Journal of Theoretical Physics

Specific heat of charged fermions in magnetic field
 M. Apostol
 Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania
 e-mail: apoma@theor1.ifa.ro

Abstract

The leading contributions to the specific heat of an ensemble of charged fermions placed in a homogeneous magnetic field are computed.

An ensemble of N identical fermions, each of mass m, charge q and spin S, is placed in a homogeneous magnetic field H, directed along the z-axis. The single-particle energy is given by

$$
\begin{equation*}
E_{n s}(k)=\hbar \omega(n+1 / 2)+\hbar^{2} k^{2} / 2 m-\alpha_{s}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\omega=q H / m c$ is the cyclotron frequency, k is the vawevector along the z-axis and $\alpha_{s}=$ $g_{m} \mu_{B} s H$ is the Zeeman energy; g_{m} is the gyromagnetic factor, μ_{B} is the Bohr magneton and $s=-S,-S+1, \ldots S$ is the spin projection along the z-axis.

The well-known specific heat of an ensemble of fermions in three dimensions,

$$
\begin{equation*}
c=\frac{\pi^{2}}{2} \frac{T}{\varepsilon_{F}}+\ldots \tag{2}
\end{equation*}
$$

where T is the temperature and ε_{F} is the Fermi energy, is extended in the present paper to

$$
\begin{equation*}
c=\frac{\pi^{2}}{2}\left(1-f^{2} / 12 \varepsilon_{F}^{2}\right) \frac{T}{\varepsilon_{F}}+\ldots \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{2}=S(S+1)\left(g_{m} \mu_{B} H\right)^{2}-(\hbar \omega / 2)^{2} \tag{4}
\end{equation*}
$$

For electrons $q=-e, S=1 / 2, g_{m} \cong 2$ and we get $f^{2}=2\left(\mu_{B} H\right)^{2}$; we recall that the Bohr magneton is $\mu_{B}=e \hbar / 2 m c, \hbar$ is Planck's constant, c is the light speed and $-e$ is the electron charge.

In the following the computations leading to (3) are described.

The ensemble of fermions is confined to a rectangular box of sides $L_{x, y, z}$, whose volume is $V=$ $L_{x} L_{y} L_{z}$. As it is well-known, [1] the motion of a charged particle in a homogeneous magnetic field
is described by a harmonic oscillator along, say, the y-axis, shifted by $y_{0}=-(c / q H) p_{x}$, where p_{x} is the momentum along the x-axis. An orbital degeneracy occurs, given by

$$
\begin{equation*}
N_{x y}=\frac{L_{y}}{\Delta y_{0}}=L_{y} / \frac{c \hbar}{q H} \frac{2 \pi}{L_{x}}=L_{x} L_{y} \cdot \frac{q H}{c h}, \tag{5}
\end{equation*}
$$

so that the number of particles can be written as

$$
\begin{equation*}
N=V \frac{q H}{2 \pi c h} \sum_{s} \sum_{n} \int_{-\infty}^{\infty} d k \frac{1}{\exp \left[E_{n s}(k)-\mu\right] \beta+1} \tag{6}
\end{equation*}
$$

where the energy $E_{n s}(k)$ is given by (1), μ is the chemical potential and $\beta=1 / T$ is the inverse of the temperature. The energy $\hbar \omega$ is much smaller than the temperature, $\hbar \omega \beta \ll 1$; for electrons, for instance, $\hbar \omega \sim 1 K$ for a magnetic field $H=1 T s$. Consequently, we may replace the summation over n in (6) by an integral, according to the formula

$$
\begin{equation*}
\sum_{a}^{b-1} f(n+1 / 2)=\int_{a}^{b} d n \cdot f(n)-\left.\frac{1}{24} f^{\prime}(n)\right|_{a} ^{b} \tag{7}
\end{equation*}
$$

This formula is valid for $|f(n+1 / 2)-f(n-1 / 2)| \ll|f(n)|$, and the Fermi distribution in (6) fulfils this condition, providing $\hbar \omega \beta \ll 1$. When applying (7) to the Fermi distribution in (6) the derivative-term in (7) gives contributions of order H^{2}, and we keep all the subsequent computations up to terms of this order. Doing so, and after straightforward manipulations, the number of particles is re-expressed as

$$
\begin{equation*}
N=\sum_{s} N_{s}^{b}-\frac{1}{12} \cdot g \frac{V}{(2 \pi)^{2}} \cdot m \omega^{2} \cdot \frac{\partial}{\partial \mu} A \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{s}^{b}=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \cdot \varepsilon^{1 / 2} \frac{1}{\exp \left(\varepsilon-\mu_{s}\right) \beta+1} \tag{9}
\end{equation*}
$$

is the bulk contribution to the number of particles (per spin), with the reduced chemical potential $\mu_{s}=\mu+\alpha_{s}$,

$$
\begin{equation*}
A=\frac{1}{2}\left(\frac{2 m}{\hbar^{2}}\right)^{1 / 2} \int_{0}^{\infty} d \varepsilon \cdot \varepsilon^{-1 / 2} \frac{1}{\exp (\varepsilon-\mu) \beta+1} \tag{10}
\end{equation*}
$$

and $g=2 S+1$ is the spin degeneracy. The Fermi integrals appearing in (9) and (10) are estimated according to the well-known formula

$$
\begin{gather*}
\int_{0}^{\infty} d \varepsilon \cdot f(\varepsilon) \frac{1}{\exp (\varepsilon-\mu) \beta+1}=\int_{0}^{\mu} d \varepsilon \cdot f(\varepsilon)+\frac{\pi^{2} T^{2}}{6} f^{\prime}(\mu)+ \tag{11}\\
+\frac{7 \pi^{4} T^{4}}{360} f^{\prime \prime \prime}(\mu)+\ldots,
\end{gather*}
$$

valid for $\mu \beta \gg 1$. As we shall see later, one needs to go in (11) up to terms of order T^{4}, at least. The Zeeman energy α_{s} is much smaller than the temperature, $\alpha_{s} \beta \ll 1$; for electrons, for example, the Zeeman splitting is $\sim 1 K$ for a magnetic field $H=1 T s$. Consequently, we expand N_{s}^{b} given by (9) in powers of $\alpha_{s} \beta$ up to the second order, and thereafter perform the summation over s. In doing this we denote

$$
\begin{equation*}
\sum_{s} \alpha_{s}^{2}=g \alpha^{2} \tag{12}
\end{equation*}
$$

where $\alpha^{2}=(1 / 3) S(S+1)\left(g_{m} \mu_{B} H\right)^{2}$. The number of particles given by (8) can now be written as

$$
\begin{gather*}
N=g \frac{V}{6 \pi^{2}}\left(\frac{2 m T}{\hbar^{2}}\right)^{3 / 2}(\ln z)^{3 / 2} . \\
\cdot\left[1+\frac{1}{8}\left(\pi^{2}+\rho\right) \frac{1}{(\ln z)^{2}}+\frac{\pi^{2}}{64}\left(\frac{7 \pi^{2}}{10}+\rho\right) \frac{1}{(\ln z)^{4}}+\frac{49 \pi^{4}}{3072} \rho \frac{1}{(\ln z)^{6}}\right], \tag{13}
\end{gather*}
$$

where

$$
\begin{equation*}
\rho=3(\alpha \beta)^{2}-(\hbar \omega \beta / 2)^{2} \tag{14}
\end{equation*}
$$

and the fugacity $z=\exp (\mu \beta)$ has been introduced. Now we can see that the correction H^{2}-term contains $(H \beta)^{2}$, and this is why we have to go up to T^{4}-terms in the expansion of the Fermi integrals. Introducing the Fermi energy $\varepsilon_{F}=\hbar^{2} k_{F}^{2} / 2 m$, where the Fermi wavevector is given by $N=g V k_{F}^{3} / 6 \pi^{2}$, after some tedious algebra we obtain from (13)

$$
\ln z=\left(\beta \varepsilon_{F}\right) \cdot\left[\begin{array}{c}
1-\frac{1}{12}\left(\pi^{2}+\rho\right) \frac{1}{\left(\beta \varepsilon_{F}\right)^{2}}-\frac{\pi^{2}}{48}\left(\frac{3 \pi^{2}}{5}+\rho\right) \frac{1}{\left(\beta \varepsilon_{F}\right)^{4}}- \tag{15}\\
-\frac{\pi^{4}}{4608}\left(49+\frac{581 \pi^{2}}{45}+\frac{497}{15} \rho\right) \frac{1}{\left(\beta \varepsilon_{F}\right)^{6}}
\end{array}\right]
$$

for $\beta \varepsilon_{F} \gg 1$.

In a similar manner, and within the same approximations, the energy can be expressed as

$$
\begin{equation*}
E=\sum_{s} E_{s}^{b}+\frac{1}{24} \cdot g \frac{V}{(2 \pi)^{2}} \cdot m \omega^{2} \cdot A-\sum_{s} \alpha_{s} N_{s}^{b} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{s}^{b}=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} d \varepsilon \cdot \varepsilon^{3 / 2} \frac{1}{\exp \left(\varepsilon-\mu_{s}\right) \beta+1} \tag{17}
\end{equation*}
$$

is the bulk contribution per spin. The last term in (16) is

$$
\begin{gather*}
\sum_{s} \alpha_{s} N_{s}^{b}=\frac{1}{\beta} \cdot g \frac{V}{4 \pi^{2}}\left(\frac{2 m T}{\hbar^{2}}\right)^{3 / 2}(\ln z)^{1 / 2} . \tag{18}\\
\cdot\left[1-\frac{1}{24} \frac{1}{(\ln z)^{2}}-\frac{7 \pi^{4}}{384} \frac{1}{(\ln z)^{4}}\right](\alpha \beta)^{2},
\end{gather*}
$$

and the energy is given by

$$
\begin{gather*}
\beta E=g \frac{V}{10 \pi^{2}}\left(\frac{2 m T}{\hbar^{2}}\right)^{3 / 2}(\ln z)^{5 / 2} . \tag{19}\\
{\left[1+\frac{5}{8}\left(\pi^{2}-\frac{1}{3} \rho\right) \frac{1}{(\ln z)^{2}}-\frac{\pi^{2}}{192}\left(\frac{7 \pi^{2}}{2}-\frac{5}{3} \rho\right) \frac{1}{(\ln z)^{4}}+\frac{35 \pi^{4}}{9216} \rho \frac{1}{(\ln z)^{6}}\right] .}
\end{gather*}
$$

From (13) and (19) we obtain also

$$
\begin{equation*}
\beta E / N=\frac{3}{5}(\ln z) \cdot\left[1+\left(\frac{\pi^{2}}{2}-\frac{1}{3} \rho\right) \frac{1}{(\ln z)^{2}}-\frac{\pi^{2}}{24}\left(\frac{11 \pi^{2}}{5}+\frac{2}{3} \rho\right) \frac{1}{(\ln z)^{4}}\right] \tag{20}
\end{equation*}
$$

whence, by using (15),

$$
\begin{equation*}
E / N=\frac{3}{5} \varepsilon_{F}+\frac{1}{4}\left(\pi^{2}-\rho\right) \frac{T^{2}}{\varepsilon_{F}}-\frac{3 \pi^{2}}{80}\left(\pi^{2}+\frac{5}{9} \rho\right) \frac{T^{4}}{\varepsilon_{F}^{3}} . \tag{21}
\end{equation*}
$$

Since $\rho=(f \beta)^{2}$, with $f^{2}=3 \alpha^{2}-(\hbar \omega / 2)^{2}$ as given by (4), we can recast the energy per particle (21) as

$$
\begin{equation*}
E / N=\frac{3}{5} \varepsilon_{F}+\frac{\pi^{2}}{4} \frac{T^{2}}{\varepsilon_{F}}-\frac{3 \pi^{4}}{80} \frac{T^{4}}{\varepsilon_{F}^{3}}-\frac{f^{2}}{4 \varepsilon_{F}}\left(1+\frac{\pi^{2}}{12} \frac{T^{2}}{\varepsilon_{F}^{2}}\right) \tag{22}
\end{equation*}
$$

whence the specific heat for constant volume is

$$
\begin{equation*}
c_{v}=\frac{\pi^{2}}{2}\left(1-f^{2} / 12 \varepsilon_{F}^{2}\right) \frac{T}{\varepsilon_{F}}-\frac{3 \pi^{4}}{20}\left(\frac{T}{\varepsilon_{F}}\right)^{3} . \tag{23}
\end{equation*}
$$

From (22) we cam also obtain the magnetization, and see that the Landau diamagnetism is $1 / 3$ of the Pauli paramagnetism.

The grand-canonical potential $\Omega=-p V=-(1 / \beta) \ln Q$, where p is the pressure and Q is the grand-partition function, is defined by

$$
\begin{equation*}
\beta \Omega=-V \frac{q H}{2 \pi c h} \sum_{s} \sum_{n} \int_{-\infty}^{\infty} d k \cdot \ln \left[1+\exp \left[E_{n s}(k)-\mu\right] \beta\right] \tag{24}
\end{equation*}
$$

where the energy $E_{n s}(k)$ is given by (1). By similar transformations it can be re-expressed as

$$
\begin{equation*}
\Omega=-\frac{2}{3} \sum_{s} E_{s}^{b}+\frac{1}{12} \cdot g \frac{V}{(2 \pi)^{2}} \cdot m \omega^{2} \cdot A \tag{25}
\end{equation*}
$$

On the other hand, by taking the derivative with respect to β in (24), we obtain

$$
\begin{equation*}
\Omega+\beta \frac{\partial \Omega}{\partial \beta}=E-\mu N \tag{26}
\end{equation*}
$$

as expected, whence the entropy

$$
\begin{equation*}
S=\beta^{2} \frac{\partial \Omega}{\partial \beta}=\frac{5}{3} \beta E-N \ln z-\frac{1}{9} \cdot g \frac{V}{(2 \pi)^{2}} \cdot m \omega^{2} \beta \cdot A+\frac{2}{3} \beta \sum_{s} \alpha_{s} N_{s}^{b} \tag{27}
\end{equation*}
$$

Using (18) and (21), as well as the estimation of A given by (10) and (11), we can check easily that $S \sim T$ for $T \rightarrow 0$, so that the specific heats both for constant volume and for constant pressure coincide up to terms of order T^{3}, and are given by the first two terms in (23), as indicated in (3). The correction $f^{2} / 12 \varepsilon_{F}^{2}$ to the linear slope of c vs T given in (3) is extremely small; for the typical values $f \sim 1 K$ (corresponding to $H=1 T s$) and $\varepsilon_{F} \sim 10^{5} K$ we get an extremely small contribution $f^{2} / 12 \varepsilon_{F}^{2} \sim 10^{-11}$.

The effects of the interaction between fermions are included in the specific heat by replacing the mass m by an effective mass m^{*}, as usually in the theory of the Fermi liquid.

Similar calculations for two-dimensional fermions, whose specific heat is

$$
\begin{equation*}
c=\frac{\pi^{2}}{3} \frac{T}{\varepsilon_{F}}+\ldots \tag{28}
\end{equation*}
$$

indicate that corrections due to the magnetic field are exponentially small in $\left(\beta \varepsilon_{F}\right)$.

References

[1] L. Landau, Z. Phys. 64629 (1930).

