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Abstract

A recently established equivalence between the ideal Bose and
Fermi gases (M. H. Lee, Phys. Rev. E55 1518 (1997)) is shown to be a
peculiarity of the boson-like correlations in two dimensions; such
an equivalence does not hold in one or three dimensions.

Recently,[1] Lee established a remarkable equivalence between the ideal Bose and Fermi gases in
two dimensions. The equivalence is based on a certain invariance of the polylogs[2] (see also Ref.3)
under Euler

′
s transform of the fugacities of the two gases, an invariance found many years ago by

Landen.[4] The result might have been expected, since a non-relativistic two-dimensional gas is
equivalent with a relativistic gas in one dimension. We show in this paper that such an equivalence
does not exist in one or three dimensions. The reason for this remarkable particularity resides in
the combined effect of the boson-like correlations (responsible for the Bose-Einstein condensation)
and dimensionality.

We begin with a brief review of Lee
′
s result. The basic object is the number of ”thermal states”

ν =
Nλ2

gA
, (1)

where N is the number of particles, A is the area occupied by the gas, g is a kinematical factor of
degeneracy, and

λ =

(
2πh̄2

mT

)1/2

(2)

is the thermal wavelength; in (2) h̄ is Planck
′
s constant, m is the mass of a particle, and T (= 1/β)

is the temperature. Introducing the inter-particle spacing a = (A/N)1/2 and the characteristic
energy ε0 = 2πh̄2/gma2 we get ν = ε0/T , which justifies the designation number of thermal states;
for a Fermi gas ε0 = 2εF , where εF is the Fermi energy. The number of thermal states is given by
νb = − ln (1− zb) for bosons, and νf = ln (1 + zf ) for fermions, where zb,,f are the fugacities. For
νb = νf = ν we get 1 + zf = (1− zb)

−1, which is precisely Euler
′
s transform between zb and −zf .

We note that zb = 1− exp (−νb) and zf = exp (νf )− 1. The energies of the two gases are given by

βνbEb/Nb = Li2 (zb) ,

βνfEf/Nf = −Li2 (−zf ) ,
(3)
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where Li2(z) is the dilog of z. A useful integral representation of the polylogs is [2]

Lin+1(z) =
1

Γ(n + 1)

∫ z

0
du ·

(
ln

z

u

)n 1

1− u
(4)

for Rez < 1. Under Euler
′
s transform between zb and −zf given above the dilog becomes

L2(zb) = −Li2(−zf )−
1

2
Li21(−zf ) , (5)

which is precisely Landen
′
s relation.[1],[4] Using (5) we obtain straightforwardly

Eb/Nb = Ef/Nf −
1

2
εF , (6)

which is Lee
′
s main result. In addition, it follows from (6) that the specific heats of the two

gases are equal, a result previously established.[5] Since Ω = −E in two dimensions,[6] where the
thermodynamic potential Ω = −(1/β) ln Q = −pA, Q being the grand-partition function and p
being the pressure, we have also

pb/nb = pf/nf −
1

2
εF , (7)

and the equality of the entropies, Sb/Nb = Sf/Nf . These relations establish a perfect equivalence
between the ideal Bose and Fermi gases in two dimensions.

We pass now to show that such an equivalence does not exist in one or three dimensions. Naturally,
we shall be interested in high values of the number of thermal states ν, ν � 1, i.e. in temperatures
much lower than the degeneracy temperature. In three dimensions we have ν = (ε0/T )3/2 and

ε0 = (4/9)1/3 εF for the Fermi gas. For an ideal Fermi gas the number of thermal states is given
by

νf = −Γ (3/2) Li3/2(−zf ) , (8)

and making use of the well-known integrals with the Fermi-Dirac distribution we get[7]

νf =
2

3
(ln zf )

3/2

[
1 +

π2

8

1

(ln zf )
2 + ...

]
; (9)

we see that zf � 1 for νf � 1. Similarly, for an ideal Bose gas we have

νb = Γ (3/2) Li3/2(zb) . (10)

However, in contrast to the two-dimensional case, an interesting phenomenon occurs in three
dimensions as a result of the boson-like correlations, a phenomenon which is in fact the Bose-
Einstein condensation.[8] Indeed, a simple change of variable in (4) leads to

Li3/2(zb) =
∞∑

n=1

zn
b

n3/2
. (11)

For 0 < zb < 1 this series is bounded by Li3/2(1) = ζ(3/2), where ζ is Riemann
′
s zeta function.

Therefore, νb is bounded by Γ(3/2)ζ(3/2), which means that the bosons condense on the zero-
energy level. Consequently, νb can not be equal to νf , and the two gases ar not equivalent.
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A similar situation appears in one dimension, though not for the number of thermal states, but
for the energy.The number of thermal states in one dimension is ν = (ε0/T )1/2, where ε0 = 4εF

for the Fermi gas. For an ideal Fermi gas in one dimension we have

νf = −Γ (1/2) Li1/2(−zf ) , (12)

and

νf = 2 (ln zf )
1/2

[
1− π2

24

1

(ln zf )
2 + ...

]
(13)

in the asymptotic regime νf , zf � 1. Similarly the energy is given by

βνfEf/Nf = −Γ (3/2) Li3/2(−zf ) =
2

3
(ln zf )

3/2

[
1 +

π2

8

1

(ln zf )
2 + ...

]
, (14)

whence

Ef/Nf =
1

3
εF

(
1 +

π2

4

T 2

ε2
F

+ ...

)
. (15)

From (15) we obtain the well-known specific heat of an ideal Fermi gas

cf =
π2

6

T

εF

. (16)

For an ideal Bose gas in one dimension we have

νb = Γ (1/2) Li1/2(zb) =
√

π
∞∑

n=1

zn
b√
n

, (17)

and the series given by (17) diverges for zb → 1. Therefore, we could have a relationship between
zb and zf for νb = νf = ν � 1. However, the energy of the Bose gas is given by

βνbEb/Nb = Γ (3/2) Li3/2(zb) = Γ(3/2)
∞∑

n=1

zn
b

n3/2
, (18)

and we see again that the energy per particle is now bounded, in contrast to the Fermi case.
Moreover, for zb → 1 we get

Eb/Nb
∼=

1

4

√
π

εF

ζ(3/2) · T 3/2 , (19)

and comparing it with (15) we see that there can be no equivalence in one dimension, of the type
established by Lee in two dimensions.

The arguments presented above can be summarized as follows. The number of thermal states for
fermions in dimension d is given by

ν
(d)
f ∼

∫ ∞
0

dx · xd/2−1 zf

ex + zf

, (20)

and in the asymptotic regime νf � 1, zf →∞, we obtain

ν
(d)
f ∼ (ln zf )

d/2 . (21)
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For an ideal gas of bosons νb � 1 corresponds to zb → 1, and the boson-like correlations expressed
by the singularity of the Bose-Einstein distribution at vanishing energy determine distinct asymp-
totic behaviours of νb with dimension d. In three dimensions ν

(3)
b is finite for zb → 1, indicating the

Bose-Einstein condensation; thus, there can not be any equivalence between bosons and fermions
in this case. In one dimension ν

(1)
b diverges for zb → 1,like ν

(1)
b ∼ (1− zb)

−1/2, and a relationship

with ν
(1)
f given by (21) might be possible; however, the energy per particle in this case goes like

Eb/Nb ∼ T 3/2 for bosons, while Ef/Nf ∼ const + T 2 for fermions, according to (15) and (19),

and we see again that there could not be any equivalence. In two dimensions ν
(2)
b = − ln (1− zb)

and comparing it with (21) we can see that such an equivalence might be possible via Euler
′
s

transform between the two fugacities; in adition Eb/Nb ∼ T 2 and Ef/Nf ∼ const + T 2 in this
case, which makes this equivalence even more likely. However, its precise demonstration, as given
by Lee[1], remains a remarkable property of the ideal Bose and Fermi gases in two dimensions.
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[
1 +

π2

6
n(n + 1)

1

(ln z)2 + ...

]
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