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Abstract

A quantum system may su�er transitions by varying parameters which, in the adiabatic

limit, give the Berry phase. Similarly, non-inertial motion may cause quantum transitions for

a system in an external �eld governed by Schrodinger's equation.
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Berry phase. Let the hamiltonian H, its (orthogonal) eigenfunctions ϕk and energy eigenvalues
Ek depend on a parameter denoted generically by R. This dependence in written explicitly in the
eigenvalue equation

H(R)ϕk(R) = Ek(R)ϕk(R) . (1)

A time dependence R(t) is assumed for the parameter R, and Schrodinger's equation is written
as

i~∂ψ(t)/∂t = H(R)ψ(t) . (2)

In the adiabatic limit Ṙ → 0 the original eigenstate ϕn(R) is preserved during the temporal
evolution, and the solution of equation (2) reads

ψn(t) = exp[−(i/~)

∫ t

0

En(R(t′))dt′]eiγn(t)ϕn(R(t)) , (3)

where γn(t) is given by
γ̇n(t) = i (ϕn, ∂ϕn/∂R) Ṙ . (4)

For a circuit C described by the parameter R, this is Berry's geometric phase γn (Berry 1985).

Transitions by change of parameters. This result implies that, in general, for non-vanishing
Ṙ, the quantum system may exhibit transitions between its various states. Indeed, the general
solution of equation (2) can be written as

ψ(t) =
∑

k

ak(t) exp[−(i/~)

∫ t

0

Ek(R(t′))dt′]ϕk(R(t)) , (5)

where the coe�cients ak(t) obey the equation

ȧn = i
∑

k

akγnk(t)Ṙ exp[(i/~)

∫ t

0

[En(R(t′))− Ek(R(t′))]dt′] , (6)
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and
γnk(t) = i (ϕn, ∂ϕk/∂R) . (7)

This γnk(t) is a generalization of the Berry phase; the latter corresponds to

γn(t) =

∫ t

0

dR(t′)γnn(t′) , (8)

where the integration is performed along the path described by the parameter R in its motion
from R(t = 0) to R(t). The γnk(t) are the matrix elements of the operator −P/~, γnk = −Pnk/~,
where P may be viewed formally as the momentum associated with the parameter R. Then,
equation (6) gives the transition amplitudes caused by a perturbation H1 = VP, where V = Ṙ is
the velocity of the parameter R.

Equation (6) is solved in the �rst order of the perturbation theory, with the initial conditions
an(0) = 1, ak(0) = 0, for k 6= n. The transition amplitudes

akn(t) = i

∫ t

0

dR(t′)γkn(t′) exp[(i/~)

∫ t′

0

[Ek(R(t′′))− En(R(t′′))]dt′′] , (9)

are obtained, where an additional label k has been given to the coe�cient an in order to indicate
the transition from state n to state k. At the same time

ann(t) = 1 + i

∫ t

0

dR(t′)γnn(t′) = 1 + iγn(t) . (10)

From (9) and (10) one can see that in the adiabatic limit Ṙ → 0 the Berry phase γn = γn(T ) is
recovered in ann(T ) = eiγn(T )for a circuit C, where T is the period during which the parameter R
describes the circuit C.

In the �rst-order of the perturbation theory the R-dependence of the matrix elements γkn and
energy eigenvalues in the exponential factor in (9) may be neglected. The transition amplitudes
can then be written as

akn(t) = −(i/~)

∫ t

0

dt′ ·V(t′)Pkn exp(iωknt
′) , (11)

where ωkn(t) = (Ek − En)/~.
For a uniform change of parameters, i.e. for V = const, the transition amplitudes are vanishing
(akn(t) = 0, k 6= n). The diagonal amplitude ann(t) = 1 − (i/~)VPnnt' exp(−iVPnnt/~) given
by (10) contains the correction VPnn to the energy of the state ϕn in the �rst-order of the
perturbation theory. The gauge transformation ψ′n = exp(−iVPnnt/~)ψn leaves Schrodinger's
equation unchanged.

Let velocity V have a sudden variation from V = 0 for 0 < t < t0 to V = const for t0 < t, such
that ∂V/∂t = Vδ(t− t0). The transition amplitudes given by (11) become

akn(t) = −VPkne
iωknt/(Ek − En) + [VPkn/(Ek − En)]ei(Ek−En)t0/~ . (12)

The �rst term in the rhs of this equation corresponds to the change in the wavefunction under
the action of the constant perturbation VP for t > t0. The transition amplitude is given by the
second term in the rhs of equation (12), so the transition probability is wkn = [VPkn/(Ek−En)]2.

If the velocity is periodic in time with frequency ω, V(t) = Veiωt + c.c., the transition probability
per unit time is given by wkn = (2π/~)(VPkn)2δ(Ek −En ± ~ω), in the limit of the in�nite time.
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The calculations are not restricted to the discrete spectrum, so there may appear transitions in
the continuum. It is worth noting that frequencies ω in the variation spectrum of the parameter
R must be comparatively high, of the order of the frequencies of the quantum system, in order to
have such quantum transitions.1

A few examples. Let a particle of mass m moving in an in�nite square potential well in one
dimension. The eigenfunctions are ϕn(x) =

√
2/a sin(πnx/a) and the energy eigenvalues are given

by En = π2~2n2/2ma2, where n = 1, 2, .... The width a of this potential well is taken as parameter
R. The wall of the potential well, placed at distance a from the origin, is subjected to an oscillatory
motion of frequency ω as described by a = a0 + ε cosωt, where ε/a0 � 1. Making use of equation
(11) we get the transition probabilities wkn = 2π~ [εωkn/a0(k

2 − n2)]
2
δ(Ek − En ± ~ω) per unit

time, in the limit of the in�nite time. The diagonal matrix element γnn is vanishing in this case,
γnn = 0.

Following Berry (1984), we consider a spin S placed in a magnetic �eld B. The hamiltonian
reads H = −gµBS, where g is the gyromagnetic factor and µ is the Bohr magneton. The energy
eigenvalues are given by En = −gµBn, where n = −S, ...S. In order to calculate the matrix
elements entering equation (11) it is convenient to use the identity (En − Ek) (ϕk, ∂ϕn/∂R) =
(ϕk, (∂H/∂R)ϕn) for k 6= n. We write then BS = B(Sx sin θ cosφ + Sy sin θ sinφ + Sz cos θ),
and take the angles θ and φ as parameters R. First, we set φ = 0 and let θ describe a circuit
according to θ = ωt, where ω � gµB/~. Making use of equation (9) we get transition probabilities
wkn = (π~ω2/8) [S(S + 1)− n(n± 1)] δk,n±1δ(En−Ek±~ω), in the limit of the in�nite time. Since
ω � gµB/~ these transition probabilities are vanishing, in fact, as we get by using equation (11).
We may also set θ = const and let φ = ωt describe a conical circuit of semiangle θ. The results
are similar, the amplitudes containing now the factor sin θ.2

Translations. A similar analysis can be carried out for non-inertial motion. Let r = r′ + R(t′),
t = t′ be a translation. In this case, the hamiltonian, its eigenfunctions and energy eigenvalues do
not depend on the parameter R. Schrodinger's equation (2) becomes

i~∂ψ(t′, r′)/∂t′ = H(r′)ψ(t′, r′) + i~V∂ψ(t′, r′)/∂r′ , (13)

where V = Ṙ. The last term in the rhs of equation (13) can be viewed as an interaction H1 =
−Vp, where p = −i~∂/∂r′ is the momentum associated to the coordinate r′. The transition
amplitudes are given by equation (11), where P is replaced by p.

For a free particle, the transition amplitudes are vanishing, since pkn = 0 for k 6= n. Simi-
larly, for an ensemble of (in general interacting) particles the momentum p is the total momen-
tum, i.e. the momentum of the center of mass of the ensemble, so there are no transitions,
as expected. The coe�cient ann(t) corresponds to a gauge transformation exp[i

∫ t

0
dt1V(t1)pnn]

of the n-state, which, in general, has not a determined energy (it is not a stationary state, in
general). For constant velocity V = const, the phase of this gauge transformation is the �rst-
order correction to the energy of the n-state. It is easy to check that the gauge transformation

1For a quantum-statistical system with a characteristic spectrum ~ω×integer, the quantum transitions described
above may induce an increase δT ∼ ~ω in temperature. For a periodic change of parameters, the frequency ω is
proportional to the ratio of the average acceleration a to the average velocity v, so the increase in temperature is
δT ∼ ~v/a. It is similar with the Unruh temperature (Unruh 1976).

2Another example is provided by the electronic terms of the molecules, which depend parametrically on the
nuclear coordinates R. The interaction H1 = VP can easily be estimated as H1 ∼ (m/M)Eel, where Eel is a
characteristic electronic term of the molecule and m/M is the ratio of the electron mass m to the nuclear mass M .
It is of the same order of magnitude as the accuracy of the adiabatic decoupling of the electronic motion from the
nuclear motion, so it gives a natural width of the electronic terms in molecules.
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ψ′(t, r′) = exp[−(i/~)(MV 2t/2 + MVr)]ψ(t, r), where M is the mass of the ensemble, preserves
Schrodinger's equation, in accordance with Galileo's principle of relativity.3

The situation is di�erent for particles in an external �eld. There, in general, the o�-diagonal matrix
elements pkn of the momentum of the particles are non-vanishing, and they may cause transitions.
For instance, if one or more particles in an ensemble of interacting particles acquire a large mass,
then they may be viewed as being at rest during the motion of the rest of particles. Their
interaction with the rest of particles become now an external �eld for the latter, whose motion
depend parametrically on the positions of the former. The coordinates of the heavy particles do
not appear anymore in the momentum, so there may exist non-vanishing matrix elements of this
momentum between states of the moving particles. It follows that non-inertial motion may give
rise to quantum transitions for particles in an external �eld.

Rotations. A similar result holds also for rotations. Let ri = αij(t
′)rj, t = t′ be a change of

coordinates (i, j = 1, 2, 3), where αij is a rotation matrix of angle φ and angular velocity φ̇ = Ω
about some axis, such that r′i = αji(t)rj, αjiαjk = δik. Making use of αliα̇lj = εijkΩk, where
εijk is the totally antisymmetric unit tensor, we get easily that an interaction H1 = Ωl appears
in hamiltonian, similar with the interaction given by (13), where l is the total (orbital) angular
momentum. The discussion is similar with the one given above for translations. For a free particle,
or an ensemble of interacting particles, the total angular momentum has not o�-diagonal matrix
elements. The coe�cient ann may generate a gauge transformation, which re�ects, in general,
the non-stationarity of the rotating state. For uniform rotations, i.e. for Ω = const, the gauge
transformation ψ′(t, r′) = exp[−(i/~)(mρ2Ω2/2 − mρ2Ωφ/~)]ψ(t, r), where ρ is the distance of
particles to the axis of rotation, leaves Schrodinger's equation unchanged, in accordance with its
invariance under uniform rotations. In this gauge transformationmρ2 denotes the total momentum
of inertia I and the �rst term in the phase is the kinetic energy l2/2I.

For particles in an external �eld the angular momentum may have non-vanishing o�-diagonal
matrix elements, so non-uniform (accelerated) rotations may induce quantum transitions.

Conclusion. The main conclusion of the results described herein is that non-inertial motion may
cause quantum transitions for systems in external �elds governed by Schrodinger's equation. It
follows that an observer who is set in non-inertial motion may record such quantum transitions.
Similar transitions may be caused by changes of parameters associated with Berry's phase. The
acceleration of the change of coordinates or of parameters must be fast enough in order to match
the excitation spectrum of the quantum system and have such transitions.

The analysis can be extended to �elds, with similar conclusions. For similarities with quantization
in gravitational �elds we refer to Cai&Papini (1991), Casini&Montemayor (1994), Singh (2005)
and Singh&Mobed (2006).
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3The unitary transformation ψ = exp(−iRp/~)ψ′ takes the Schrodinger equation i~∂ψ/∂t = Hψ into
i~∂ψ′/∂t = Hψ − Vpψ′ + R(∂H/∂r)ψ′ + .... Making use of (ϕk, (∂H/∂r)ϕn) = (En − Ek) (ϕk, ∂ϕn/∂r) one
can show by direct calculation that the additional interacting term in the hamiltonian has no relevance. Such a
unitary transformation is di�erent from the coordinate change.
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