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Abstract

A model of phase transition of the �rst kind is introduced, based on the assumption that

a classical gas of particles condenses in composite particles made up of various numbers of

gas molecules. The transition temperature and the latent heat are derived, and the phase

diagram is characterized.

Phase transitions represent a widely-investigated �eld of research in condensed matter, especially
in connection with their critical behaviour. Comparatively, and despite their ubiquitous occur-
rence, the phase transitions of the �rst kind, which exhibit �nite discontinuities in thermodynamic
functions, received less attention than the phase transitions of the second kind, characterized by
discontinuities in the derivatives of the thermodynamic potentials. It is known that the latter are
associated with a symmetry breaking and quantum-statistical correlations. Typical examples are
superconductivity, super�uidity, or structural modi�cations of solids. Technically, they are driven
by a continuous change in an order parameter, which generates singularities characterized by power
laws with critical exponents (indices). The particular mechanisms for the phase transitions of the
�rst kind remain elusive, though both kinds of transitions are related to a certain condensation
to a macroscopically-occupied state. A typical example of such phase transitions is provided by
the gas-liquid transition. The van der Waals theory, which captures much of the general features
of the problem, is an interpolation between an ideal classical gas and a strongly interacting gas
(liquid). Near the critical point, the particle density may be viewed as an order parameter, as for
a phase transition of the second kind. On the other hand, dealing with an interacting ensemble
of particles, the van der Waals theory fails to incorporate the particle condensation in the form
of bound states. Previous attempts to describe the condensation of matter are known,[1]-[11], as
quoted by ter Haar.[12] They are mainly related to the droplet model,[13]-[16] and extensive stud-
ies regarding metastable states and the kinetics (nucleation, coalescence, Oswald ripening, etc) of
the phase transition of the �rst kind,[17] as well as scaling and renormalization-group properties
of their critical behaviour have been advanced.[18],[19] Such subjects are still a matter of current
investigations.[20],[21] The equivalence of a latticial gas with the Ising ferromagnet in an external
magnetic �eld is also known,[1] where the gas-liquid transition in the former is associated to the
jump in the magnetization of the latter. We present here a direct condensation in the phase
space of the molecules of a classical gas, in the form of composite particles, which exhibits typical
features of a phase transition of the �rst kind. It may be viewed as a generic model for such phase
transitions.

Let an ideal classical gas of N molecules of mass m be enclosed in a volume V at temperature T .
As it is well-known, leaving aside the internal degrees of freedom of the molecules, the particle
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distribution is given by

dN =
gV

(2π~)3
eµ/T e−p2/2mT dp , (1)

where g is the statistical weight, µ is the chemical potential and p denotes the particle momentum.
The energy is E = 3NT/2 and the thermodynamic potential Ω = −pV = −NT , where p is the
pressure. The chemical potential is given by

µ = −T ln[g(mT/2π~2)3/2/n] , (2)

where n = N/V is the density, and g(mT/2π~2)3/2/n � 1 (condition for a classical gas).
We introduce the characteristic temperature T0 = ~2n2/3/m, and write approximately µ '
−(3/2)T ln(T/T0) for T � T0.

We assume that the gas condenses in various species labelled by j = 1, 2, 3..., consisting of com-
posite particles made up of nj = 2, 3, ... original molecules.1 These composite particles have an
energy εj = −ε0j + p2/2Mj, where −ε0j < 0 is their cohesion energy and Mj is the mass of the
j-th particle. These condensed species form an ideal classical gas. We impose the conservation of
the number of gas molecules

Nc =
∑

njρj , (3)

and the conservation of the energy Ec of the condensed phase,

Ec =
∑

εjρj , (4)

where ρj = dNj/dnjdpj is the probability distribution of Nj particles in species j over phase
space (nj,pj). The summations in (3) and (4) are extended to all the states of the particles,
characterized by number nj and momentum pj. Then, we get straightforwardly the distribution
of particles in the condensed phase

dNj =
gjVc

(2π~)3
eµcnj/T e−εj/T dnjdpj , (5)

where gj is the statistical weight of the j-th species, µc is the chemical potential of the condensate
and Vc is the volume of the condensate. We leave aside other degrees of freedom, corresponding
to the internal motion of the composite particles. We write nj as a continuous variable for
convenience, but we understand the summation over discrete values nj = 2, 3, ....

The integration over momenta pj in (5) is straightforward. It gives

dNj = gjVc(MjT/2π~2)3/2eµcnj/T eε0j/T dnj . (6)

It is reasonable to assume that the condensate is a multiple of its constituents, i.e. Mj = mnj

and, similarly, ε0j is an increasing function of nj which goes like ε0j ∼ nj for large nj. We assume
ε0j = ε0nj, where ε0 is a parameter of the average cohesion energy. Any other reasonable function
ε0j(nj) can be used, without a�ecting the subsequent conclusions. Equation (6) becomes

dNj = gjVc(mT/2π~2)3/2n
3/2
j e(µc+ε0)nj/T dnj . (7)

The number total of condensed particles is given by∑
j

Nj = Vc(mT/2π~2)3/2
∑
nj

gjn
3/2
j e(µc+ε0)nj/T , (8)

1This assumption could be related to the comments made by L. van Hove, Revs. Mod. Phys. 29 200 (1957), p.
202, on the coexistence of distinct phases during transition. See also related comments[1] on Mayer's theory.
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and the number of the original particles in the condensate given by (3) reads

Nc = Vc(mT/2π~2)3/2
∑
nj

gjn
5/2
j e(µc+ε0)nj/T . (9)

Similarly, the energy of the condensate given by (4) reads now

Ec = −Ncε0 + (3/2)T
∑

j

Nj , (10)

and the thermodynamic potential Ωc is given by Ωc = −pcVc = −T
∑

j Nj. The summations in
(8) and (9) are convergent, since the chemical potential µc assumes large, negative values, as for
a classical gas.

Let us �rst consider only one type of composite particles, labelled by j = s−1, with a constituency
nj = s. Then, the summations in (8) and (9) reduce to the s-th term only, and we get

Ns = Vc(mT/2π~2)3/2gss
3/2e(µc+ε0)s/T = Nc/s . (11)

Hence, we get straightforwardly the chemical potential of the condensate

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~2)3/2/nc] , (12)

where nc = Ns/Vc. The pressure of the condensate is given by pc = TNs/Vc, while the pressure
of the original gas is given by p = TNc/V . At equilibrium, the two values of the pressure must
be equal, pc = p, and, since Ns = Nc/s, it follows that Vc = V/s, which shows indeed that this is
a condensation. It follows that at equilibrium the two concentrations, n = Nc/V of the original
gas and nc = Ns/Vc of the condensate, are equal, n = nc, while the number Ns of particles in the
condensate and the volume Vc of the condensate are decreased by factor s, according to Ns = Nc/s
and Vc = V/s, respectively. The chemical potential of the condensate given by (12) becomes

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~2)3/2/n] , (13)

and it may be compared now with the chemical potential of the original gas of molecules given
by (2). The equilibrium between the two phases, the original gas and the resulting condensate, is
attained for µc = µ. Making use of (2) and (13), this equation can be written as

3(s− 1)

2s
ln(T/T0) = ε0/T , (14)

for T, ε0 � T0. Its solution gives the transition temperature2

Tt '
2s

3(s− 1)
· ε0

ln(ε0/T0)
. (15)

The chemical potential acquires the value µt ' −sε0/(s−1) at the transition temperature. Below
the transition temperature the condensate is favoured (µc < µ for T < Tt), while above the
critical temperature it is the gas which is favoured (µc > µ for T > Tt), as expected. Introducing
T0 = ~2(p/T )2/3/m in (14) we get the (p, T )-equilibrium curve of the gas-condensate ensemble. It
reads

p = (m/~2)3/2T 5/2 exp[−sε0/(s− 1)T ] . (16)

2For a general function ε0j(nj) for the cohesion energy the parameter ε0 in equation (15) is replaced by ε0(s)/s.
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In-between the two isotherms pV = NcT and pVc = NsT there exists a platteau at the transition
temperature, as it can be seen from the decreasing of the volume from V to Vc = V/s and the
decreasing of the constant NcT from NcTt to NsTt = NcTt/s.

Below the transition temperature the condensation is fully attained, and Nc = N . The thermo-
dynamic potentials su�er a discontinuity at the transition temperature, as a result of the con-
densation. For instance, the thermodynamic potential of the condensate Ωc = −pVc = −NTt/s
di�ers from Ω = −NTt by a relative jump −(1 − s)/s, and the volume of the condensate de-
creases to Vc = V/s. Similarly, the energy of the condensate given by (10) reads now Ec =
−Nε0 +3NsTt/2 = −Nε0 +3NTt/2s, and exhibits a discontinuity given by ∆E = 3NTt(1−s)/2s.
The heat function of the original gas is given by W = E + pV = 5NT/2, while the heat func-
tion of the condensate reads Wc = −Nε0 + 5NsT/2 = −Nε0 + 5NT/2s, so the latent heat
is Q = Wc − W = −Nε0 + 5(1 − s)NTt/2s. Similarly, the entropy of the original gas can
be written as S = (3N/2) ln(T/T0) + 5N/2, while the entropy of the condensate is given by
Sc = (3N/2s) ln(T/T0) + 5N/2s, and, by making use of equation (14), one gets ∆S = Sc − S =
−Nε0/Tt + 5(1− s)N/2s = (1/s− 1)S at equlibrium. One can check that the latent heat is given
by Q = Tt∆S, according to the Clapeyron-Clausius law. There is also a jump in heat capacities,
which are given by C = 3N/2 and, respectively, Cc = 3N/2s, at constant volume.

We pass now to the estimation of the entire ensemble of composite particles in the condensate.
The summation in equation (8) can be aproximated by an integral, according to∑

j

Nj = Vcgc(mT/2π~2)3/2

∫
s

dn · n3/2e(µc+ε0)n/T , (17)

where gc is a mean statistical weight and the lower limit of integration is s = 2. Integrating by
parts, the integral in (17) can be written as∫

s

dn · n3/2e−λn =
s3/2

λ
e−λs +

3s1/2

2λ2
e−λs +

3s−1/2

4λ3
e−λs + ..., (18)

where λ = −(µc + ε0)/T . Since λ � 1 we may approximate this integral by the �rst term in the
rhs of (18), so that equation (17) becomes

λeλs ' gcs
3/2(mT/2π~2)3/2/n , (19)

where n =
∑

j Nj/Vc, as for equilibrium. The solution of this equation for large values of λ can
be written as

λ = (1/s) ln[gcs
3/2(mT/2π~2)3/2/n]−

−(1/s) ln(1/s) ln
{
[gcs

3/2(mT/2π~2)3/2/n]
}

+ ...,
(20)

and we may retain only the �rst term in this expansion. Thus, we get the chemical potential of
the condensate

µc ' −ε0 − (T/s) ln[gcs
3/2(mT/2π~2)3/2/n] , (21)

which is identical with the one given by (13) for s = 2. We can say that the condensate is dominated
by pair composites made out of two particles of the original gas. Therefore, the discussion made
above for one type of composite applies here for the entire ensemble of the condensate, for s = 2. In
particular the transition temperature is given by (15) for s = 2. The �uctuations in the size of the
composite particles are readily obtained as 〈(δnj)

2〉 ' T 2/(µc+ε0)
2. At the transition temperature



J. Theor. Phys. 5

5 10 15 20 25 30
V

0.01

0.02

0.03

0.04

p

c pt

g

Vc V

Figure 1: Gas-condensate isotherms p = NT/V (gas, curves g), p = NT/sV (condensate, curves c)
and the transition (coexistence) curve pt given by pt = NTt/V = sNε0/(s−1)V ln(V/v) according
to equation (22) for sNε0/(s − 1) = 1, (s − 1)T/sε0 = 0.450, 0.475, ...0.550 (step 0.025), v = 3
and s = 2. The lhs coexistence curve is pushed in fact toward a limiting volume v (not shown in
�gure), as discussed in text and shown in Fig. 2.

they are given by 〈(δnj)
2〉1/2 ' (s − 1)Tt/ε0. According to the approximation employed here for

solving equation (17), the number of particles in species with s + 1, s + 2, ... particles are
exponentially small in comparison with the number of particles corresponding to s = 2.

Isotherms of the gas-condensate ensemble are shown in Fig. 1. They consist of two families of
curves, denoted by g for gas and, respectively, c for condensate. The g-curves are given by p(V ) =

NT/V , while the c-curves are given by p(V ) =
(∑

j Nj

)
T/V ' NT/sV for various T = const.

These two families of isotherms are linked to each other by horizontal platteux, connecting the
points corresponding to the abscissa V to points corresponding to the abscissa Vc ' V/s. The
connecting points V are given by the intersection of the gas isotherms p(V ) = NT/V with the
transition (coexistence) curve pt(V ) = NTt/V , where Tt is given (15). The equation of this curve
reads

pt(V ) =
s

s− 1
· Nε0

V ln(V/v)
, (22)

where v = N(~2/mε0)
3/2 is a cuto� volume corresponding to the localization (condensation) of a

gas molecule with cohesion energy ε0, for all the gas molecules. The volume V in Fig. 1, where
the transition is initiated, is given by

V = v exp[sε0/(s− 1)T ] . (23)

The isotherms shown in Fig. 1 for the present model of condensation di�er from the van der
Waals isotherms by the discontinuities corresponding to the horizontal platteaux, instead of the
continuous transition region of the latter. At the same time, the transition region is open (in
contrast with the van der Waals isotherms), as de�ned by the curves pt(V ) and p

′
t(V ) = pt(sV )

(the latter not shown explicitly in Fig. 1). However, the validity of these isotherms is limited to
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V � v. As we shall see below, they are in fact limited by a critical point, and the lhs coexistence
curve p

′
t(V ) = pt(sV ) in Fig. 1 is in fact pushed toward the limiting volume v, as shown in Fig. 2.

It is worth noting that the essential element of the condensation mechanism presented here for
a �rst-order phase transition, consists in the conservation of the number of condensed particles
as expressed by equation (3). It makes possible to express the chemical potentials of the two
phases, say µ1and µ2, in terms of the same quantities, namely the density of the original particles
(beside temperature), making thus possible their comparison for identifying the equilibrium and
the transition temperature. In addition, it is also worth noting that, technically, the mechanism
described here is not limited to the classical statistics (though this is the most typical situation).
In general, if there is a transition at temperature Tt, then the equilibrium is given by the equality
of the two chemical potentials µ1(Tt) = µ2(Tt) (for the same pressure, i.e. density). In the
neighbourhood of the transition temperature Tt we may expand the chemical potentials as µ1 =
µ1(Tt) + (T − Tt)(∂µ1/∂T )tand µ2 = µ2(Tt) + (T − Tt)(∂µ2/∂T )t, and one can see that µ1 < µ2

for T > Tt, and, similarly, µ1 > µ2 for T < Tt, i.e. we have a phase transition, providing
(∂µ1/∂T )t < (∂µ2/∂T )t < 0. On the other hand, ∂µ/∂T = −S, where S denotes the entropy per
particle, so that the above inequalities read S1 > S2 > 0, i.e. the transition to the condensed
phase (phase 2) implies a decrease of entropy, i.e. the condensed phase is more "macroscopically-
occupied" than the original one, as expected. If we express the entropy as the logarithm of the
phase-space volume, S ∼ ln ∆q∆p, then for s independent particles we have the entropy per
particle S1 ∼ (1/s) ln(∆q∆p)s = ln ∆q∆p, while for a composite made up of s particles we have
the entropy per particle S2 ∼ (1/s) ln ∆q∆p, because their phase space diminish. We can see
indeed that S1 > S2 > 0, i.e. the condensed phase is indeed more "macroscopically-occupied",
and, in addition, we see that the relative jump in entropy is 1/s − 1 = (1 − s)/s, as obtained in
the model described above.

The mechanism of condensation described herein is unstable with respect to formation of composite
particles. Indeed, at the transition temperature given by (15) the condensate is dominated by
composite particles with constituency s = 2. They may be viewed as a gas with characteristic
temperature T

′
0 = T0/2 (since the mass of its molecules is m′ = 2m, while its concentration is

almost the same as that of the original gas). The condensation mechanism can be applied to this
gas, with the parameter ε

′
0 = 2ε0. Its transition temperature T

′
t is therefore given by equation

(15) with ε0 → ε
′
0 = 2ε0 and T0 → T

′
0 = T0/2. It is easy to see that T

′
t > Tt, i.e. the new

condensate, made out, mainly, of particles with constituency nj = 4 now, is already formed at
the transition temperature Tt.

3 This holds also for all values of nj, so that one may say that at
the temperature Tt there appears an avalanche of bigger and bigger composite particles, which
evolves quickly toward the liquid state. Therefore, the liquid volume is limited by a cuto� volume
v, and the transition region in Fig. 1 can be viewed as being limited, in fact, on its left-hand
side, approximately, by the vertical line V = v, as shown in Fig. 2. The actual form of the lhs

coexistence curve cannot, however, be determined without a particular mechanism of interaction
between the gas molecules, and its solution for the liquid state.

The extension of the transition region in Fig. 1 upward higher pressures is also limited by the
condition Vc = V/s = v, i.e. sε0/(s− 1)T = ln s according to equation (23), for s = 2. This may
be taken as the critical point Tc = 2ε0/ ln 2 for the gas-liquid transition, corresponding to a critical
volume Vc of the order v to 2v and the critical pressure pc = Nε0/v ln 2. These critical values for
pc and Tc agree with the (p, T )-curve given by equation (16) (up to some minor numerical factors
arising from the approximations made in deriving the transition temperature Tt in equation (15)
from equations (13) and (14)). At the same time, these critical values indicate the termination

3This is valid also for a general function ε0j(nj) of cohesion energy.
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Figure 2: Schematic representation of the gas-liquid isotherms (curves g and, respectively, l), with
the critical region indicated by the cuto� volume v to 2v. The coexistence curve pt is given by
equation (22).

of the (p, T )-curve given by (16). Making use of the well-known van der Waals critical values
Tc = 8a/27b and pc = a/27b2 one can extract the van der Waals parameters a = 27ε0v/16N ln 2
and b = v/4N (they correspond to parameter ε0 and to s = 2) . The van der Waals critical volume
Vc = 3Nb = 3v/4 agrees with the critical volume found here Vc ∼ v. A schematic representation
of the gas-liquid isotherms is given in Fig. 2. The equations employed here for characterizing the
critical point Vc ∼ v are not valid for this region (they hold for V � v). The model presented
here should in fact be employed with two parameters, one ε0 and another a cuto� volume v
(which is not given, in realistic situations, by the quantum localization corresponding to energy
ε0). As it was said above, the connection between two such parameters would require a well-
determined mechanism of interaction between the gas molecules, and the corresponding solution
for the cohesion of the liquid state.

Finally, we may note that, technically, according to the transition theory given here for an equi-
librium process, it may also be viewed that the liquid state is attained for all the Nj vanishing,
except for one Nj = 1. The liquid is then made of only one, big composite "particle", consisting of
s = N →∞ particles of the original gas. The distributions given by (7) lose then their statistical
meaning (the entropy vanishes), and the chemical potential of the liquid is exactly µc = −ε0. The
critical temperature of the gas-liquid transition is then given by equation (15) for s → ∞. The
liquid would then have the volume Vc = V/N and density N/Vc = N2/V (distinct from density
nc = 1/Vc = N/V = n which enters the equation of state pcVc = T ). The thermodynamics of
such a liquid state is meaningless. This indicates that the transition proceeds in fact through the
avalanche phenomenon described above.
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