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Abstract

The gas-condensate transition is reviewed and the gas-liquid transition is described, as

based on the theory of liquids derived previously. The pressure-volume phase diagram

(isotherms) is obtained.

In recent papers,[1] a model of condensation of a classical ideal gas into liquid droplets was
described. The model starts with the chemical potential of the classical ideal gas

µ = −(3/2)T ln(T/T0) , (1)

where T0 ' ~2n2/3/m is a characteristic temperature of the gas, n = N/V is the particle concen-
tration, N is the number of molecules, V is the gas volume and m is the molecular mass. Equation
(1) is valid for temperature T � T0. The equation of state is given by the thermodynamic po-
tential Ω = −pV = −NT , where p is the pressure, the energy is E = 3NT/2, the heat function
is W = 5NT/2, the entropy is S = (3N/2) ln(T/T0) + 5N/2 and the heat capacity at constant
volume is C = 3N/2.

It is found[1] that the condensate is dominated by composite particles made up of s = 2 original
molecules. They form an ideal classical gas with the chemical potential given by

µc ' −ε0 − (T/s) ln[(mT/~2)3/2/nc] , (2)

where ε0 is an average cohesion energy per molecule, nc = N/sVc is the concentration of the
droplets, and Vc is the volume of the condensate. The equation of state is given by Ωc = −pVc =
−NT/s, and, at equilibrium, the pressure is the same, the concentration is the same, so that
N/V = N/sVc, i.e. the volume of the condensate is Vc = V/s. This shows that indeed there is a
condensation of the original gas at the transition temperature

Tt '
2s

3(s− 1)
· ε0

ln(ε0/T0)
, (3)

for s ' 2, obtained by equating the two chemical potentials. At the transition temperature
there are discontinuities in the thermodynamic potential Ω (relative jump 1 − 1/s), as well as
in the other thermodynamic functions. For instance, the energy of the condensate is given by
Ec = −Nε0 + 3NT/2s, and it exhibits a relative jump ' −(1 − 1/s). The heat function of
the condensate is Wc = −Nε0 + 5NT/2s, so the latent heat of the transition is Q = Wc −W =
−Nε0+5(1−s)NTt/2s. The entropy of the condensate is given by Sc = (3N/2s) ln(T/T0)+5N/2s,
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Figure 1: Schematic representation of the gas-liquid isotherms (curves g and, respectively, l), with
the critical region indicated by the cuto� volume v to 2v. The coexistence curve pt is given by
equation (5).

and one gets ∆S = Sc − S = −Nε0/Tt + 5(1 − s)N/2s = (1/s − 1)S at equilibrium. One can
check that Sc < S, i.e. the condensate is indeed a more ordered phase. One can check also the
Clapeyron-Clausius law Q = Tt∆S. The heat capacity of the condensate is Cc = 3N/2s, and it
also exhibits a jump (∆C = (1/s−1)C). All these are typical characteristics of a �rst-order phase
transition, which describes the condensation of matter.

Making use of n = N/V = p/T for T0 ' ~2n2/3/m in equation (3) we get the (p, T )-equilibrium
curve

p = (m/~2)3/2T 5/2 exp[−sε0/(s− 1)T ] (4)

of the gas-condensate ensemble. The gas-condensate coexistence curve pt(V ) is given by ptV =
NTt, where Tt is given by (3) (gas isotherms at the transition temperature). It reads

pt(V ) =
s

s− 1
· Nε0

V ln(V/v)
, (5)

where v = N(~2/mε0)
3/2 is a cuto� volume (corresponding to the localization of each molecule

with energy ε0).

It was shown[1] that the condensation is an unstable phenomenon, which evolves rapidly towards
the liquid state (made up, practically, of only one, big "composite" particle), so the condensate
volume is limited by Vc = v. All this information is shown in Fig. 1, where the horizontal platteaux
begin at

V = v exp[sε0/(s− 1)T ] , (6)

obtained from the intersection of the gas isotherms p = NT/V with the coexistence curve p =
NT/V = pt(V ). The horizontal platteaux are limited by V = sv, where V is given by (6),
for s ' 2. This limitation sets up a critical volume in the range v to sv, corresponding to a
critical temperature Tc ' sε0/(s − 1) ln s, as given by (6), and a critical pressure pc = pT (sv) =
Nε0/(s−1)v ln s. These critical quantities satisfy the (p, T )-equilibrium equation (4) (up to minor
numerical factors originating in the approximations used in solving the transcedental equations),
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and indicate the point terminus for this curve, i.e. the critical point. Making use of the van
der Waals critical quantities Tc = 8a/27b and pc = a/27b2, we get the van der Waals parameters
b = sv/8N and a = 27s2vε0/64(s−1)N ln s. The van der Waals critical volume Vc = 3Nb = 3sv/8
(= 3v/4 for s = 2) agrees with the critical volume v to 2v given here. However, the equations
used here are valid for V � v.

In Fig. 1 the gas isotherms (curves g), the rhs coexistence curve pt(V ), the horizontal platteaux
and the critical point corresponding to the critical volume v to 2v are calculated (or estimated)
by using the condensation model.[1] The liquid isotherms (curves l) and the lhs coexistence curve
in Fig. 1 are idealized curves. In order to estimate them, we need a liquid model.

Such a model was described recently.[2] It assumes a constraining volume b for the motion of the
liquid particles (distinct from the van der Waals excluded volume), a cohesion energy per particle
−ε0 as for the condensate and an energy parameter ε1, which is the inter-spacing between the
energy levels of the liquid particles, assumed to be those of a linear harmonic oscillator. These
assumptions correspond to our representation of liquids as ensembles of strongly interacting and
correlated particles. In contrast with the condensate above, the dependence of the parameter ε0

(and ε1) on concentration cannot be neglected now.

The thermodynamics of such a liquid model (which is that of a two-dimensional ideal gas of
bosons, or fermions)[2] is governed by the parameter C = bε1/a

3T , where a is the mean inter-
particle distance (V/N = a3). For high temperatures, C � 1 (as for classical liquids), the energy
of the liquid is E = −Nε0 + NT , the entropy is S = 2N − N ln(bε1/a

3T ), the free energy is
F = −Nε0 − NT + NT ln(bε1/a

3T ), the thermodynamic potential is Ω = −NT and the heat
function is W = −Nε0 − (N2/V )ε

′
0 + 2NT , where ε

′
0 is the derivative of ε0 with respect to the

concentration n = N/V (the concentration dependence of ε1is neglected). The chemical potential
of the liquid is given by

µ = −ε0 + T ln(bε1/a
3T ) , (7)

and the pressure (equation of state) is

p = −(N2/V 2)ε
′

0 + NT/V . (8)

All this, together with the isothermal and adiabatic compressibilities and the coe�cient of thermal
expansion,[2] provide a reasonable picture of liquids for a limited range of density and temperature.
In particular, equation (8) gives the liquid isotherms (curves l in Fig. 1), providing the concen-
tration dependence of the cohesion energy per particle ε0 is known (it is valid for ∂p/∂V < 0).

At equilibrium the two chemical potentials given by (1) and (7) must be equal, and the two
pressures, the gas pressure NT/V and the liquid pressure given by (8), must also be equal. This
provides two equations,

−ε0 + T ln(bε1nl/T ) = T ln[(~2/mT )3/2n] ,

−n2
l ε

′
0 + nlT = nT ,

(9)

for the transition temperature and the liquid concentration nl. The �rst equation (9) can also be
written as

T ln(nl/n) = ε0 + T ln(λ2
l λT /b) , (10)

where λ1 = (~2/mε1)
1/2 is a quantal localization length corresponding to energy ε1 and λT =

(~2/mT )1/2 is a similar length for temperature T . We get

nl = n(λ2
1λT /b)eε0/T . (11)
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Figure 2: Schematic representation of the gas-liquid isotherms with critical volume Vc.

Within the range of temperatures characteristic of liquids, one can see that the liquid concentration
nl is much higher than the gas concentration n (we can take, tentatively, ε0 ∼ 100meV and
ε1 ∼ 1meV , for instance). The second equation in (9) becomes then

ε0 ' T ln[T/nε
′

0(λ
2
1λT /b)] , (12)

which leads to the transition temperature

Tt '
ε0

ln[(ε0/nε′
0(λ

2
1λ0/b)]

, (13)

where λ0 = (~2/mε0)
1/2 (v = λ3

0). For realistic liquids ε0 � nε
′
0(λ

2
1λ0/b).

This gas-liquid transition temperature is very similar to the gas-condensate transition temper-
ature given by (3). The di�erence arises (apart from the approximations made in solving the
corresponding transcendental equations) in the absence of a well-determined mechanism of inter-
action between the gas molecules, and its solution for the cohesive liquid state. At the transition
temperature the thermodynamic quantities given above for gas and liquid are discontinuous, in-
dicating a �rst-order phase transition, as expected. Introducing (13) in (11) (liquid isotherms for
the transition temperature) we get the lhs coexistence curve in Fig. 2, as given by the equation

V = Vc ' N(ε
′

0/ε0) . (14)

The cuto� volume v in Fig. 1 must therefore be replaced by the critical volume Vc given by
equation (14), as shown in Fig. 2. The inequality Vc � v, i.e. ε

′
0/ε0 � λ3

0 = (~2/mε0)
3/2, holds.

The intersection of the vertical line V = Vc with the rhs coexistence curve given by (5) and (6)
provides the critical pressure and temperature

pc = Tc/ε
′

0 =
s

s− 1
· ε0/ε

′
0

ln(ε
′
0/ε0λ3

0)
,
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for s ' 2. They are similar with the critical quantities obtained above for the gas-condensate
transition. The van der Waals parameters can be extracted from these critical quantities. In
particular, we get for the van der Waals parameter b in the critical volume Vc = 3Nb the value
b = ε

′
0/3ε0. It is worth emphasizing, however, that near the critical point neither the formulae of

the classical ideal gas, nor the formulae employed here for the liquid, are valid.
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