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U =

1

2

∑

ij

∫

drdr′ [ϕij(r− r′) + χ(r − r′)] δni(r)δnj(r
′) , (1)where ϕij = e2zizj/ |r − r′| is the Coulomb interation and δni(r) denotes a small density dis-turbane whih preserves the neutrality. It an be represented by δni = −nidivui, where ui is adisplaement �eld. We introdue the Fourier transforms

δni(r) =
1√
N

∑

q

δni(q)eiqr , ϕ(r) =
1

V

∑

q

ϕ(q)eiqr , (2)where N =
∑

i Ni is the total number of partiles, ϕ(r) = e2/r and ϕ(q) = ϕ(q) = 4πe2/q2.A similar Fourier transform is employed for the displaement �eld ui, whih leads to δni(q) =
−iqui(q). We emphasize that the representation δni = −nidivui for the small disturbanes of thepartile density is valid for qui(r) ≪ 1. We an see that only the longitudinal omponents ui(q) ofthe displaement �eld are relevant, so we may write ui(q) = (q/q)ui(q), δni(q) = −iqui(q) , with
δn∗

i (−q)=δni(q), u∗

i (−q) = ui(q) and u∗

i (−q) = −ui(q). Making use of the Fourier transformsintrodued above, the interation U given by equation (1) an be written as
U = − 1

2n

∑

ijq

ninjq
2 [ϕij(q) + χ(q)] ui(q)uj(−q) , (3)where ϕij(q) = zizjϕ(q).
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T = − 1

2n

∑

iq

miniu̇i(q)u̇i(−q) . (4)In addition, we introdue an external �eld φ(r) whih gives rise to the interation
V = −i

e

n

∑

iq

niziqφ(q)ui(−q) . (5)The equations of motion orresponding to the lagrangian L = T − U − V are given by
miüi + 4πe2zi

∑

j

zjnjuj + q2χ
∑

j

njuj = −iqeziφ , (6)where we dropped out the argument q in ui(q) and φ(q). We onsider �rst the homogeneoussystem of equations given by (6), and introdue the notations a = 4πe2, b = χq2,
S1 =

∑

i

z2
i ni

mi
, S2 =

∑

i

ni

mi
, S3 =

∑

i

zini

mi
, (7)and

x =
1

n

∑

i

ziniui , y =
1

n

∑

i

niui , (8)where n = N/V is the total density of partiles. Making use of these notations, the homogeneoussystem of equations (6) an be written as
(−ω2 + aS1) x + bS3y = 0 ,

aS3x + (−ω2 + bS2) y = 0 .
(9)In addition, we have

ω2ui =
anzi

mi
x +

bn

mi
y . (10)The spetrum of frequenies ω of the system of equations (9) an be obtained straightforwardly.It is given by

ω2
1,2 =

1

2

[

aS1 + bS2 ±
√

a2S2
1 + 2ab (2S2

3 − S1S2) + b2S2
2

]

. (11)The ω2-branh in equation (11) (orresponding to the minus sign) represents sound-like exitations.In the long wavelength limit it is given by
ω2

2 =
(

S2 − S2
3/S1

)

b = v2
sq

2 , q → 0 , (12)where
vs =

√

(S2 − S2
3/S1)χ (13)is the sound veloity. We an see easily, by applying the Shwarz-Cauhy inequality to the vetors

ai =
√

ni/mi and bi = zi

√

ni/mi, that v2
s is always positive (S2 − S2

3/S1) ≥ 0). For shorterwavelengths the ω2-branh of the spetrum approahes an horizontal asymptote given by
ω2

2 ∼
(

1 − S2
3/S1S2

)

ω2
p , q → ∞ , (14)
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ω2

p = aS1 = 4πe2
∑

i

z2
i ni

mi

(15)gives the plasma frequeny ωp. It is worth noting that in the limit of vanishing Coulomb oupling(a → 0) the sound-like branh of the spetrum disappears ompletely, aording to equation (11).The ω1-branh of the spetrum given by equation (11) (orresponding to the plus sign) gives theplasmoni exitations. In the long wavelength limit we get
ω2

1 = aS1 + bS2
3/S1 = ω2

p + bS2
3/S1 , q → 0 . (16)For shorter wavelengths or in the limit of vanishing Coulomb interation the ω1-branh approahesan asymptote given by

ω2
1 ∼ bS2 + aS2

3/S2 . (17)One an see that in these limits the ω1-branh behaves like an "anomalous" sound given by
ωa =

√

bS2 = vaq , (18)propagating with veloity
va =

√

S2χ =
1

√

1 − S2
3/S1S2

vs (19)(whih is always a positive qauntity). This additional sound is always faster than the ordinarysound, sine
va

vs
=

1
√

1 − S2
3/S1S2

> 1 . (20)We emphasize that this additional sound holds in the limit of vanishing Coulomb interation. Fora �nite Coulomb oupling it holds for shorter wavelengths.Suh a "two-sounds anomaly" seems to be pretty well doumented in liquid water.1 If we assumethat the dynamis of liquid water has a plasma omponent onsisting of H+z ations, with density
2n and mass m (proton mass), and O−2z anions with density n and mass M = 16m, where nis the water density, then we get va/vs = (1 − S2

3/S1S2)
−1/2 ≃ (2M/9m + 5/9)1/2 ≃ 2, whih ispreisely the ratio of the two sound veloities determined experimentally.2 If we note that theharateristi frequeny determined in these experiments is of the order of ω ≃ 10131s−1 then wean estimate the redued e�etive harge z from ω ≃ ωp = 16πne2z2/µ given by equation (15),where µ = 2mM/(M + 2m) is the redued mass. We get z ≃ 3 × 10−2, whih is a very smallvalue. One may say indeed that liquid water is in the limit of vanishing Coulomb oupling. Wenote also that for deuterated water we get from equation (20) va/vs =

√
2, while the experimentalvalue seems to be loser to 2.3 The exitation spetrum given by equations (11) for the O−2z −Hzplasma is shown in Fig. 1.1See, for instane, S. C. Santui, D. Fioretto, L. Comez, A. Gessini and C. Masiovehio, Phys. Rev. Lett.97 225701 (2006) and referenes therein; F. Sette, G. Ruoo, M. Krish, C. Masiovehio, R. Verbeni and U.Bergmann, Phys. Rev. Lett. 77 83 (1996). It is worth noting that the interation employed here (Coulombianplus short-range) is similar with the interation used in previous studies of moleular dynamis, where suh an"anomalous" sound was �rst suggested (A. Rahman and F. H. Stillinger, Phys. Rev. A10 368 (1974)).2The veloity of the ordinary sound in water is vs ≃ 1500m/s, while the veloity of the "anomalous" sound is

va ≃ 3000m/s.3J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. Dorner, Phys. Rev. Lett. 54 2681 (1985); C. Petrillo,F. Sahetti, B. Dorner and J.-B. Suk, Phys. Rev. E62 3611 (2000). The veloity of the "anomalous" soundgiven by equation (20) is va ≃ 2200m/s.
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pFigure 1: Spetrum of density exitations given by equation (11) for the O−2z − H+z plasma.We emphasize that sound-like exitations given by equation (12) are di�erent from the ordianryhydrodynami sound. Indeed, the former are non-equilibrium elementary exitations while thelatter proeeds by equilibrium, adiabati motion. It is easy to see that the veloity of the ordinarysound is given by v0 = 1/κ
∑

i nimi, where κ is the adiabati ompressibility (the orrespodinginteration reads U = (2κ)−1
∫

dr [divu(r)]2 = −(2κn)−1∑

q q2u(q)u(−q)). For the H+z − O−2zplasma we get v0 = 1/
√

κn(M + 2m) and (12) gives vs =
√

9nχ/(M + 2m). We may assign theadditional fast sound to the sound-like exitations propagating with veloity vs = 3000m/s andompare them with the ordinary sound propagating with veloity v0 = 1500m/s. We an see thatthe ratio vs/v0 = 3n
√

κχ does not exhibit an isotopi e�et, in agreement with experiments. theinteration with the movements of the individual partiles gives a �nite lifetime for the sound-likeexitations, whih exist beyond a ertain threshold wavevetor (where the hydrodynami soundeases to exist, being absorbed by suh individual movements).Equation δni = −nidivui is equivalent with Maxwell equation divEi = 4πqiδni, where the eletri�eld is given by Ei = −4πqiniui, where qi = ezi is the eletri harge of the i-th speies of ions.It follows that the internal �eld is given by
Eint = −4πe

∑

i

ziniui (21)We get easily this �eld from equations (6) with an external eletri �eld,
Eint = −iqφ

ω2
p

ω2 − ω2
p

(22)in the long wavelength limit (it is proportional to x given by equation (8)). The dieletri funtionis de�ned by D = εE = e(D +Eint), where D = −iqφ is the external �eld (eletri displaement).We get the dieletri funtion
ε = 1 − ω2

p/ω
2 , (23)as expeted. This dieletri funtion exhibits an absorption edge (ωp) for very low frequenies. Inthis stati limit it is very likely to admit the existene of an additional internal �eld of intrinsipolarizability whih hanges the above dieletri funtion into ε = (ω2 − ω2

p)/(ω2 + ω2
0), where ω0is a frequeny parameter aounting for suh an internal �eld.



J. Theor. Phys. 5From equation (10) we an see that the displaement ui is a superposition of the two eigenvetorsof the system of equations (9), whih osillates with eigenfrequenies ω1,2, respetively. It followsthat these oordinates are those of linear harmoni osillators with the potential energy of theform miω
2u2

i /2. The statistial distribution of the oordinates ui in the lassial limit is given by
dw ∼ exp(−miω

2u2
i /2T )dui, where T denotes the temperature. We get the thermal averages

〈uiuj〉 =
T

miω2
δij . (24)On the other hand the struture fator, de�ned as

S(q, ω) = 1
2π

∫

drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r
′)−iωt =

= N
2πn2

∫

dt 〈δn(q, t)δn(−q, 0)〉 e−iωt

(25)an be written as
S(q, ω) =

Nq2

2πn2

∫

dt
∑

ij

ninj 〈ui(t)uj(0)〉 e−iωt . (26)Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (27)and making use of equation (24) we get the struture fator

S(q, ω) = NTq2

(

∑

i

n2
i /n

2mi

)[

1

ω2
1

δ(ω − ω1) +
1

ω2
2

δ(ω − ω2)

] (28)We an see that the relevant sound ontributions read
S(q, ω) ≃ NT

v2
s,a

(

∑

i

n2
i /n

2mi

)

δ(ω − vs,aq) . (29)The short-range interation χ an be generalized to a short-range interation χij distint for eahpair of speies. In this ase, the exitation spetrum of the density osillations may exhibit multiplebranhes in general, for a multi-omponent plasma. In addition, it may have speial features, likea dip in the plasmoni branh, or negative veloity for the ordinary sound, whih may indiateeither an anomalous behaviour or unphysial situations.© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro


