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tIt is shown that apart from the non-integrable (
haoti
) "Zitterbewegung" of individualparti
les, an ensemble of intera
ting parti
les exhibits 
olle
tive os
illations of the parti
ledensity (
olle
tive ex
itations) with small amplitudes in the long wavelength limit. The single-parti
le ex
itations (quasiparti
les) of the ensemble are also de�ned. All these (
olle
tiveand single-parti
le) ex
itations 
orrespond to an emergent dynami
s, requiring additionalassumptions about the underlying motion.We 
onsider N identi
al parti
les with mass m in volume V intera
ting through the pair-wisepotential ϕ(|ri − rj|), where i , j label the parti
les. In order to study the density os
illationswe de�ne �rst a (unique) equilibrium, ground-state. The density os
illations are de�ned as smalldeviations with respe
t to this ground state. Consequently, we assume that there exist equilibriumpositions r0
i , su
h that the parti
le density

n0(r) =
∑

i

δ(ri − r0
i ) =

1

V

∑

q

eiqr
∑

i

e−iqr0

i (1)is 
onstant n0(r) = n. This may happen if and only if the r0
i are 
ontinuously distributed, su
hthat

n0(r) =
1

V

∑

q

eiqr

∫

dr′

a3
e−iqr′ =

1

a3
= n , (2)where a is the mean inter-parti
le spa
ing. This is equivalent with the random phase approxima-tion (RPA) and with negle
ting the "Zitterbewegung" of the parti
les. It is noteworthy that the
ontinuous distribution of the sites r0

i ensures the uniqueness of the ground-state.1 For ele
tri

harges moving against a neutralizing, 
ontinuous, rigid ba
kground these assumptions are knownto de�ne the "jellium" model. The motion is des
ribed by (small) 
oordinates u(r0
i ) de�ned by

ri = r0
i + u(r0

i ) . (3)The kineti
 energy is given by
T =

1

2

∑

i

mṙ2
i =

1

2

∑

i

mu̇2
i =

1

2
mn

∫

dru̇2(r) =
1

2
m

∑

q

u̇(q)u̇(−q) , (4)1A similar view has been expressed by R. Zwanzig, Phys. Rev. A156 190 ((1967).



2 J. Theor. Phys.where the Fourier transform
u(r) =

1√
N

∑

q

u(q)eiqr , u(q) =

√
N

V

∫

dru(r)e−iqr (5)is used.During the motion, the density of parti
les given by equation (1) su�ers a small 
hange given by
δn(r) = − i

V

∑

q

eiqr
∑

i

qu(r0
i )e

−iqr0

i = −in

V

∑

q

eiqr

∫

dr′qu(r′)e−iqr′ = −ndivu(r) (6)(su
h that the number of parti
les is 
onserved), providing qu(r0
i ) ≪ 1. Its Fourier transformreads

δn(q) = −inqu(q) . (7)Similarly, the intera
tion is given by
U =

1

2

∑

i6=j

ϕ(|ri − rj|) =
1

2

∫

drdr′ϕ(|r− r′|)δn(r)δn(r′) , (8)or
U =

1

2n

∑

q

ϕ(q)δn(q)δn(−q) , (9)where ϕ(q) is the Fourier transform of the intera
tion potential,
ϕ(r) =

1

V

∑

q

ϕ(q)eiqr . (10)We 
an see from equations (7) and (9) that the intera
tion implies only longitudinal 
oordinates
u(q) along the waveve
tor q, so we may write u(q) = (q/q)u(q), δn(q) = −inqu(q), with
δn∗(−q) = δn(q), u∗(−q) = u(q) and u∗(−q) = −u(q). Making use of these 
oordinates thekineti
 energy given by equation (4) be
omes

T = −1

2
m

∑

q

u̇(q)u̇(−q) (11)and the potential energy given by equation (9) reads
U = −1

2
n

∑

q

q2ϕ(q)u(q)u(−q) . (12)The 
lassi
al equations of motion 
orresponding to the lagrangian L = T − U are2
mü(q) + nq2ϕ(q)u(q) = 0 . (13)They des
ribe density 
olle
tive os
illations with frequen
y given by ω2 = nq2ϕ(q)/m. As it iswell-know, these os
illations are sound waves for short-range potentials and plasma waves for theCoulomb potential (ϕ(q) = 4πne2/m, where e is the parti
le 
harge). They 
an be quantizedas usually. They do 
ontribute to the thermodynami
s of the ensemble, in the usual way. They2It is worth noting that the dynami
s of these 
olle
tive 
oordinates does not depend on the equilibrium sites

r
0

i
, as expe
ted. It is an emerging dynami
s.



J. Theor. Phys. 3have also a �nite lifetime, arising both from their mutual intera
tion (moderate value of qu(r0
i ))and from their intera
tion with the motion of the individual parti
les (the 
orresponding 
ouplingarises from the kineti
 intera
tion3The existen
e of the ground-state de�ned by 
ontinuously-distributed �xed positions r0

i is a validassumption as long as we negle
t the movements of individual parti
les. We give up this as-sumption here for the moment, and analyze the motion in
luding the "Zitterbewegung" of theparti
les. The 
oordinates are now ri and the ground-state is the va
uum. The kineti
 energygiven by equation (4) is
T =

1

2

∑

i

mṙ2
i (14)and the potential energy given by equation (8) reads now

U =
1

2

∑

i6=j

ϕ(|ri − rj|) =
1

2

∫

drdr′ϕ(|r− r′|)n(r)n(r′) , (15)where
n(r) =

∑

i

δ(r − ri) =
1

V

∑

q

eiqr
∑

i

e−iqri . (16)Making use of equation (16), the potential energy given by equation (15) be
omes
U =

1

2V

∑

q

ϕ(q)
∑

i6=j

eiq(ri−rj) . (17)The 
lassi
al equations of motion are
mr̈i −

1

V

∑

q

ϕ(q)
∑

j

q sinq(ri − rj) = 0 , (18)where 
ondition j 6= i is super�uos.Equations (18) are non-integrable. Indeed, if we multiply both sides of equation (18) with ṙi weget
dEi

dt
=

1

V

∑

q

ϕ(q)
∑

j

qṙj sinq(ri − rj) , (19)or
dEi =

1

V

∑

q

ϕ(q)
∑

j

qdrj sinq(ri − rj) , (20)where
Ei =

1

2
mṙ2

i +
1

V

∑

q

ϕ(q)
∑

j

cosq(ri − rj) . (21)From equation (20) we 
an see that ∂Ei/∂rj 6= 0 for j 6= i, while ∂Ei/∂ri = 0. It follows that themixed derivatives ∂2Ei/∂rj∂ri do not exist (are both vanishing and non-vanishing). This holds ingeneral for ensembles of intera
ting parti
les.43M. Apostol, J. Theor. Phys. 169 (2008).4See, for instan
e, M. Apostol, J. Theor.Phys. 152 (2007).



4 J. Theor. Phys.However, a 
onsistent dynami
s may emerge from equations (18). Indeed, let us write ri = r0
i +uias before. Equations (18) be
ome

müi =
1

V

∑

q

ϕ(q)
∑

j

q sinq(r0
i − r0

j + ui − uj) . (22)Then we noti
e that ui − uj must be along the waveve
tor q, so it remains only su
h a ve
tor insummation (18). For small variations we may take ui − uj = −a∂u/∂a along this q-ve
tor, andalso ui = a∂u/∂a. Thereafter, we use ∑

j cosq(r0
i − r0

j ) = Nδq,0 and ∑

j sin q(r0
i − r0

j) = 0, andget �nally
m∂ü/∂a = −nϕ(q)q2∂u/∂a , (23)whi
h leads to a frequen
y given by ω2 = nq2ϕ(q)/m in the limit of vanishing q. This way, were
over the density 
olle
tive os
illations derived above.Moreover, the RPA applied dire
tly to equation (18) leads to ri = ri(q) dire
ted along the q-waveve
tor and os
illating with the 
olle
tive os
illations frequen
y given by ω2 = nq2ϕ(q)/min the long wavelength limit q → 0 (where, however, these os
illations do not exist, as they areabsorbed by the motion of the individual parti
les; the equilibrium, thermodynami
 sound existsthere, as another elementary 
olle
tive ex
itation; it has a �nite lifetime, and its 
ontribution tothermodynami
s is rather a higher-order e�e
t. Generally, the 
olle
tive ex
itations bring a small
ontribution to the thermodynami
s; the main one is brought by the single-parti
le ex
itations).The quantum motion brings nothing new. Indeed, the parti
le momentum is ṗi = mṙi, and,making use of the 
ommutator

[pi, iq(rj − rk)] = ~q (δij − δik) , (24)we get
[

pi, e
iq(rj−rk)

]

= ~q (δij − δik) eiq(rj−rk) , (25)and
ṗi =

i

~
[H,pi] =

1

V

∑

q

ϕ(q)
∑

j

q sinq(ri − rj) , (26)whi
h is the equation of motion (18). It 
an also be written as
p̈i =

1

V

∑

q

ϕ(q)
∑

j

q(qpi/m) cosq(ri − rj) , (27)where one 
an see more easily the 
olle
tive os
illations for long wavelengths and small amplitudes.The non-integrability and the 
haoti
al 
hara
ter of the underlying "Zitterbewegung" 
all for astatisti
al motion (where the 
ontinuous distribution of the equlibrium positions is ensured). Theemerging ex
itations, either single-parti
le or 
olle
tive, have an essential limitation imbued intheir �nite lifetime, arising mainly from their intera
tion with the "Zitterbewegung". It is themark of non-integrability. It is worth noting that the single-parti
le ex
itations are individualparti
les moving in a mean �eld (quasiparti
les). They 
ontribute mostly to the thermodynami
sand 
ohesion. The inherent non-integrability e�e
ts may be 
ast in multi-parti
le for
es. Thelatter do 
ontribute to the mean �eld of pair-wise aggregates ex
itations.55See M. Apostol, J. Theor. Phys. 152 (2006).



J. Theor. Phys. 5We turn ba
k now to equations (19)-(21). These tell us that the ensemble may be viewed as
onsisting of one-parti
le ex
itations of energy Ei and an un
ertainty in energy given by the rhsof equation (19). Equation (21) 
an be written with a satisfa
tory approximation as
Ei =

1

2
mṙ2

i + nϕ(0) (28)This is the energy of a single-parti
le ex
itation. It may also de�ne an e�e
tive mass (whi
hdepends on velo
ity). It shows that the e�e
t of intera
tion is a mean �eld given by the se
ondterm in the rhs of equation (28). It is very interesting to note the e�e
t of this mean �eld
h = nϕ(0) =

1

a3

∫

drϕ(r) . (29)For repulsive short-range potentials h > 0, and we have a gas of free parti
les moving in an external�eld. A
tually, the intera
tion potential ϕ(r) is repulsive at short distan
es and attra
tive at longdistan
es. In su
h a mean �eld, the parti
les may even be trapped, and then we have a 
ohesionenergy −ε0 per parti
le and small, lo
al os
illations of the density; together with the kinemati
al
onstraint on their motion, the parti
les form then a liquid.6 On the other hand, for unboundstates we may write
h = −ε0 = nϕ(0) , (30)where −ε0 a
ts as a 
ohesion energy. The thermodynami
s of su
h an intera
ting gas of parti
leshas a free energy

F = −NT ln

[

eV

N
(mT/2π~

2)3/2

]

− Nε0 , (31)and a pressure
p = NT/V + N

∂

∂V
ε0 . (32)It is easy to �nd out N(∂ε0/∂V ) = n2ϕ(0), hen
e

[

p − n2ϕ(0)
]

V = NT . (33)Taking into a

ount that ϕ(0) < 0, and allowing for an ex
luded volume, this is van der Waalsequation. The equation is valid also for liquids (the di�eren
e arises for thermally ex
ited states,whi
h are inhibited in liquids; the energy 
ontains then NT for liquids and 3NT/2 for monoatomi
gases)7.Sin
e m 〈v2〉 /2 = 3T/2 we get from equation (28) an e�e
tive mass 
hange8
∆m/m =

2

3
nϕ(0) . (34)The above pi
ture is valid as long as the un
ertainty in energy of the single-parti
le ex
itationsis negle
ted. We estimate now the rhs of equation (19). First, we note that the single-parti
leex
itations with energy Ei given by equation (28) move as free parti
les, with 
onstant velo
ities

vi, starting, say, at r0
i for t = 0. Equation (19) 
an now be integrated, to give an additional energy

δEi = − 1
V

∑

q ϕ(q)
∑

j qvj
cos[q(r0

i−r0

j)+q(vi−vj)t]−cosq(r0

i−r0

j)
q(vi−vj)

=

= 1
V

∑

q ϕ(q)
∑

j

{

cos
[

q
(

r0
i − r0

j

)

+ q (vi − vj) t
]

− cosq
(

r0
i − r0

j

)}

−

− 1
V

∑

q ϕ(q)
∑

j qvi
cos[q(r0

i−r0

j)+q(vi−vj)t]−cosq(r0

i −r0

j)
q(vi−vj)

.

(35)6M. Apostol, J.Theor. Phys. 125 (2006).7M. Apostol. J. Theor. Phys. 125 (2006).8M. Apostol and L. C. Cune, J. Theor. Phys. 127 (2006).



6 J. Theor. Phys.The se
ond term in the rhs of equation (35) 
an be negle
ted in 
omparison with the �rst, due tothe rapid in
rease of the denominator, while the summation of the 
osines in the �rst term givesa 
ontribution of the order of unity. It follows
δEi ≃

1

V

∑

q

ϕ(q) = ϕ(r = 0) = ϕ0 . (36)This is a rather high amount of energy. It tells how e�e
tive is the intera
tion in ex
hangingenergy beteeen parti
les. It may be 
on
eived that su
h intera
tion pro
esses ensure a statisti
alequilibrium, de�ned by a statisti
al distribution, with a 
hara
teristi
 energy s
ale εeq = ϕ0. Itshould be larger than any other relevant energy s
ale.It is 
on
eivable that the whole ensemble of parti
les has a mi
ro
anoni
al distribution δ(E −
E0)dE, as the motion of a 
losed ensemble 
onserves the energy. This is unsatisfa
tory for atleast two reasons. First, E is stri
tly 
on�ned to E0, so the distribution is meaningless. Se
ond,not all the points on the manifold E(ri,pi) = E0 are rea
hed (ergodi
 hypothesis, where pi isthe momentum of the i-th parti
le), whi
h again makes su
h a distribution meaningless. We mayimagine a solution to these di�
ulties by assuming a mi
ro
anoni
al distribution for ea
h parti
le(or sub-ensemble) of the form δ(E −Ei − δEn

i )dEdn, where δEn
i is the un
ertainty in the energy

Ei distributed uniformly over over various states n. We may then 
al
ulate the mean energy
Ei = Ei + 〈δEi〉 = Ei and the mean square deviation from E2

i = E2
i + 〈δE2

i 〉. The di�
ulty withsu
h a single-parti
le mi
ro
anoni
al distribution is that it des
ribes ea
h time another parti
le,as resulting from the 
ollisions pro
esses.The obvious solution to su
h di�
ulties is to ask for the probability for a parti
le to have a 
eratinenergy E while the large rest of the ensemble a
quires various states. As it is well-known, thisprobability is given by the 
anoni
al distribution
∫

dE ′eS′

δ(E ′ + E − E0) = const × e−βE , (37)where β = ∂S ′/∂E′ for E ′ = E0 is the inverse of the temperature T and S ′ is the entropy ofthe thermal bath. In su
h terms, the question of the un
ertainty δEi does not appear anymore.Obviously, εeq > T = εth. But the e�e
ts of intera
tion must still be present. We may 
onsiderthe single-parti
le ex
itations with energy as the one given by equation (28), o

urring with Gibbsprobability given by equation (37) and having a �nite lifetime given by intera
tion. For instan
e,the parti
le 
ollisions has 
ross-se
tion σ, so the quasiparti
les has a meanfree path Λ = a3/σ anda lifetime τ = Λ/v, where v is ofthe order of the thermal velo
ity (v ∼
√

T/m for instan
e). Ingeneral, the number of 
ollisions per unit time must be estimated, as governed by intera
tion, inorder to get the lifetime and the meanfree path. The thermodynami
s as the one given by equation(31) for su
h quasiparti
les holds. Obviously, the series of inequalities εeq > T > δεf > δεex(>
δεq > δεobs) is satis�ed, where δεf is the �u
tuation energy per parti
le, δεex is the un
ertaintyin the quasi-parti
le (elementary ex
itation) energy (~/τ), δεq is the separation between quantallevels and δεobs is the un
ertainty in energy brought about by the observation. We 
an see thatthe single-parti
le ex
itations in this pi
ture (statisti
al or thermodynami
al pi
ture) representan emerging dynami
s with respe
t to the original non-integrable and non-ergodi
 me
hani
alensemble.
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