). Suppose that in an elementary act of
collision between a particle and an atom (nucleus, elementary cell) in the crystal the latter receives
a momentum Jp and an energy de, such that p’ = p—Jdp and de = ¢(p’ —p). The incoming particle
loses correspondingly an energy dc and a momentum Jp. This momentum and energy transfer
is shared by various motions in the target. A solid is a collection of interacting atoms. Mainly,
its motion is governed by the relative coordinates of the interacting atoms and the coordinates
of the center of mass of the sample (we leave aside the rotations of the sample, as well as other
possible internal motions). The former give the vibrations of the solid, i.e. the phonons, the latter
give the motion of the sample as a whole. The motion of the sample as a whole proceeds in a
well-defined mechanical state, and we may consider that its states weight in the collision rate is
unity; 7.e. the initial position rq and momentum py of the solid are such that drodpy/(27h)> = 1.
Similar statistical weights must be considered for the excitation of the phonons. Equation (7) is
then maintained, for the scattering of the incoming particle, except for p — p’ being replaced by
p—p —dp and E' = F — fe. It remains therefore to estimate the form-factor

F = Z ci(P—p'=dp)ri/h (15)

and to average over phonon states.

The question then arises: under what conditions such a momentum and energy transfer is possible
to the solid as a whole? According to the quantal mechanics, as Weber explained, this is quite
a legitimate channel of reaction. Under X-rays diffraction, for instance (or similar incoming
radiation), the electrons acted by the X-rays do not interact directly with each other; they are
indepedent scatterers, and the momentum transferred to one is not shared with the others. These
scatterers are incoherent, and the motion of the atomic nuclei affects the X-ray scattering in a
peculiar way, as discussed above. On the contrary, since neutrinos interact with the nuclei (or
their quark constituents), these nuclei may move coherently, providing the crystal has a high
stiffness, like the strong-force interacting nucleons in the atomic nucleus under the same action of
the neutrinos.

First, we note that the energy transfer must be written as de = € + €,5, where ¢y is the energy
transferred to the target as a whole and ¢, is the energy of the excited phonons. The incoming
particle can give a maximum momentum 2p to the target as a whole, assuming that there is no
phonon excitation. Consequently, the target may take an maximum energy ¢, = 2p*/M, where
M is the mass of the target. This makes e = 2(cp)?/Mc* = 2E?,./Mc?, where Ej,. = cp is the

mc

8M. Apostol, loc. cit.
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energy of the incident particle. It is an extremely small energy, so we may neglect it in equation
de = €9+€pn = pn, Where the average energy transferred to the phonons (¢,,) is of the order of the
Debye temperature © of the solid. One of the highest values of Debye temperatures is © ~ 2000 K
(0.2eV), for diamond. The transfer of energy to the excited phonons is a statistical proces, so it
takes place with the maximization of the entropy. Therefore, the probability distribution for such
a process is of the form ~ e~*¢»». The constant A is obtained by requiring (epn) = ©, s0 we get
the probability distribution ©~'e=»/® ~ ©=1¢=%/®  This is the statistical weight which must
be included in the transition rate in order to account for the energy and momentum transfer to
the target.® However, since the dependence on d¢ of this transition rate is very weak, the effect of
averaging with this distribution is practically irrelevant. The analogy with the Mossbauer effect
is obvious. There, the energy transfer is written usually de = mv?/2, where m is the atomic mass.
Indeed, this is the energy transferred to the excited phonons in an elementary act of impact. We
can see that for an infinite stiffness (© — 00) this probability tends to unity.

From the conservation of the energy de = c¢(p — p’) and de/cp ~ O/cp < 1, it follows that the
modulus of p is practically unchanged in such a collision process. This amounts to dp?—25p-p = 0.
It follows that the momentum transfer runs from zero to 2p, with an average value dp ~ p. The
momentum transferred to the phonons packet during the elementary act of impact is of the order
of h/a (for a crystal, the elementary reciprocal vector). This momentum is much smaller than the
total average momentum transfer ép ~ p, so the latter goes almost entirely to the target as whole,
i.e. Op ~ p ~ po. At the same time, the average momentum imparted to the phonons is vanishing.
Contrary to the energy transfer, which goes mainly to the phonons, the momentum transfer goes
mainly to the solid target.

It is worth noting that the elastic scattering is also included in such a description, though its
contribution is extremely small, precisely due to the fact that the target may move as a whole.

There is also a certain process related to the disruption of an atom, or group of atoms, from the
target, under the action of the incoming particle. The occurence of such a process (which produces
damages to the solid target) is related to the resonance movements of the atoms in the target. The
characteristic frequency of such an individual movement is of the order ©/h; the characteristic
frequency of the collisions is w, as given by equation (9).1° The disruption of individual atoms
occurs therefore only for w ~ ©/h, a process with a very low rate due to the mismatch between
the two frequencies. Actually, the impact force of the incoming particle contains in fact all the
frequencies, '! so there is always a certain probability of producing such disruptions. For an
infinite stiffness (© — o0), such processes are circumvented. Therefore, it is not necessarily to
have a very stiff target (nor a perfect one), but, if softer, the collisions will degrade it sooner.

Coherent form factor. The form-factor given by (15) can be evaluated as the one in equation
(10). Its maximum value is still F,,,, = N. Ewald’s sphere does not change too much, since
the energy transfer is extremely small in comparison with the incident energy (p ~ p’). The
momentum transfer to the crystal is pg, which may have various values such as py ~ p on the
average. Therefore p’ must be so as to satisfy first p’ = p — po and p’ ~ p. This is a certain
point on Ewald’s sphere. Then, we must allow any p’ on this sphere to move by reciprocal vectors
hG, such as the new p’ to remain on the sphere. This amounts to changing the vector py by
crystal momenta AG. It follows that the AG-momentum of the crystal is already incorporated in

9A correction term can be included in this probability, which gets the form ~ exp[—(5c/0)(1 + Ae/O)] for
Ae/© < 1, where Ae comes from the change in the thermal equilibrium; since §(Ae) = T§S, where T is the
temperature and 65 is the entropy, and since §S ~ §T during this change of equilibrium, we get Ae ~ T2/0, up
to some numerical factors.

10Tt is given by w = ®o, where ® is numerically set equal to unity

UTts frequency content depends on the shape of the temporal pulse.
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the crystal momentum pg, as it is well-known. Indeed, we know that the crystal wavefunction
exp(ipo »_; ri/h) is invariant under a hAG-change in the crystal momentum p,. Therefore, we
conclude that we have a continuous distribution of peaks of magnitude F,,,, = N? which subtend
now the solid angle AQ ~ 1. Indeed, the dispersion in (15) is dp] ~ (po)1, etec, so the solid angle
is given by dp"?/p? ~ p2/p? ~ 1. Tt follows that the total cross-section is given now by its coherent
form

o~ ogN? . (16)

This cross-section is appreciably enhanced by the coherence factor N2, in comparison with the
elastic cross-section given by (13).!2 It may be called the coherent cross-section.

This is not so anymore for an amorphous solid. In that case we have only a central peak, and the
above cross-section must be reduced by the number (ap/h)? of absent peaks, where a is the mean
inter-particle spacing.®

The same result can be obtained by a different reasoning. According to (10) and (15), for a
fixed dp = po, the diffraction figure consists of (ap’/h)* peaks, as many as allowed reciprocal
vectors, each of solid angle (h/ap’)?/N?/? and maximum value N2. Therefore, the corresponding
cross-section is ~ N?/N?/3. However, the crystal moves around, and p, changes; the "diffraction
figure" is now smeared out over a range ~ po; for py ~ p,p’ the vector pg acquires ~ N positions
in space, and N%? in the subtended solid angle.!* Therefore, the total coherent cross-section is
~ (N?/N?/3)N?3 ~ NZ2. For only one peak, as for an amorphous solid, it is reduced by number
~ (ap'/h)? ~ (ap/h)%. In general, these cross-sections must contain a factor (py/p)?, which is
unity in this case.

For an incident energy cp = 1MeV, oy ~ 10~*em? and N ~ 10?3 for one mol, we get o ~ 10%cm?,

which represents an appreciable increase in the cross-section. It may even overpass the condition
of applicability of the perturbation theory regarding the area of the crystal, as discussed above.
However, it is conceivable that the collision processes are limited to the first layers of the crystal
facing the incoming particles, so a reduction factor of ~ N'/3 is reasonable in equation (12)
(though we neglect the multiple scattering).'®> We get then o ~ 107%cm? (for an incident energy
1MeV). For 0.1mol (which seems to be the mass of the crystal used in Weber’s experiments; its
area was ~ 25c¢m?) we get from (16) o ~ lem?, which agrees with the measured value.!

Force acting upon the crystal. The force acting upon the crystal is the rate of the momentum
transfer; the latter is of the order py ~ p, and the rate of collisions is given by ®o, where & is the
incoming flow of particles. We get therefore for the average force

F ~ pdo . (17)

12Though it is subjected to the same limitation ¢ < S, where S is the area of the crystal perpendicular to the
incoming momentum p, as discussed above. This condition amounts to N < (a?/0¢)?/* for a crystal spatially
uniform in size. As expected, this is a more restrictive condition than the one implied by the elastic scattering. For
an elementary cross-section og = 10~**e¢m? it amounts to a maximally allowed value of N ~ 102!, which restricts,
practically, the use of these formula to cca one tenth of mol.

13For an energy c¢p = 1MeV this factor amounts to (ap/h)? = (a/A)? ~ 10~%, where A\ ~ 1072A(10% fm) is the
wavelength of the incident radiation.

4In the crystal wavefunction exp(ipo Y., r;/h) the crystal momentum py is given by (po)1 = (2nh/N/3a) x
integer, etc, such that the wavefunction is invariant under a translation (r;); — (7;)1 + a, etc. Note that under
such a translation (3 7;); changes by N1/3a.

15 As if the layers would scatter independently, which is reasonable for short wavelengths. A similar reduction in
the incoherent elastic scattering takes the cross-section from o ~ N*/3 into o ~ N, hence the popular N-dependence
of the incoherent scattering.

16Weber’s estimation is somewhat larger.
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For an incident energy 1MeV the momentum is p ~ 107dyn - s. For a flow ® ~ 102 /cm? - s
the force may range from F' ~ 1073dyn (o ~ 10%cm?) to F ~ 107%dyn (¢ ~ 10~%*cm?). For
comparison we give the gravitational force acting between two masses each of 100g placed at
distance lem apart from each other: Fy,,, ~ 107%dyn. Weber’s experiments report a force
~ 10~°dyn for approximately 0.1mol of crystal (saphire, © ~ 1000K) for all types of neutrinos
(10keV,300keV ,1MeV'), which is rather strange as both the cross-section and the force vary with
energy (a factor ~ E® in (17 )). The flow, the superficial scattering and, especially, the variations
in the crystal masses employed may be so as to correspond to such results. 7 For ¢ = 1cm? the
force given by (17) is F' = 10~°dyn for an incident energy 1MeV.

The rate of collisions for one unit of incident flow is w ~ 102°—107%s7! (¢ for 1MeV'); the disruption
rate of an atom in crystal is ~ ©/h ~ 10's™! (for © = 1000K). As one can see, the impact is
practically adiabatic, which makes more likely the momentum transfer to the crystal as a whole.

In any case, the coherent scattering is an intriguing process, just on the limit of applicability of
the perturbation calculation, as we have seen, and it deserves to be pursued experimentally.
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17In addition, we must note that we use oo for one nucleon; we have, in fact, to employ the value coresponding
to the elementary cell of the crystal, which may exhibit an appreciable enhancement.



