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Abstract

The excitation spectrum of the density oscillations is computed for a classical multi-
component plasma with Coulomb and short-range interactions. The dielectric function and
structure factor are calculated. It is shown that in the limit of vanishing Coulomb cou-
pling an additional, fast, "anomalous" sound appears in the spectrum, beside the ordinary
hydrodynamic sound and the sound-like excitations.

We consider a classical multi-component plasma consisting of several ionic species labelled by ¢,
each with N; particles in volume V', mass m; and electric charge ez;, where —e is the electron charge
and z; is a reduced effective charge, interacting through Coulomb potentials and a short range
potential y, the latter being the same for all species. The ensemble is subjected to the neutrality
condition Y, n;z; = 0, where n; = N;/V is the density of the i-th species. The interaction energy
is written as

U= %%:/drdr’ [0ii(r — 1) + x(r — 1)] ony(r)on;(x') | (1)

where ¢;; = e?2;2;/ |r — 1’| is the Coulomb interaction and dn;(r) denotes a small density dis-
turbance which preserves the neutrality. It can be represented by dn; = —n;divu;, where u; is a
displacement field. We introduce the Fourier transforms

on;(r) = \/% zq:ém(q)eiqr , p(r) = %Z p(q)e ™ (2)

q

where N = 3, N; is the total number of particles, p(r) = €?/r and ¢(q) = ¢(q) = 4me?/q>.
A similar Fourier transform is employed for the displacement field u;, which leads to dn;(q) =
—iqu;(q). We emphasize that the representation dn; = —n;divuy; for the small disturbances of the
particle density is valid for qu;(r) < 1. We can see that only the longitudinal components u;(q) of
the displacement field are relevant, so we may write u;(q) = (q/q)u;(q), én;(q) = —iqui(q) , with
onf(—q)=dn;(q), ui(—q) = w;(q) and u;(—q) = —u,;(q). Making use of the Fourier transforms
introduced above, the interaction U given by equation (1) can be written as

U = =0 3 e o) + x(@) w(a)us(—a) )

1jq

where ¢;;(q) = zi2;0(q).
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Similarly, the kinetic energy associated with the coordinates w; is given by
1 . .
T = “on Z miniti(q)i;(—a) - (4)
In addition, we introduce an external field ¢(r) which gives rise to the interaction
e
V= —i > nizigd(q)ui(—q) (5)
iq
The equations of motion corresponding to the lagrangian L =T — U — V are given by
myil; + Ame?z Y zinju; + ¢*x Y nju; = —igez;d (6)
J J

where we dropped out the argument q in u;(q) and ¢(q). We consider first the homogeneous
system of equations given by (6), and introduce the notations a = 4we?, b = x¢?,

22n; n; 2N
Slzz ;n 75222'%’53227”' 3 (7)

and . .
ng;ziniuia yzg;niui ) (8)

where n = N/V is the total density of particles. Making use of these notations, the homogeneous
system of equations (6) can be written as

(—w2 + CLSl) T + ngy =0 s

(9)
CLSgZE + (—w2 + bSQ) Yy = 0.

In addition, we have
; b
wu; = IS —ny . (10)
m; my;

The spectrum of frequencies w of the system of equations (9) can be obtained straightforwardly.
It is given by

1
Ra=3 [aSl +bSy & \Ja2S? + 2ab (253 — S18) + 1253 (11)

The wo-branch in equation (11) (corresponding to the minus sign) represents sound-like excitations.
In the long wavelength limit it is given by

wi=(S%—S3/S)b=1, q—0, (12)

where

vs = /(82— S3/S1) x (13)
is the sound velocity. We can see easily, by applying the Schwarz-Cauchy inequality to the vectors
a; = \/ni/m; and b; = z;\/n;/m;, that v? is always positive (S — S2/S;) > 0). For shorter
wavelengths the wy-branch of the spectrum approaches an horizontal asymptote given by

Wy ~ (1—S§/5152)w§ , ¢ — 00, (14)
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where )

wf, = aS, = 4me? Z

i

(15)

my;

gives the plasma frequency w,. It is worth noting that in the limit of vanishing Coulomb coupling
(a — 0) the sound-like branch of the spectrum disappears completely, according to equation (11).

The wy-branch of the spectrum given by equation (11) (corresponding to the plus sign) gives the
plasmonic excitations. In the long wavelength limit we get

w%:a51+b5§/51:w§+b5§/51 , ¢q—0. (16)

For shorter wavelengths or in the limit of vanishing Coulomb interaction the w;-branch approaches
an asymptote given by

wi ~bSy +aSz/S, . (17)

One can see that in these limits the w;-branch behaves like an "anomalous" sound given by

Wa =/ bS2 = Vaq , (18)

propagating with velocity
1

Vg, = 4/ Sox = Vs
1= 52/5.5

(which is always a positive qauntity). This additional sound is always faster than the ordinary
sound, since

(19)

. 1
Yo _ > 1. (20)

vs /1 52/5,5,

We emphasize that this additional sound holds in the limit of vanishing Coulomb interaction. For
a finite Coulomb coupling it holds for shorter wavelengths.

Such a "two-sounds anomaly" seems to be pretty well documented in liquid water.! If we assume
that the dynamics of liquid water has a plasma component consisting of H™* cations, with density
2n and mass m (proton mass), and O~%* anions with density n and mass M = 16m, where n
is the water density, then we get v,/v, = (1 — 53/5152)‘1/2 ~ (2M/9m + 5/9)"/* ~ 2, which is
precisely the ratio of the two sound velocities determined experimentally.? If we note that the
characteristic frequency determined in these experiments is of the order of w ~ 103571 then we
can estimate the reduced effective charge 2 from w ~ w, = 167ne?2?/u given by equation (15),
where 1 = 2mM /(M + 2m) is the reduced mass. We get z ~ 3 x 1072, which is a very small
value. One may say indeed that liquid water is in the limit of vanishing Coulomb coupling. We
note also that for deuterated water we get from equation (20) v, /v, = /2, while the experimental
value seems to be closer to 2.* The excitation spectrum given by equations (11) for the O~ — H?
plasma is shown in Fig. 1.

1See, for instance, S. C. Santucci, D. Fioretto, L. Comez, A. Gessini and C. Masciovecchio, Phys. Rev. Lett.
97 225701 (2006) and references therein; F. Sette, G. Ruocco, M. Krisch, C. Masciovecchio, R. Verbeni and U.
Bergmann, Phys. Rev. Lett. 77 83 (1996). It is worth noting that the interaction employed here (Coulombian
plus short-range) is similar with the interaction used in previous studies of molecular dynamics, where such an
"anomalous" sound was first suggested (A. Rahman and F. H. Stillinger, Phys. Rev. A10 368 (1974)).

2The velocity of the ordinary sound in water is vg =~ 1500m /s, while the velocity of the "anomalous" sound is
Vg =~ 3000m/s.

3]J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. Dorner, Phys. Rev. Lett. 54 2681 (1985); C. Petrillo,
F. Sacchetti, B. Dorner and J.-B. Suck, Phys. Rev. E62 3611 (2000). The velocity of the "anomalous" sound
given by equation (20) is v, ~ 2200m/s.
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Figure 1: Spectrum of density excitations given by equation (11) for the O=2* — H** plasma.

We emphasize that sound-like excitations given by equation (12) are different from the ordianry
hydrodynamic sound. Indeed, the former are non-equilibrium elementary excitations while the
latter proceeds by equilibrium, adiabatic motion. It is easy to see that the velocity of the ordinary
sound is given by vy = 1/k Y, nym;, where k is the adiabatic compressibility (the correspoding
interaction reads U = (2&)7! [ dr [divu(r)]> = —(2kn)~! Y q u(q)u(—q)). For the Ht* — O~
plasma we get vg = 1/1/kn(M + 2m) and (12) gives vy = \/an/(M +2m). We may assign the
additional fast sound to the sound-like excitations propagating with velocity v, = 3000m/s and
compare them with the ordinary sound propagating with velocity vy = 1500m/s. We can see that
the ratio v /vy = 3n,/kX does not exhibit an isotopic effect, in agreement with experiments. the
interaction with the movements of the individual particles gives a finite lifetime for the sound-like
excitations, which exist beyond a certain threshold wavevector (where the hydrodynamic sound
ceases to exist, being absorbed by such individual movements).

Equation dn; = —n;divu; is equivalent with Maxwell equation divE; = 4mwq;0n;, where the electric
field is given by E; = —4mwg;n;u;, where ¢; = ez; is the electric charge of the i-th species of ions.
It follows that the internal field is given by

Eimg = —477'622@'712‘”2‘ (21)

We get easily this field from equations (6) with an external electric field,

w2

- P

Eint = —ZCI¢W (22)

in the long wavelength limit (it is proportional to = given by equation (8)). The dielectric function

is defined by D = ¢FE = e(D + Ej;;), where D = —iq¢ is the external field (electric displacement).
We get the dielectric function

e=1-wl/w?, (23)

as expected. This dielectric function exhibits an absorption edge (w,) for very low frequencies. In
this static limit it is very likely to admit the existence of an additional internal field of intrinsic
polarizability which changes the above dielectric function into € = (w? — w?2)/(w?® + w§), Where wy
is a frequency parameter accounting for such an internal field.



J. Theor. Phys 5

From equation (10) we can see that the displacement u; is a superposition of the two eigenvectors
of the system of equations (9), which oscillates with eigenfrequencies wy o, respectively. It follows
that these coordinates are those of linear harmonic oscillators with the potential energy of the
form m;w?u?/2. The statistical distribution of the coordinates u; in the classical limit is given by
dw ~ exp(—mw?u?/2T)du;, where T denotes the temperature. We get the thermal averages

7

On the other hand the structure factor, defined as

S(q,w) = &= [ drdr'dt (5n(r, £)dn(r’, 0)) eatr—r)=iwt —

— 27m2 [ dt {(6n(q,t)don(—q,0)) it

can be written as

S(q,w

27m2 /dth,nJ wi(t)u;(0)) e ™" . (26)
Writing
U; = u(l)eiwﬂ + u@)ei”t (27)

and making use of equation (24) we get the structure factor

S(a.0) = VTG (S0 ) | b =) + 50 ) (28)

w2

We can see that the relevant sound contributions read

S(q,w) ~ <Z n3 /n? m,) 0w — Vs4q) - (29)

S(I

The short-range interaction x can be generalized to a short-range interaction x;; distinct for each
pair of species. In this case, the excitation spectrum of the density oscillations may exhibit multiple
branches in general, for a multi-component plasma. In addition, it may have special features, like
a dip in the plasmonic branch, or negative velocity for the ordinary sound, which may indicate
either an anomalous behaviour or unphysical situations.
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