Journal of Theoretical Physics

Founded and Edited by M. Apostol

ISSN 1453-4428

A power-law spectral line M. Apostol Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Abstract

A power law is derived for the tail of a spectral line. It is shown that there exists an excess of radiation for high frequencies due to the short-time correlations between the radiating atoms.

The intensity of a spectral line is basically given by

$$I(\omega) \sim \int d\tau \cdot e^{i\omega\tau} \varphi(\tau) \tag{1}$$

(the real part) where $\varphi(\tau)$ is a correlation function,

$$\varphi(\tau) \sim \int dt \cdot \mu(t+\tau)\mu(t)$$
, (2)

and μ is a dipole momentum. ω in equation (1) is in fact $\omega - \omega_0$, where ω_0 is the frequency peak. Collisions give rise to an exponential factor of the form

$$\mu(t) \sim e^{i \sum \eta_i(t)} \tag{3}$$

where η_i are phase shifts, such as

$$\mu(t+\tau)\mu(t) \sim e^{i\sum_{\tau}\eta_i} \tag{4}$$

contains the phase shifts in the time interval τ . The phase shifts η_i are viewed as stochastic variables.¹

For long times τ we may write

$$\varphi(\tau + d\tau) - \varphi(\tau) = d\varphi(\tau) = nv\sigma d\tau \left\langle e^{i\eta} - 1 \right\rangle \varphi(\tau)$$
(5)

where n is the particle density, v is their thermal velocity, σ is the cross-section and the average is taken over one collision. This average can be denoted by $-\alpha$, so

$$\varphi(\tau) = e^{-nv\sigma\alpha\tau} = e^{-a\tau} . \tag{6}$$

From (1) we get the Lorentz shape

$$I(\omega) \sim \frac{a_1}{(\omega + a_2)^2 + a_1^2}$$
 (7)

158 (2007)

¹Seee for instance P. W. Anderson, Phys. Rev. 76 647 (1949); *ibid*, 86 809 (1952).

of the spectral line, where $a = a_1 + ia_2$. It contains both a frequency shift $\Delta \omega = a_2$ and a line breadth $\delta \omega = a_1$. For $\omega_0 \to 0$ the matrix elements of the dipole which give the transitions are quasi-clasical and α is real $(a = a_1)$; we get the Debye shape of the spectral line

$$I \sim \frac{a}{\omega^2 + a^2} \ . \tag{8}$$

It contains only a line breadth $\delta \omega = a$.

We wish to estimate approximately the correlation function in the limit $\tau \to 0$, which is relevant for the tail $\omega \to \infty$ of the line shape.

In this case (4) gives

$$\mu(t+\tau)\mu(t) \sim \left\langle e^{i\sum_{\tau}\eta} \right\rangle = \exp\left[-\eta^2(\tau/2\Delta t)\right] \simeq$$

$$\simeq \exp\left[-\eta^2 - \eta^2 \ln(\tau/2\Delta t)\right]$$
(9)

for $\tau \sim \Delta t \to 0$, where η^2 is an average and Δt is the mean time between two successive collisions. Equation (9) for $\tau \leq \Delta t$ gives a correlation function

$$\varphi(\tau) \simeq \exp\left[\eta^2 \ln(\tau/2\Delta t)\right]$$
 (10)

for $\tau \geq \Delta t$, which makes sense in the *t*-integration in (2) and τ -integration in (1). We may therefore take an interpolation

$$\varphi(\tau) \simeq \exp\left[\eta^2 \ln(\tau/2\Delta t) - a\tau\right]$$
 (11)

for the correlation function, which combines a power law $(\tau/2\Delta t)^{\eta^2}$ for small τ with an exponential tail for large τ , for small values of the parameter η^2 .

The intensity given by (1) is estimated with this correlation function by the steepest descent. We get

$$I(\omega) \sim \eta (\eta^2 / \Delta t)^{\eta^2} \frac{1}{(\omega^2 + a^2)^{1/2 + \eta^2/2}} .$$
(12)

This is a qualitative difference with respect to (7) or (8). The former go like $1/\omega^2$ in the limit $\omega \to \infty$, while the latter goes like $1/\omega^{1+\eta^2} \sim 1/\omega$ in the same limit. The excess of radiation comes from short-time correlations between the radiating atoms.

© J. Theor. Phys. 2007, apoma@theor1.theory.nipne.ro