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Abstract

It is shown that apart from the non-integrable (chaotic) "Zitterbewegung" of individual
particles, an ensemble of interacting particles exhibits collective oscillations of the particle
density (collective excitations) with small amplitudes in the long wavelength limit. The single-
particle excitations (quasiparticles) of the ensemble are also defined. All these (collective
and single-particle) excitations correspond to an emergent dynamics, requiring additional
assumptions about the underlying motion.

We consider N identical particles with mass m in volume V' interacting through the pair-wise
potential ¢(|r; —r;|), where i, j label the particles. In order to study the density oscillations
we define first a (unique) equilibrium, ground-state. The density oscillations are defined as small
deviations with respect to this ground state. Consequently, we assume that there exist equilibrium
positions r¥, such that the particle density
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where a is the mean inter-particle spacing. This is equivalent with the random phase approxima-
tion (RPA) and with neglecting the "Zitterbewegung" of the particles. It is noteworthy that the
continuous distribution of the sites r? ensures the uniqueness of the ground-state.! For electric
charges moving against a neutralizing, continuous, rigid background these assumptions are known
to define the "jellium" model. The motion is described by (small) coordinates u(r?) defined by

=1+ u(r?). (3)

The kinetic energy is given by

T = %;mrf = %;muf = %mn/driﬁ(r) = %mzu(q)u(—q) ) (4)

'A similar view has been expressed by R. Zwanzig, Phys. Rev. A156 190 ((1967).
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where the Fourier transform

u(r) =
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is used.

During the motion, the density of particles given by equation (1) suffers a small change given by
Ii ; ;0 ’ln . I
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(such that the number of particles is conserved), providing qu(r?) < 1. Its Fourier transform
reads

on(q) = —inqu(q) . (7)

Similarly, the interaction is given by
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where ¢(q) is the Fourier transform of the interaction potential,
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We can see from equations (7) and (9) that the interaction implies only longitudinal coordinates
u(q) along the wavevector q, so we may write u(q) = (q/q)u(q), én(q) = —inqu(q), with
m*(—q) = on(q), u*(—q) = u(q) and u*(—q) = —u(q). Making use of these coordinates the
kinetic energy given by equation (4) becomes

1
T = —gmzu(q)ﬂ(—Q) (11)
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and the potential energy given by equation (9) reads

U =51 Y Pel@ulau(-a) (12)

The classical equations of motion corresponding to the lagrangian L = T — U are?

mii(q) + ng*e(q)u(q) =0 . (13)

They describe density collective oscillations with frequency given by w? = ng?p(q)/m. As it is
well-know, these oscillations are sound waves for short-range potentials and plasma waves for the
Coulomb potential (¢(q) = 4mne?/m, where e is the particle charge). They can be quantized
as usually. They do contribute to the thermodynamics of the ensemble, in the usual way. They

2Tt is worth noting that the dynamics of these collective coordinates does not depend on the equilibrium sites
Y as expected. It is an emerging dynamics.
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have also a finite lifetime, arising both from their mutual interaction (moderate value of qu(r?))
and from their interaction with the motion of the individual particles (the corresponding coupling
arises from the kinetic interaction®

The existence of the ground-state defined by continuously-distributed fixed positions r is a valid

assumption as long as we neglect the movements of individual particles. We give up this as-
sumption here for the moment, and analyze the motion including the "Zitterbewegung" of the
particles. The coordinates are now r; and the ground-state is the vacuum. The kinetic energy

given by equation (4) is
1
=5 § mi? (14)

and the potential energy given by equation (8) reads now
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where

2:51"—rZ = Z quZe i (16)

Making use of equation (16), the potential energy given by equation (15) becomes

U= gy Dela e (1"
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The classical equations of motion are
. 1 .
mi; — (q) qum q(r;—r;) =0, (18)

where condition j # ¢ is superfluos.

Equations (18) are non-integrable. Indeed, if we multiply both sides of equation (18) with ¥; we

get
= % Z ©(q) Z qr;sinq(r; — r;) , (19)

or

1 .
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where

1 . 1
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From equation (20) we can see that 0F;/0r; # 0 for j # 4, while OF;/0r; = 0. It follows that the
mixed derivatives 02 E; /Or;0r; do not exist (are both vanishing and non-vanishing). This holds in
general for ensembles of interacting particles.

3M. Apostol, J. Theor. Phys. 169 (2008).
4See, for instance, M. Apostol, J. Theor.Phys. 152 (2007).
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However, a consistent dynamics may emerge from equations (18). Indeed, let us write r; = r¥ +u;
as before. Equations (18) become

. 1 :
mil; = Z ©(q) qumq(r? —r)+u —uy). (22)
q J

Then we notice that u; — u; must be along the wavevector q, so it remains only such a vector in
summation (18). For small variations we may take u; — u; = —adu/Ja along this g-vector, and
also u; = adu/0a. Thereafter, we use ), cos q(r) —rj) = Nigo and >;sin q(r) —r?) = 0, and
get finally

moii/da = —np(q)q*Ou/a (23)

which leads to a frequency given by w? = ng?p(q)/m in the limit of vanishing ¢. This way, we
recover the density collective oscillations derived above.

Moreover, the RPA applied directly to equation (18) leads to r; = r;(q) directed along the q-
wavevector and oscillating with the collective oscillations frequency given by w? = ng*p(q)/m
in the long wavelength limit ¢ — 0 (where, however, these oscillations do not exist, as they are
absorbed by the motion of the individual particles; the equilibrium, thermodynamic sound exists
there, as another elementary collective excitation; it has a finite lifetime, and its contribution to
thermodynamics is rather a higher-order effect. Generally, the collective excitations bring a small
contribution to the thermodynamics; the main one is brought by the single-particle excitations).

The quantum motion brings nothing new. Indeed, the particle momentum is p; = mr;, and,
making use of the commutator

[Pi,iq(r; — 1) = hg (655 — Oar) (24)
we get
[pi, €9%7] = hq (8;; — S3) €4 (25)
and » )
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which is the equation of motion (18). It can also be written as
. 1
bi = Z ©(q) Z a(qpi/m)cosq(r; — ;) , (27)
q J

where one can see more easily the collective oscillations for long wavelengths and small amplitudes.

The non-integrability and the chaotical character of the underlying "Zitterbewegung" call for a
statistical motion (where the continuous distribution of the equlibrium positions is ensured). The
emerging excitations, either single-particle or collective, have an essential limitation imbued in
their finite lifetime, arising mainly from their interaction with the "Zitterbewegung". It is the
mark of non-integrability. It is worth noting that the single-particle excitations are individual
particles moving in a mean field (quasiparticles). They contribute mostly to the thermodynamics
and cohesion. The inherent non-integrability effects may be cast in multi-particle forces. The
latter do contribute to the mean field of pair-wise aggregates excitations.”

5See M. Apostol, J. Theor. Phys. 152 (2006).
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We turn back now to equations (19)-(21). These tell us that the ensemble may be viewed as
consisting of one-particle excitations of energy F; and an uncertainty in energy given by the rhs
of equation (19). Equation (21) can be written with a satisfactory approximation as

1
E; = §mf§ + ngp(0) (28)

This is the energy of a single-particle excitation. It may also define an effective mass (which
depends on velocity). It shows that the effect of interaction is a mean field given by the second
term in the rhs of equation (28). It is very interesting to note the effect of this mean field

h = np(0) = % / dro(r) (29)

For repulsive short-range potentials h > 0, and we have a gas of free particles moving in an external
field. Actually, the interaction potential ¢(r) is repulsive at short distances and attractive at long
distances. In such a mean field, the particles may even be trapped, and then we have a cohesion
energy —eg per particle and small, local oscillations of the density; together with the kinematical
constraint on their motion, the particles form then a liquid.® On the other hand, for unbound
states we may write

h = —eo = ne(0) , (30)
where —gq acts as a cohesion energy. The thermodynamics of such an interacting gas of particles
has a free energy

F=—-NTIn ]\‘:(mT/Qﬂhz)g/Z — Neg (31)
and a pressure
0
It is easy to find out N(dgo/0V) = n?p(0), hence
[p—n*p(0)] V =NT . (33)

Taking into account that ¢(0) < 0, and allowing for an excluded volume, this is van der Waals
equation. The equation is valid also for liquids (the difference arises for thermally excited states,
which are inhibited in liquids; the energy contains then NT for liquids and 3NT'/2 for monoatomic

gases)’.

Since m (v?) /2 = 3T/2 we get from equation (28) an effective mass change®

2
Am/m = gmp(O) . (34)
The above picture is valid as long as the uncertainty in energy of the single-particle excitations
is neglected. We estimate now the rhs of equation (19). First, we note that the single-particle
excitations with energy FE; given by equation (28) move as free particles, with constant velocities
v;, starting, say, at r? for ¢ = 0. Equation (19) can now be integrated, to give an additional energy
0
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6M. Apostol, J.Theor. Phys. 125 (2006).
M. Apostol. J. Theor. Phys. 125 (2006).
8M. Apostol and L. C. Cune, J. Theor. Phys. 127 (2006).
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The second term in the rhs of equation (35) can be neglected in comparison with the first, due to
the rapid increase of the denominator, while the summation of the cosines in the first term gives
a contribution of the order of unity. It follows

3B = 3 pl) = plr=0) = o (36)

This is a rather high amount of energy. It tells how effective is the interaction in exchanging
energy beteeen particles. It may be conceived that such interaction processes ensure a statistical
equilibrium, defined by a statistical distribution, with a characteristic energy scale ., = ¢o. It
should be larger than any other relevant energy scale.

It is conceivable that the whole ensemble of particles has a microcanonical distribution §(E —
Ey)dE, as the motion of a closed ensemble conserves the energy. This is unsatisfactory for at
least two reasons. First, F is strictly confined to Ej, so the distribution is meaningless. Second,
not all the points on the manifold E(r;, p;) = FEy are reached (ergodic hypothesis, where p; is
the momentum of the i-th particle), which again makes such a distribution meaningless. We may
imagine a solution to these difficulties by assuming a microcanonical distribution for each particle
(or sub-ensemble) of the form 6(E — E; — 0 El")dEdn, where JE!" is the uncertainty in the energy
E; distributed uniformly over over various states n. We may then calculate the mean energy
E; = E; + (§E;) = E; and the mean square deviation from E? = E? + (§E?). The difficulty with
such a single-particle microcanonical distribution is that it describes each time another particle,
as resulting from the collisions processes.

The obvious solution to such difficulties is to ask for the probability for a particle to have a ceratin
energy F while the large rest of the ensemble acquires various states. As it is well-known, this
probability is given by the canonical distribution

/dE'eS'(S(E' + E — Ey) = const x e PF (37)

where 3 = 05'/OE' for E' = Ej is the inverse of the temperature 7" and S’ is the entropy of
the thermal bath. In such terms, the question of the uncertainty J F; does not appear anymore.
Obviously, €., > T' = 4. But the effects of interaction must still be present. We may consider
the single-particle excitations with energy as the one given by equation (28), occurring with Gibbs
probability given by equation (37) and having a finite lifetime given by interaction. For instance,
the particle collisions has cross-section o, so the quasiparticles has a meanfree path A = a®/o and
a lifetime 7 = A/v, where v is ofthe order of the thermal velocity (v ~ /T /m for instance). In
general, the number of collisions per unit time must be estimated, as governed by interaction, in
order to get the lifetime and the meanfree path. The thermodynamics as the one given by equation
(31) for such quasiparticles holds. Obviously, the series of inequalities €., > T" > def > Jeeqi(>
deq > Oegps) is satisfied, where de is the fluctuation energy per particle, de., is the uncertainty
in the quasi-particle (elementary excitation) energy (h/7), dg, is the separation between quantal
levels and de,p, is the uncertainty in energy brought about by the observation. We can see that
the single-particle excitations in this picture (statistical or thermodynamical picture) represent
an emerging dynamics with respect to the original non-integrable and non-ergodic mechanical
ensemble.
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