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Abstract

The leading contributions to the specific heat of an ensemble of charged fermions placed
in a homogeneous magnetic field are computed.

An ensemble of N identical fermions, each of mass m, charge q and spin S, is placed in a homo-
geneous magnetic field H, directed along the z-axis. The single-particle energy is given by

Ens(k) = h̄ω(n + 1/2) + h̄2k2/2m− αs , n = 0, 1, 2, ... , (1)

where ω = qH/mc is the cyclotron frequency, k is the vawevector along the z-axis and αs =
gmµBsH is the Zeeman energy; gm is the gyromagnetic factor, µB is the Bohr magneton and
s = −S,−S + 1, ...S is the spin projection along the z-axis.

The well-known specific heat of an ensemble of fermions in three dimensions,

c =
π2

2

T

εF

+ ... , (2)

where T is the temperature and εF is the Fermi energy, is extended in the present paper to

c =
π2

2

(
1− f 2/12ε2

F

) T

εF

+ ... , (3)

where

f 2 = S(S + 1)(gmµBH)2 − (h̄ω/2)2 . (4)

For electrons q = −e, S = 1/2, gm
∼= 2 and we get f 2 = 2(µBH)2; we recall that the Bohr

magneton is µB = eh̄/2mc, h̄ is Planck
′
s constant, c is the light speed and −e is the electron

charge.

In the following the computations leading to (3) are described.

The ensemble of fermions is confined to a rectangular box of sides Lx,y,z, whose volume is V =
LxLyLz. As it is well-known,[1] the motion of a charged particle in a homogeneous magnetic field
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is described by a harmonic oscillator along, say, the y-axis, shifted by y0 = −(c/qH)px, where px

is the momentum along the x-axis. An orbital degeneracy occurs, given by

Nxy =
Ly

∆y0

= Ly/
ch̄

qH

2π

Lx

= LxLy ·
qH

ch
, (5)

so that the number of particles can be written as

N = V
qH

2πch

∑
s

∑
n

∫ ∞
−∞

dk
1

exp [Ens(k)− µ] β + 1
, (6)

where the energy Ens(k) is given by (1), µ is the chemical potential and β = 1/T is the inverse of
the temperature. The energy h̄ω is much smaller than the temperature, h̄ωβ � 1; for electrons, for
instance, h̄ω ∼ 1K for a magnetic field H = 1Ts. Consequently, we may replace the summation
over n in (6) by an integral, according to the formula

b−1∑
a

f(n + 1/2) =
∫ b

a
dn · f(n)− 1

24
f
′
(n) |ba . (7)

This formula is valid for |f(n + 1/2)− f(n− 1/2)| � |f(n)|, and the Fermi distribution in (6)
fulfils this condition, providing h̄ωβ � 1. When applying (7) to the Fermi distribution in (6) the
derivative-term in (7) gives contributions of order H2, and we keep all the subsequent computations
up to terms of this order. Doing so, and after straightforward manipulations, the number of
particles is re-expressed as

N =
∑
s

N b
s −

1

12
· g V

(2π)2 ·mω2 · ∂

∂µ
A , (8)

where

N b
s =

V

4π2

(
2m

h̄2

)3/2 ∫ ∞
0

dε · ε1/2 1

exp (ε− µs) β + 1
(9)

is the bulk contribution to the number of particles (per spin), with the reduced chemical potential
µs = µ + αs,

A =
1

2

(
2m

h̄2

)1/2 ∫ ∞
0

dε · ε−1/2 1

exp (ε− µ) β + 1
, (10)

and g = 2S+1 is the spin degeneracy. The Fermi integrals appearing in (9) and (10) are estimated
according to the well-known formula

∫∞
0 dε · f(ε) 1

exp(ε−µ)β+1
=
∫ µ
0 dε · f(ε) + π2T 2

6
f
′
(µ)+

+7π4T 4

360
f
′′′
(µ) + ... ,

(11)

valid for µβ � 1. As we shall see later, one needs to go in (11) up to terms of order T 4, at least.
The Zeeman energy αs is much smaller than the temperature, αsβ � 1; for electrons, for example,
the Zeeman splitting is ∼ 1K for a magnetic field H = 1Ts. Consequently, we expand N b

s given
by (9) in powers of αsβ up to the second order, and thereafter perform the summation over s. In
doing this we denote ∑

s

α2
s = gα2 , (12)
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where α2 = (1/3)S(S + 1)(gmµBH)2. The number of particles given by (8) can now be written as

N = g V
6π2

(
2mT
h̄2

)3/2
(ln z)3/2 ·

·
[
1 + 1

8
(π2 + ρ) 1

(ln z)2
+ π2

64

(
7π2

10
+ ρ

)
1

(ln z)4
+ 49π4

3072
ρ 1

(ln z)6

]
,

(13)

where
ρ = 3(αβ)2 − (h̄ωβ/2)2 , (14)

and the fugacity z = exp(µβ) has been introduced. Now we can see that the correction H2-term
contains (Hβ)2, and this is why we have to go up to T 4-terms in the expansion of the Fermi
integrals. Introducing the Fermi energy εF = h̄2k2

F /2m, where the Fermi wavevector is given by
N = gV k3

F /6π2, after some tedious algebra we obtain from (13)

ln z = (βεF ) ·


1− 1

12
(π2 + ρ) 1

(βεF )2
− π2

48

(
3π2

5
+ ρ

)
1

(βεF )4
−

− π4

4608

(
49 + 581π2

45
+ 497

15
ρ
)

1
(βεF )6

 . (15)

for βεF � 1.

In a similar manner, and within the same approximations, the energy can be expressed as

E =
∑
s

Eb
s +

1

24
· g V

(2π)2 ·mω2 · A−
∑
s

αsN
b
s , (16)

where

Eb
s =

V

4π2

(
2m

h̄2

)3/2 ∫ ∞
0

dε · ε3/2 1

exp (ε− µs) β + 1
(17)

is the bulk contribution per spin. The last term in (16) is

∑
s αsN

b
s = 1

β
· g V

4π2

(
2mT
h̄2

)3/2
(ln z)1/2 ·

·
[
1− 1

24
1

(ln z)2
− 7π4

384
1

(ln z)4

]
(αβ)2 ,

(18)

and the energy is given by

βE = g V
10π2

(
2mT
h̄2

)3/2
(ln z)5/2 ·

·
[
1 + 5

8

(
π2 − 1

3
ρ
)

1
(ln z)2

− π2

192

(
7π2

2
− 5

3
ρ
)

1
(ln z)4

+ 35π4

9216
ρ 1

(ln z)6

]
.

(19)

From (13) and (19) we obtain also

βE/N =
3

5
(ln z) ·

[
1 +

(
π2

2
− 1

3
ρ

)
1

(ln z)2 −
π2

24

(
11π2

5
+

2

3
ρ

)
1

(ln z)4

]
(20)

whence, by using (15),

E/N =
3

5
εF +

1

4

(
π2 − ρ

) T 2

εF

− 3π2

80

(
π2 +

5

9
ρ
)

T 4

ε3
F

. (21)
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Since ρ = (fβ)2, with f 2 = 3α2 − (h̄ω/2)2 as given by (4), we can recast the energy per particle
(21) as

E/N =
3

5
εF +

π2

4

T 2

εF

− 3π4

80

T 4

ε3
F

− f 2

4εF

(
1 +

π2

12

T 2

ε2
F

)
, (22)

whence the specific heat for constant volume is

cv =
π2

2

(
1− f 2/12ε2

F

) T

εF

− 3π4

20

(
T

εF

)3

. (23)

From (22) we cam also obtain the magnetization, and see that the Landau diamagnetism is 1/3
of the Pauli paramagnetism.

The grand-canonical potential Ω = −pV = − (1/β) ln Q, where p is the pressure and Q is the
grand-partition function, is defined by

βΩ = −V
qH

2πch

∑
s

∑
n

∫ ∞
−∞

dk · ln [1 + exp [Ens(k)− µ] β] , (24)

where the energy Ens(k) is given by (1). By similar transformations it can be re-expressed as

Ω = −2

3

∑
s

Eb
s +

1

12
· g V

(2π)2 ·mω2 · A . (25)

On the other hand, by taking the derivative with respect to β in (24), we obtain

Ω + β
∂Ω

∂β
= E − µN , (26)

as expected, whence the entropy

S = β2∂Ω

∂β
=

5

3
βE −N ln z − 1

9
· g V

(2π)2 ·mω2β · A +
2

3
β
∑
s

αsN
b
s . (27)

Using (18) and (21), as well as the estimation of A given by (10) and (11), we can check easily that
S ∼ T for T → 0, so that the specific heats both for constant volume and for constant pressure
coincide up to terms of order T 3, and are given by the first two terms in (23), as indicated in
(3). The correction f 2/12ε2

F to the linear slope of c vs T given in (3) is extremely small; for the
typical values f ∼ 1K (corresponding to H = 1Ts) and εF ∼ 105K we get an extremely small
contribution f 2/12ε2

F ∼ 10−11.

The effects of the interaction between fermions are included in the specific heat by replacing the
mass m by an effective mass m∗, as usually in the theory of the Fermi liquid.

Similar calculations for two-dimensional fermions, whose specific heat is

c =
π2

3

T

εF

+ ... , (28)

indicate that corrections due to the magnetic field are exponentially small in (βεF ).
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