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= n , (2)where a is the mean inter-partile spaing. This is equivalent with the random phase approxima-tion (RPA) and with negleting the "Zitterbewegung" of the partiles. It is noteworthy that theontinuous distribution of the sites r0

i ensures the uniqueness of the ground-state.1 For eletriharges moving against a neutralizing, ontinuous, rigid bakground these assumptions are knownto de�ne the "jellium" model. The motion is desribed by (small) oordinates u(r0
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u̇(q)u̇(−q) , (4)1A similar view has been expressed by R. Zwanzig, Phys. Rev. A156 190 ((1967).
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dru(r)e−iqr (5)is used.During the motion, the density of partiles given by equation (1) su�ers a small hange given by
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dr′qu(r′)e−iqr′ = −ndivu(r) (6)(suh that the number of partiles is onserved), providing qu(r0
i ) ≪ 1. Its Fourier transformreads

δn(q) = −inqu(q) . (7)Similarly, the interation is given by
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ϕ(q)δn(q)δn(−q) , (9)where ϕ(q) is the Fourier transform of the interation potential,
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ϕ(q)eiqr . (10)We an see from equations (7) and (9) that the interation implies only longitudinal oordinates
u(q) along the wavevetor q, so we may write u(q) = (q/q)u(q), δn(q) = −inqu(q), with
δn∗(−q) = δn(q), u∗(−q) = u(q) and u∗(−q) = −u(q). Making use of these oordinates thekineti energy given by equation (4) beomes
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u̇(q)u̇(−q) (11)and the potential energy given by equation (9) reads
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q2ϕ(q)u(q)u(−q) . (12)The lassial equations of motion orresponding to the lagrangian L = T − U are2
mü(q) + nq2ϕ(q)u(q) = 0 . (13)They desribe density olletive osillations with frequeny given by ω2 = nq2ϕ(q)/m. As it iswell-know, these osillations are sound waves for short-range potentials and plasma waves for theCoulomb potential (ϕ(q) = 4πne2/m, where e is the partile harge). They an be quantizedas usually. They do ontribute to the thermodynamis of the ensemble, in the usual way. They2It is worth noting that the dynamis of these olletive oordinates does not depend on the equilibrium sites

r
0

i
, as expeted. It is an emerging dynamis.



J. Theor. Phys. 3have also a �nite lifetime, arising both from their mutual interation (moderate value of qu(r0
i ))and from their interation with the motion of the individual partiles (the orresponding ouplingarises from the kineti interation3The existene of the ground-state de�ned by ontinuously-distributed �xed positions r0

i is a validassumption as long as we neglet the movements of individual partiles. We give up this as-sumption here for the moment, and analyze the motion inluding the "Zitterbewegung" of thepartiles. The oordinates are now ri and the ground-state is the vauum. The kineti energygiven by equation (4) is
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q sinq(ri − rj) = 0 , (18)where ondition j 6= i is super�uos.Equations (18) are non-integrable. Indeed, if we multiply both sides of equation (18) with ṙi weget
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cosq(ri − rj) . (21)From equation (20) we an see that ∂Ei/∂rj 6= 0 for j 6= i, while ∂Ei/∂ri = 0. It follows that themixed derivatives ∂2Ei/∂rj∂ri do not exist (are both vanishing and non-vanishing). This holds ingeneral for ensembles of interating partiles.43M. Apostol, J. Theor. Phys. 169 (2008).4See, for instane, M. Apostol, J. Theor.Phys. 152 (2007).



4 J. Theor. Phys.However, a onsistent dynamis may emerge from equations (18). Indeed, let us write ri = r0
i +uias before. Equations (18) beome
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q sinq(r0
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j + ui − uj) . (22)Then we notie that ui − uj must be along the wavevetor q, so it remains only suh a vetor insummation (18). For small variations we may take ui − uj = −a∂u/∂a along this q-vetor, andalso ui = a∂u/∂a. Thereafter, we use ∑

j cosq(r0
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j ) = Nδq,0 and ∑

j sin q(r0
i − r0

j) = 0, andget �nally
m∂ü/∂a = −nϕ(q)q2∂u/∂a , (23)whih leads to a frequeny given by ω2 = nq2ϕ(q)/m in the limit of vanishing q. This way, wereover the density olletive osillations derived above.Moreover, the RPA applied diretly to equation (18) leads to ri = ri(q) direted along the q-wavevetor and osillating with the olletive osillations frequeny given by ω2 = nq2ϕ(q)/min the long wavelength limit q → 0 (where, however, these osillations do not exist, as they areabsorbed by the motion of the individual partiles; the equilibrium, thermodynami sound existsthere, as another elementary olletive exitation; it has a �nite lifetime, and its ontribution tothermodynamis is rather a higher-order e�et. Generally, the olletive exitations bring a smallontribution to the thermodynamis; the main one is brought by the single-partile exitations).The quantum motion brings nothing new. Indeed, the partile momentum is ṗi = mṙi, and,making use of the ommutator

[pi, iq(rj − rk)] = ~q (δij − δik) , (24)we get
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q sinq(ri − rj) , (26)whih is the equation of motion (18). It an also be written as
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q(qpi/m) cosq(ri − rj) , (27)where one an see more easily the olletive osillations for long wavelengths and small amplitudes.The non-integrability and the haotial harater of the underlying "Zitterbewegung" all for astatistial motion (where the ontinuous distribution of the equlibrium positions is ensured). Theemerging exitations, either single-partile or olletive, have an essential limitation imbued intheir �nite lifetime, arising mainly from their interation with the "Zitterbewegung". It is themark of non-integrability. It is worth noting that the single-partile exitations are individualpartiles moving in a mean �eld (quasipartiles). They ontribute mostly to the thermodynamisand ohesion. The inherent non-integrability e�ets may be ast in multi-partile fores. Thelatter do ontribute to the mean �eld of pair-wise aggregates exitations.55See M. Apostol, J. Theor. Phys. 152 (2006).



J. Theor. Phys. 5We turn bak now to equations (19)-(21). These tell us that the ensemble may be viewed asonsisting of one-partile exitations of energy Ei and an unertainty in energy given by the rhsof equation (19). Equation (21) an be written with a satisfatory approximation as
Ei =

1

2
mṙ2

i + nϕ(0) (28)This is the energy of a single-partile exitation. It may also de�ne an e�etive mass (whihdepends on veloity). It shows that the e�et of interation is a mean �eld given by the seondterm in the rhs of equation (28). It is very interesting to note the e�et of this mean �eld
h = nϕ(0) =
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drϕ(r) . (29)For repulsive short-range potentials h > 0, and we have a gas of free partiles moving in an external�eld. Atually, the interation potential ϕ(r) is repulsive at short distanes and attrative at longdistanes. In suh a mean �eld, the partiles may even be trapped, and then we have a ohesionenergy −ε0 per partile and small, loal osillations of the density; together with the kinematialonstraint on their motion, the partiles form then a liquid.6 On the other hand, for unboundstates we may write
h = −ε0 = nϕ(0) , (30)where −ε0 ats as a ohesion energy. The thermodynamis of suh an interating gas of partileshas a free energy
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− Nε0 , (31)and a pressure
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ε0 . (32)It is easy to �nd out N(∂ε0/∂V ) = n2ϕ(0), hene
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]

V = NT . (33)Taking into aount that ϕ(0) < 0, and allowing for an exluded volume, this is van der Waalsequation. The equation is valid also for liquids (the di�erene arises for thermally exited states,whih are inhibited in liquids; the energy ontains then NT for liquids and 3NT/2 for monoatomigases)7.Sine m 〈v2〉 /2 = 3T/2 we get from equation (28) an e�etive mass hange8
∆m/m =

2

3
nϕ(0) . (34)The above piture is valid as long as the unertainty in energy of the single-partile exitationsis negleted. We estimate now the rhs of equation (19). First, we note that the single-partileexitations with energy Ei given by equation (28) move as free partiles, with onstant veloities

vi, starting, say, at r0
i for t = 0. Equation (19) an now be integrated, to give an additional energy
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(35)6M. Apostol, J.Theor. Phys. 125 (2006).7M. Apostol. J. Theor. Phys. 125 (2006).8M. Apostol and L. C. Cune, J. Theor. Phys. 127 (2006).



6 J. Theor. Phys.The seond term in the rhs of equation (35) an be negleted in omparison with the �rst, due tothe rapid inrease of the denominator, while the summation of the osines in the �rst term givesa ontribution of the order of unity. It follows
δEi ≃

1

V

∑
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ϕ(q) = ϕ(r = 0) = ϕ0 . (36)This is a rather high amount of energy. It tells how e�etive is the interation in exhangingenergy beteeen partiles. It may be oneived that suh interation proesses ensure a statistialequilibrium, de�ned by a statistial distribution, with a harateristi energy sale εeq = ϕ0. Itshould be larger than any other relevant energy sale.It is oneivable that the whole ensemble of partiles has a miroanonial distribution δ(E −
E0)dE, as the motion of a losed ensemble onserves the energy. This is unsatisfatory for atleast two reasons. First, E is stritly on�ned to E0, so the distribution is meaningless. Seond,not all the points on the manifold E(ri,pi) = E0 are reahed (ergodi hypothesis, where pi isthe momentum of the i-th partile), whih again makes suh a distribution meaningless. We mayimagine a solution to these di�ulties by assuming a miroanonial distribution for eah partile(or sub-ensemble) of the form δ(E −Ei − δEn

i )dEdn, where δEn
i is the unertainty in the energy

Ei distributed uniformly over over various states n. We may then alulate the mean energy
Ei = Ei + 〈δEi〉 = Ei and the mean square deviation from E2

i = E2
i + 〈δE2

i 〉. The di�ulty withsuh a single-partile miroanonial distribution is that it desribes eah time another partile,as resulting from the ollisions proesses.The obvious solution to suh di�ulties is to ask for the probability for a partile to have a eratinenergy E while the large rest of the ensemble aquires various states. As it is well-known, thisprobability is given by the anonial distribution
∫

dE ′eS′

δ(E ′ + E − E0) = const × e−βE , (37)where β = ∂S ′/∂E′ for E ′ = E0 is the inverse of the temperature T and S ′ is the entropy ofthe thermal bath. In suh terms, the question of the unertainty δEi does not appear anymore.Obviously, εeq > T = εth. But the e�ets of interation must still be present. We may onsiderthe single-partile exitations with energy as the one given by equation (28), ourring with Gibbsprobability given by equation (37) and having a �nite lifetime given by interation. For instane,the partile ollisions has ross-setion σ, so the quasipartiles has a meanfree path Λ = a3/σ anda lifetime τ = Λ/v, where v is ofthe order of the thermal veloity (v ∼
√

T/m for instane). Ingeneral, the number of ollisions per unit time must be estimated, as governed by interation, inorder to get the lifetime and the meanfree path. The thermodynamis as the one given by equation(31) for suh quasipartiles holds. Obviously, the series of inequalities εeq > T > δεf > δεex(>
δεq > δεobs) is satis�ed, where δεf is the �utuation energy per partile, δεex is the unertaintyin the quasi-partile (elementary exitation) energy (~/τ), δεq is the separation between quantallevels and δεobs is the unertainty in energy brought about by the observation. We an see thatthe single-partile exitations in this piture (statistial or thermodynamial piture) representan emerging dynamis with respet to the original non-integrable and non-ergodi mehanialensemble.© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro


