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tThe ex
itation spe
trum of the density os
illations is 
omputed for a 
lassi
al multi-
omponent plasma with Coulomb and short-range intera
tions. The diele
tri
 fun
tion andstru
ture fa
tor are 
al
ulated. It is shown that in the limit of vanishing Coulomb 
ou-pling an additional, fast, "anomalous" sound appears in the spe
trum, beside the ordinaryhydrodynami
 sound and the sound-like ex
itations.We 
onsider a 
lassi
al multi-
omponent plasma 
onsisting of several ioni
 spe
ies labelled by i,ea
h with Ni parti
les in volume V , mass mi and ele
tri
 
harge ezi, where −e is the ele
tron 
hargeand zi is a redu
ed e�e
tive 
harge, intera
ting through Coulomb potentials and a short rangepotential χ, the latter being the same for all spe
ies. The ensemble is subje
ted to the neutrality
ondition ∑i nizi = 0, where ni = Ni/V is the density of the i-th spe
ies. The intera
tion energyis written as
U =

1

2

∑

ij

∫

drdr′ [ϕij(r− r′) + χ(r − r′)] δni(r)δnj(r
′) , (1)where ϕij = e2zizj/ |r − r′| is the Coulomb intera
tion and δni(r) denotes a small density dis-turban
e whi
h preserves the neutrality. It 
an be represented by δni = −nidivui, where ui is adispla
ement �eld. We introdu
e the Fourier transforms

δni(r) =
1√
N

∑

q

δni(q)eiqr , ϕ(r) =
1

V

∑

q

ϕ(q)eiqr , (2)where N =
∑

i Ni is the total number of parti
les, ϕ(r) = e2/r and ϕ(q) = ϕ(q) = 4πe2/q2.A similar Fourier transform is employed for the displa
ement �eld ui, whi
h leads to δni(q) =
−iqui(q). We emphasize that the representation δni = −nidivui for the small disturban
es of theparti
le density is valid for qui(r) ≪ 1. We 
an see that only the longitudinal 
omponents ui(q) ofthe displa
ement �eld are relevant, so we may write ui(q) = (q/q)ui(q), δni(q) = −iqui(q) , with
δn∗

i (−q)=δni(q), u∗

i (−q) = ui(q) and u∗

i (−q) = −ui(q). Making use of the Fourier transformsintrodu
ed above, the intera
tion U given by equation (1) 
an be written as
U = − 1

2n

∑

ijq

ninjq
2 [ϕij(q) + χ(q)] ui(q)uj(−q) , (3)where ϕij(q) = zizjϕ(q).
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 energy asso
iated with the 
oordinates ui is given by
T = − 1

2n

∑

iq

miniu̇i(q)u̇i(−q) . (4)In addition, we introdu
e an external �eld φ(r) whi
h gives rise to the intera
tion
V = −i

e

n

∑

iq

niziqφ(q)ui(−q) . (5)The equations of motion 
orresponding to the lagrangian L = T − U − V are given by
miüi + 4πe2zi

∑

j

zjnjuj + q2χ
∑

j

njuj = −iqeziφ , (6)where we dropped out the argument q in ui(q) and φ(q). We 
onsider �rst the homogeneoussystem of equations given by (6), and introdu
e the notations a = 4πe2, b = χq2,
S1 =

∑

i

z2
i ni

mi
, S2 =

∑

i

ni

mi
, S3 =

∑

i

zini

mi
, (7)and

x =
1

n

∑

i

ziniui , y =
1

n

∑

i

niui , (8)where n = N/V is the total density of parti
les. Making use of these notations, the homogeneoussystem of equations (6) 
an be written as
(−ω2 + aS1) x + bS3y = 0 ,

aS3x + (−ω2 + bS2) y = 0 .
(9)In addition, we have

ω2ui =
anzi

mi
x +

bn

mi
y . (10)The spe
trum of frequen
ies ω of the system of equations (9) 
an be obtained straightforwardly.It is given by

ω2
1,2 =

1

2

[

aS1 + bS2 ±
√

a2S2
1 + 2ab (2S2

3 − S1S2) + b2S2
2

]

. (11)The ω2-bran
h in equation (11) (
orresponding to the minus sign) represents sound-like ex
itations.In the long wavelength limit it is given by
ω2

2 =
(

S2 − S2
3/S1

)

b = v2
sq

2 , q → 0 , (12)where
vs =

√

(S2 − S2
3/S1)χ (13)is the sound velo
ity. We 
an see easily, by applying the S
hwarz-Cau
hy inequality to the ve
tors

ai =
√

ni/mi and bi = zi

√

ni/mi, that v2
s is always positive (S2 − S2

3/S1) ≥ 0). For shorterwavelengths the ω2-bran
h of the spe
trum approa
hes an horizontal asymptote given by
ω2

2 ∼
(

1 − S2
3/S1S2

)

ω2
p , q → ∞ , (14)
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ω2

p = aS1 = 4πe2
∑

i

z2
i ni

mi

(15)gives the plasma frequen
y ωp. It is worth noting that in the limit of vanishing Coulomb 
oupling(a → 0) the sound-like bran
h of the spe
trum disappears 
ompletely, a

ording to equation (11).The ω1-bran
h of the spe
trum given by equation (11) (
orresponding to the plus sign) gives theplasmoni
 ex
itations. In the long wavelength limit we get
ω2

1 = aS1 + bS2
3/S1 = ω2

p + bS2
3/S1 , q → 0 . (16)For shorter wavelengths or in the limit of vanishing Coulomb intera
tion the ω1-bran
h approa
hesan asymptote given by

ω2
1 ∼ bS2 + aS2

3/S2 . (17)One 
an see that in these limits the ω1-bran
h behaves like an "anomalous" sound given by
ωa =

√

bS2 = vaq , (18)propagating with velo
ity
va =

√

S2χ =
1

√

1 − S2
3/S1S2

vs (19)(whi
h is always a positive qauntity). This additional sound is always faster than the ordinarysound, sin
e
va

vs
=

1
√

1 − S2
3/S1S2

> 1 . (20)We emphasize that this additional sound holds in the limit of vanishing Coulomb intera
tion. Fora �nite Coulomb 
oupling it holds for shorter wavelengths.Su
h a "two-sounds anomaly" seems to be pretty well do
umented in liquid water.1 If we assumethat the dynami
s of liquid water has a plasma 
omponent 
onsisting of H+z 
ations, with density
2n and mass m (proton mass), and O−2z anions with density n and mass M = 16m, where nis the water density, then we get va/vs = (1 − S2

3/S1S2)
−1/2 ≃ (2M/9m + 5/9)1/2 ≃ 2, whi
h ispre
isely the ratio of the two sound velo
ities determined experimentally.2 If we note that the
hara
teristi
 frequen
y determined in these experiments is of the order of ω ≃ 10131s−1 then we
an estimate the redu
ed e�e
tive 
harge z from ω ≃ ωp = 16πne2z2/µ given by equation (15),where µ = 2mM/(M + 2m) is the redu
ed mass. We get z ≃ 3 × 10−2, whi
h is a very smallvalue. One may say indeed that liquid water is in the limit of vanishing Coulomb 
oupling. Wenote also that for deuterated water we get from equation (20) va/vs =

√
2, while the experimentalvalue seems to be 
loser to 2.3 The ex
itation spe
trum given by equations (11) for the O−2z −Hzplasma is shown in Fig. 1.1See, for instan
e, S. C. Santu

i, D. Fioretto, L. Comez, A. Gessini and C. Mas
iove

hio, Phys. Rev. Lett.97 225701 (2006) and referen
es therein; F. Sette, G. Ruo

o, M. Kris
h, C. Mas
iove

hio, R. Verbeni and U.Bergmann, Phys. Rev. Lett. 77 83 (1996). It is worth noting that the intera
tion employed here (Coulombianplus short-range) is similar with the intera
tion used in previous studies of mole
ular dynami
s, where su
h an"anomalous" sound was �rst suggested (A. Rahman and F. H. Stillinger, Phys. Rev. A10 368 (1974)).2The velo
ity of the ordinary sound in water is vs ≃ 1500m/s, while the velo
ity of the "anomalous" sound is

va ≃ 3000m/s.3J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. Dorner, Phys. Rev. Lett. 54 2681 (1985); C. Petrillo,F. Sa

hetti, B. Dorner and J.-B. Su
k, Phys. Rev. E62 3611 (2000). The velo
ity of the "anomalous" soundgiven by equation (20) is va ≃ 2200m/s.
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trum of density ex
itations given by equation (11) for the O−2z − H+z plasma.We emphasize that sound-like ex
itations given by equation (12) are di�erent from the ordianryhydrodynami
 sound. Indeed, the former are non-equilibrium elementary ex
itations while thelatter pro
eeds by equilibrium, adiabati
 motion. It is easy to see that the velo
ity of the ordinarysound is given by v0 = 1/κ
∑

i nimi, where κ is the adiabati
 
ompressibility (the 
orrespodingintera
tion reads U = (2κ)−1
∫

dr [divu(r)]2 = −(2κn)−1∑

q q2u(q)u(−q)). For the H+z − O−2zplasma we get v0 = 1/
√

κn(M + 2m) and (12) gives vs =
√

9nχ/(M + 2m). We may assign theadditional fast sound to the sound-like ex
itations propagating with velo
ity vs = 3000m/s and
ompare them with the ordinary sound propagating with velo
ity v0 = 1500m/s. We 
an see thatthe ratio vs/v0 = 3n
√

κχ does not exhibit an isotopi
 e�e
t, in agreement with experiments. theintera
tion with the movements of the individual parti
les gives a �nite lifetime for the sound-likeex
itations, whi
h exist beyond a 
ertain threshold waveve
tor (where the hydrodynami
 sound
eases to exist, being absorbed by su
h individual movements).Equation δni = −nidivui is equivalent with Maxwell equation divEi = 4πqiδni, where the ele
tri
�eld is given by Ei = −4πqiniui, where qi = ezi is the ele
tri
 
harge of the i-th spe
ies of ions.It follows that the internal �eld is given by
Eint = −4πe

∑

i

ziniui (21)We get easily this �eld from equations (6) with an external ele
tri
 �eld,
Eint = −iqφ

ω2
p

ω2 − ω2
p

(22)in the long wavelength limit (it is proportional to x given by equation (8)). The diele
tri
 fun
tionis de�ned by D = εE = e(D +Eint), where D = −iqφ is the external �eld (ele
tri
 displa
ement).We get the diele
tri
 fun
tion
ε = 1 − ω2

p/ω
2 , (23)as expe
ted. This diele
tri
 fun
tion exhibits an absorption edge (ωp) for very low frequen
ies. Inthis stati
 limit it is very likely to admit the existen
e of an additional internal �eld of intrinsi
polarizability whi
h 
hanges the above diele
tri
 fun
tion into ε = (ω2 − ω2

p)/(ω2 + ω2
0), where ω0is a frequen
y parameter a

ounting for su
h an internal �eld.
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an see that the displa
ement ui is a superposition of the two eigenve
torsof the system of equations (9), whi
h os
illates with eigenfrequen
ies ω1,2, respe
tively. It followsthat these 
oordinates are those of linear harmoni
 os
illators with the potential energy of theform miω
2u2

i /2. The statisti
al distribution of the 
oordinates ui in the 
lassi
al limit is given by
dw ∼ exp(−miω

2u2
i /2T )dui, where T denotes the temperature. We get the thermal averages

〈uiuj〉 =
T

miω2
δij . (24)On the other hand the stru
ture fa
tor, de�ned as

S(q, ω) = 1
2π

∫

drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r
′)−iωt =

= N
2πn2

∫

dt 〈δn(q, t)δn(−q, 0)〉 e−iωt

(25)
an be written as
S(q, ω) =

Nq2

2πn2

∫

dt
∑

ij

ninj 〈ui(t)uj(0)〉 e−iωt . (26)Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (27)and making use of equation (24) we get the stru
ture fa
tor

S(q, ω) = NTq2

(

∑

i

n2
i /n

2mi

)[

1

ω2
1

δ(ω − ω1) +
1

ω2
2

δ(ω − ω2)

] (28)We 
an see that the relevant sound 
ontributions read
S(q, ω) ≃ NT

v2
s,a

(

∑

i

n2
i /n

2mi

)

δ(ω − vs,aq) . (29)The short-range intera
tion χ 
an be generalized to a short-range intera
tion χij distin
t for ea
hpair of spe
ies. In this 
ase, the ex
itation spe
trum of the density os
illations may exhibit multiplebran
hes in general, for a multi-
omponent plasma. In addition, it may have spe
ial features, likea dip in the plasmoni
 bran
h, or negative velo
ity for the ordinary sound, whi
h may indi
ateeither an anomalous behaviour or unphysi
al situations.
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