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Abstract

Liquids are represented as correlated ensembles of particles, moving around and interacting

with strong, short-range forces. A spectrum of local vibrations is introduced for the local,

collective movements of particles in liquids. The resulting statistics is formally equivalent with

that of an ideal gas of bosons in two dimensions, which in turn, as it is well-known, leads to a

thermodynamics which is equivalent to that of an ideal gas of fermions in two dimensions. The

parameters used for describing the statistics of liquids are the spacing between the energy

levels of local vibrations and a constraining volume, both originating in the short-range

character of the correlations. The corresponding thermodynamics is derived, with explicit

emphasis on both low- and high-temperature regimes. The condensation occurring in the

low-temperature limit is also discussed. It is suggested that such termodynamics may apply

to classical, common, liquids, and it may also be relevant for excited, heavy, atomic nuclei.

Liquids are represented as ensembles of particles moving around and interacting strongly with
short-range forces. In this respect the liquids di�er both from gases, which, typically, are weakly-
interacting ensembles of particles, and from solids, where the particles move about �xed positions.
This particularity makes the motion of the particles in liquids to be highly correlated over short
distances, in the sense that the movement of a particle in a liquid entails appreciable movements
of the neighbouring particles. The local character of the short-range, strong, forces, and the
high correlations involved, have special consequences on the motion of the particles in liquids.
First, the particle movements in liquids are collective movements, and, as such, they may imply
comparatively small amounts of energy, in contrast with the highly-localized motion of a free
particle. Next, the particle movements in liquids are local, in the sense that they do not propagate
over large distances. Liquids sustain, of course, the propagation of the sound for long wavelengths,
like gases or solids, but the local movements of liquid's particles absorb the sound for shorter
wavelengths. In addition, the strong character of liquid interactions gives rise to a cohesion
energy −ε0 < 0 for liquid particles, in the sense that one needs to give such an amount of energy
to the liquid in order to take a particle out of it. All these main characteristics of the liquids
distinguish them much from weakly-interacting gases, and bring them close to solids. However,
in solids the particle move about �xed positions, either regularly or irregularly arranged in space,
while in liquids the particles may still move around, although such motion is subjected to certain
restrictions. The role played by the strong interactions and short-range correlations in liquids has
been emphasized in previous work.[1]-[5]

The short-range correlations in liquids reduce the number of available spatial states of particles
moving in volume V of the liquid. The motion of each particle in a liquid is restricted by its
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neigbouring particles. These short-range correlated con�gurations of particles are identi�ed by
their distinct positions in space. It is convenient to associate a volume b to each of such local
particle con�gurations, such that the total number of available spatial states is V/b, and the
corresponding density of states can be writen as dV/b. In view of the short-range character of
these local correlations the constraining volume b is, typically, of the order of a3, where a is the
mean inter-particle distance.

The energy of a liquid in equilibrium depends on this mean inter-particle distance a. An energy
ε(a) may therefore be assigned to each particle in the liquid, such as the total energy of the liquid
can be written as Nε(a), where N is the number of particles in the liquid. This energy depends on
the nature of the liquid, i.e. on the forces acting between the particles, on their mass, etc. In order
to identify the possible movements of particles in a liquid, one may allow for small deviations δa
of the mean inter-particle distance from its equilibrium value a, and write down a series expansion
of ε(a) in powers of δa. Such a series expansion reads

ε = −ε0 + A(δa)2 + ... , (1)

where A is some expansion coe�cient. The �rst power in δa is missing from (1), as for an
expansion around the equilibrium. Equation (1) suggests that the local spectrum of energy in
a liquid is a spectrum of vibrations with one degree of freedom. Higher-order terms may be
included in the expansion (1), as corresponding to anharmonic vibrations. The local, short-
range correlations make the vibration spectra given by equation (1) to be independent for each
local particle con�guration, in the sense that these vibrations are not coupled to each other
for various particle con�gurations. At the same time, these vibrations do not corresponds to
individual particles, but to local particle con�gurations. Correspondingly they represent collective
movements, extended over relatively short distances, and the expansion coe�cient in equation
(1) may correspond to vibration frequencies (and energies) much lower than the frequencies of
a free particle localized over distance a. The dynamics of the liquids is therefore represented
by local particle con�gurations, labelled by distinct positions in space, moving around over a
restricted number of spatial states and vibrating locally according to the vibration spectrum given
by equation (1). These particle con�gurations can be viewed as elementary excitations of the
liquids.

The spectrum indicated by equation (1) corresponds to an isotropic liquid, where local vibrations
do not depend on direction. More particular assumptions can be employed in describing liquids.
Speci�cally, the range of the correlations may be extended, or the anisotropies may be taken into
account, or anharmonicities may be included, etc. The discussion herein is limited to the most
simple spectrum as the one described by equation (1), corresponding to a set of independent
harmonic oscillators with one degree of freedom. The corresponding energy levels are therefore
given by

ε = −ε0 + ε1(n + 1/2) , (2)

where n = 0, 1, 2, ... is the quantum number of vibrations and ε1is the spacing between the energy
levels. Both parameters ε0 and ε1 in (2) depend on a. For a continuum spectrum the dependence
of ε1 on a may be neglected.

The next step is to set up the statistics of the liquids, in order to establish their thermal properties.
The vibration spectrum given by (2) corresponds to a Bose-Einstein type of statistics. It is
associated with each local particle con�guration in the liquid, these con�gurations being labelled
by distinct positions in space. Since these positions are di�erent, and since the vibration spectrum
given by (2) correponds to a collective motion, it follows that the Bose-Einstein statistics, as
de�ned by the energy spectrum (2) and by the motion of the vibrating con�gurations among
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distinct positions in space, does not depend on the particular fermionic or bosonic character of
the constitutive particles of the liquid. It holds therefore for liquids, irrespective of the fermionic
or bosonic character of the underlying particles in the liquid. This is a consequence of the strong
interaction and the collective and correlated movements in liquids. As mentioned above, the
quanta of the vibration spectrum given by (2) associated with the particle con�gurations moving
around through the liquid may be viewed as the elementary excitations of the liquids.

Since the vibration spectrum given by (2) associates one degree of freedom to each particle, through
the mean inter-particle spacing a, it follows that the mean occupation number of vibrations of
each particle con�guration is determined by the size of these con�gurations. Therefore, the Bose-
Einstein statistics has a determined chemical potential µ, and, for a continuum spectrum of energy
with density dε/ε1, the number of particles in the liquid can be written as

N =
V

bε1

∫ ∞

0
dε

1

z exp(βε)− 1
, (3)

where β = 1/T is the inverse of temperature T and z = exp[−β(µ + ε0)] is the inverse of a
fugacity. The particle concentration is written as c = N/V = 1/a3. The continuum-spectrum
approximation is valid for T � ε1.

The statistics given by equation (3) corresponds to an ideal gas of bosons in two dimesnions. It is
well-known that it is equivalent with the statistics of an ideal gas of fermions in two dimensions,[6]-
[8] as expected from its applicability, irrespective of the fermionic or bosonic character of the
constitutive particles in the liquid, as noted above.

Equation (3) requires z > 1, i.e. µ + ε0 < 0. With decreasing temperature the integral in (3)
decreases, so that µ+ε0 increases, in order to satisfy this equation. For the limiting value µ+ε0 = 0
(z = 1) the integral in (3) has a logarithmic singularity at ε = 0, so it is divergent, in contrast
with the three-dimensional case. Consequently, there is no critical temperature corresponding to
a Bose-Einstein condensation in two dimensions. However, a continuous, gradual condensation on
the zero-point vibration level occurs in the limit of the low temperatures, as it is shown below.

The integral in (3) can be performed straightforwardly. We get

bε1/a
3T =

∑
n=1

(nzn)−1 = ln[z/(z − 1)] , (4)

whence z = (1− e−C)−1 and the chemical potential

µ = −ε0 + T ln(1− e−C) , (5)

where C = bε1/a
3T = bε1c/T .

Similarly, the energy is given by

E = −Nε0 +
V T 2

bε1

G(z) , (6)

where
G(z) =

∑
n=1

(n2zn)−1 =
∑
n=1

1

n2
(1− e−C)n . (7)

In the limit of low temperature ε1 � T � bε1/a
3 it amounts to

E = −Nε0 + π2V T 2/6bε1 , (8)
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and for high temperature T � bε1/a
3

E = −Nε0 + NT , (9)

as for a classical ensemble. However, anharmonic corrections in the expansion (1) may be impor-
tant in this limit, which modify the simple T -law given by (9).

The entropy for the Bose-Einstein distribution introduced here is given by

S =
V

bε1

∫ ∞

0
dε[(n + 1) ln(n + 1)− n ln n] , (10)

where n = (ze−βε − 1)−1 is the mean occupation number. It leads to

S = −N ln(1− e−C) +
2V T

bε1

G(z) , (11)

the free energy

F = E − TS = −Nε0 + NT ln(1− e−C)− V T 2

bε1

G(z) (12)

and the thermodynamic potential

Ω = F − µN =
V T

bε1

∫
dε ln(1− e−βε/z) = −(E + Nε0) = −V T 2

bε1

G(z) . (13)

The pressure p = −(∂F/∂V )T,N is given by

p = −c2ε′0 +
T 2

bε1

G(z) , (14)

where ε′0 is the derivative of the energy ε0with respect to concentration c. Within the present
model, this is the equation of state of the liquid. The dependence of ε1 on concentration is
neglected. We note that for suitable values of c2ε′0 the equilibrium can be reached for low values
of pressure.

In the low-temperature limit ε1 � T � bε1/a
3, the pressure given by (14) reads p = −c2ε′0 +

π2T 2/6bε1, whence the isothermal compresibility

κT = V −1(∂V/∂p)T =
1

c∂(c2ε′0)/∂c
< 0 . (15)

It is worth noting that c∂(c2ε′0)/∂c must acquire large, negative values for the stability of the
ensemble, and for ensuring low values of the compressibility, in accordance with the behaviour of
the liquids. Similarly, the thermal expansion coe�cient at constant pressure is given by

α = V −1(∂V/∂T )p = −π2T

3bε1

κT > 0 . (16)

The entropy (11) at low temperatures reads S = π2V T/3bε1, and the heat capacity at constant
volume is cV = T (∂S/∂T )V = S. The heat capacity at constant pressure is given by cp =
cV − V α2T/κT > cV . Similarly, the adiabatic compressibility is given by κS = V −1(∂V/∂p)S =
κT (1 + π2T 2κT /3bε1) > κT . It is related to the sound velocity u by u2 = −1/ρκS, where ρ is the
mass density of the liquid. These quantities may give access to the experimental determination of
the parameters ε0 and bε1.
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In the high-temperature limit T � bε1/a
3 the liquid behaves classically, with the entropy S =

N ln(e2a3T/bε1) and pressure p = −c2ε′0 + NT/V . The compressibilities are given by

κT = −1

c
· 1

T − ∂(c2ε′0)/∂c
, κS = − 1

2c
· 1

T − (1/2)∂(c2ε′0)/∂c
, (17)

the coe�cient of thermal expansion is

α =
1

T − ∂(c2ε′0)/∂c
, (18)

and the heat capacities are cV = N and

cp = cV − V Tα2/κT = cV +
NT

T − ∂(c2ε′0)/∂c
. (19)

These quantities correspond to classical, common, liquids. Their validity is restricted to the range
of temperature and concentration characteristic for such liquids. Their experimental determination
gives access only to the parameter ε0. Likely, for high values of T , anharmonic corrections have
to be included.

For values of the temperature T comparable with the spacing ε1 between the energy levels the
accuracy of replacing the summation over n in (2) by integral (3) must be checked, according to
MacLaurin's formula

b∑
a

f(xn) =
∫ b+1/2

a−1/2
f(x)dx− (1/24)f

,b+1/2
a−1/2 + ... . (20)

Applying this formula to function f = [ze−βε1(n+1/2) − 1]−1 we get

b/a3 =
∑

n=0
1

z exp[βε1(n+1/2)]−1
=

=
∫
0 dn 1

z exp(βε1n)−1
− βε1

24
· z

(z−1)2
+ ... = 1

βε1
ln z

z−1
− βε1

24
· z

(z−1)2
+ ... ,

(21)

and we can see that the error made in approximating the summation by integral becomes compa-
rable with the integral for large values of βε1 and z → 1. This error arises from the fact that the
integral gives little weight to the value of the function at n = 0. Consequently, we single out the
term n = 0 in (21), and write

b/a3 = 1
z′−1

+ 1
βε1

ln z′eβε1/2

z′eβε1/2−1
− βε1

24
· z′eβε1/2

(z′eβε1/2−1)2
+ ... , (22)

where z′ = zeβε1/2. In the low temperature limit βε1 →∞ it is the �rst term in (22) that brings
the main contribution, and we have

z = (1 + a3/b)e−βε1/2 , βε1 →∞ . (23)

In the high-temperature limit βε1 → 0 the main contribution is brought by the ln-term in (22),
and

z =
a3T

bε1

e−βε1/2 , βε1 → 0 . (24)

A fair interpolation between equations (23) and (24) gives

z = (1 + a3/b + a3T/bε1)e
−βε1/2 (25)
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and the chemical potential

µ = −ε0 + ε1/2− T ln(1 + a3/b + a3T/bε1) . (26)

As one can see, although there is a condensation on the lowest state of zero-point vibrations in
the limit of low temperatures, there is no phase transition, i.e. no discontinuity, and z approaches
gradually zero (not unity!) for T → 0, in contrast to the Bose-Einstein condensation in the three-
dimensional case.[9] The characteristic temperature of this continuous condensation is given by
βε1 ∼ 1. For such temperatures, the liquid may undergo, very likely, a phase transition to a
solid state. Such a solid state is characterized by the increase of the constraining volume b, which
becomes of the order of the volume V = Na3, such that the number of the available spatial states
for each particle in the ensemble reduces to unity. The ensemble becomes now rigid, and it can
only move as a whole. At the same time, the vibration spectrum changes correspondingly, from
one of local vibrations to global, collective oscillations.

The low-temperature behaviour derived herein has long been introduced for the statistical model
of the atomic nuclei.[10]-[12] Making use of (8), (11) and (12), we get

Q = E + Nε0 = −(F + Nε0) = π2V T 2/6bε1 , (27)

and
S = π2V T/3bε1 =

√
2π2V Q/3bε1 (28)

where Q denotes the excitation energy of the nucleus. The density of states ρ = dN /dQ =
eS(dS/dQ) gives the spacing between the energy levels

δε = δQ =
√

6bε1Q/π2V e−
√

2π2V Q/3bε1 . (29)

These equations are valid in the low-temperature limit corresponding to ε1 � T � bε1/a
3, where

T =
√

6bε1Q/π2Na3. The distribution of the energy levels among states with di�erent angular
momenta changes to a somewhat extent the prefactor in (29), without material consequences for
the estimations given here.[11] For heavy nuclei one may take approximately δε ∼ 5eV for Q '
8MeV , as derived from experiments of neutron scattering, resonances, or radiative capture.[11]
Equation (29) gives then bε1/a

3 ' 40MeV and temperature T ' 1MeV for N ∼ 200. If volume
b is of the order of a3, this temperature would be much lower than the energy ε1 as derived
from bε1/a

3 ' 40MeV . It is likely, therefore, that a transition of the nucleus to a solid state
is expected, i.e. the volume b becomes of the order of b = Na3 (the volume of the nucleus is
given by V = Na3, where a = 1.5 × 10−15m = 1.5fm). The energy ε1 acquires then the value
ε1 ∼ 40MeV/N = 200keV for N = 200, and it may be viewed as a mean separation of the energy
levels in the nucleus.

A similar evaluation can be made for classical, common, liquids. A typical value for ε1 for such
liquids might be of the order of 1meV . The mean inter-particle spacing is a few Å, and this is also
the order of magnitude of the molecular size and short-range forces. It follows that each molecule
has a number of spatial states of the order of N at its disposal, i.e. b is of the order of a3. This
situation is quite distinct from the atomic nuclei.

In conclusion, liquids are described herein as correlated ensembles of particles, moving around and
interacting strongly with short-range forces. The correlations give rise to a constraining volume b,
which is one of the parameters of the thermodynamics of liquids. The local, collective movements
in liquids are described as a set of independent harmonic oscillators with one degree of freedom,
corresponding to vibrations of local particle con�gurations. The other parameter is the distance
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ε1 between the energy levels of these vibrations. The statistics derived on this basis is formally
equivalent with the statistics of an ideal gas of bosons in two dimensions, which, as it is known,
leads to a thermodynamics which is equivalent with the one of an ideal gas of fermions. This
thermodynamics is explicitly derived, both in the low- and the high-temperature limits. The
limit of temperatures comparable with the distance ε1 between the energy levels is also discussed,
where a continuous, gradual condensation on the lowest energy level occurs, which may be the
precursor of a transition toward a solid state. It is shown that such a thermodynamics may apply
to classical, common, liquids, and it may also be relevant for excited, heavy atomic nuclei.
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