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tThe 
oupling of the ele
tromagneti
 �eld to the matter polarization (dipole intera
tion)is examined in order to assess the possibility of setting up a 
oherent state, as envisagedby G. Preparata (QED Coheren
e in Matter, World S
i (1995)). It is found indeed that
oheren
e domains may set up in matter, their phases arranged in a periodi
 latti
e, as a
onsequen
e of, basi
ally, a two-level intera
tion, whi
h leads to a long-range ordered state,governed by a ma
ros
opi
 o

upation of both the photon state and the two levels. The non-linear equations of motion are solved for the new, non-perturbative ground-state, whi
h isenergeti
ally favourable. In this respe
t it di�ers from the well-known lasing me
hanism. Theelementary ex
itations with respe
t to this ground-state are derived, their energy being non-trivially 
hanged by intera
tion. The "thermodynami
s" of the 
oherent phase is 
omputedand the super-radiant phase transition is re-derived in this 
ontext. Apart from the generalsuggestion of 
oheren
e, the present results di�er appre
iably from Preparata's, lo
 
it, who
hose to employ rather sloppy te
hniques. It is di�
ult to assess at this moment all thevarious physi
al impli
ations of the present model, but the appli
ation of su
h a treatment toparti
ular physi
al problems like super�uidity, super
ondu
tivity, ferromagnetism, Mossbauere�e
t, Weber's 
oherent s
attering, water anomalies, nu
lear for
es, et
 are promising andworth of further investigation.Introdu
tion. We investigate herein the possibility of setting up 
oheren
e domains in matterintera
ting with ele
tromagneti
 radiation. This idea was originally suggested by Preparata,1who presented several spe
ulations, neither well-founded nor 
onvin
ingly worked out, about thepossible 
onsequen
e of su
h a state on various physi
al phenomena like super�uidity, super
ondu
-tivity, ferromagnetism, Mossbauer e�e
t, Weber's 
oherent s
attering, water anomalies, nu
learfor
es, et
. The idea was also originally related to the lasing me
hanism and the super-radian
ephenomenon.2We shown here that the 
oupling between ele
tromagneti
 radiation and matter polarization(dipole intera
tion) may lead to 
oherent domains involving a two-level state of matter, pro-viding the 
oupling ex
eeds a 
ertain 
riti
al value. The phases of the 
oheren
e doamins arearranged in a periodi
 latti
e. The 
oherent state is 
hara
terized by a ma
ros
opi
 o

upationof both the photon state and the two levels. The ground-state and the elementary ex
itations arederived for su
h 
oherent domains. The energy of the ground-state is negative, as for a bound1G. Preparata, QED Coheren
e in Matter, World S
i (1995).2R. H. Di
ke, Phys. Rev. 93 99 (1954); W. E. Lamb, Jr., Phys. Rev. 134 A1429 (1964); K. Hepp and E. H.Lieb, Ann. Phys. 76 360 (1973); Phys. Rev. A8 2517 (1973).



2 J. Theor. Phys.state, involving a formation enthalpy for the 
oheren
e domains. The "thermodynami
s" of the
oherent phase is 
omputed and the super-radiant phase transition is re-derived in this 
ontext.This is a new state of matter, whi
h may termed 
oherent matter. It is di�
ult at this momentto envisage all the possible 
onsequen
es of su
h a state, though the 
oherent s
attering seems tobe very promising.Ele
tromagneti
 �eld. As it is well-known, the lagrangian of the ele
tromagneti
 �eld is
Lf =

1

8π

∫

dr
(

E2 − H2
)

, (1)where E is the ele
tri
 �eld and H is the magneti
 �eld. These �elds are given by
E = −1

c

∂A

∂t
− gradϕ , H = curlA , (2)where c denotes the velo
ity of light and A and ϕ are the ele
tromagneti
 potentials. Underthese 
onditions, the �elds satisfy automati
ally the �rst pair of Maxwell's equations (curlE =

−1
c
∂H/∂t, divH = 0), while the variation of the a
tion Sf =

∫

dtLf with respe
t to the potentialsgives the se
ond pair of Maxwell's equations (curlH = 1
c
∂E/∂t, divE = 0). If, in addition, thepotentials obey the Lorentz gauge

1

c

∂ϕ

∂t
+ divA = 0 , (3)then they satisfy the wave equation.In the presen
e of a 
harge density ρ and a 
urrent density j = vρ (whi
h obey the 
ontinuityequation ∂ρ/∂t + divj = 0), where v denotes the velo
ity of the 
harge, the intera
ting term

Lint =
1

c

∫

dr · jA −
∫

drρϕ (4)must be added to the lagrangian. The same s
heme of variation of the a
tion leads to the Maxwell'sequations
curlH =

1

c
∂E/∂t +

4π

c
j , divE = 4πρ (5)in the presen
e of matter and to the wave equations

1

c2

∂2

∂t2
ϕ − ∆ϕ = 4πρ ,

1

c2

∂2

∂t2
A − ∆A =

4π

c
j (6)with sour
es.We adopt herein the radiation gauge ϕ = 0 (as for neutral atomi
 matter, where ρ = 0 but j 6= 0and divj = 0), whi
h, by (3), gives the transversality 
ondition divA = 0. We represent the ve
torpotential as

A =
∑

αk

√

2π~c2

V ωk

[

eα(k)aαke
ikr + e∗

α(k)a∗
αk

e−ikr
]

, (7)where ~ is Plan
k's 
onstant, V denotes the volume, ωk = ck are the frequen
ies of the free �eld(equation (6) with j = 0), α is the polarization label (α = ±1) and eα(k) denote the polarizationve
tors, eα(k)k = 0 (transversality 
ondition), eα(k)e∗
β(k) = δαβ (two independent polarizations).We represent the polarization ve
tors as e+(k) = exe
iχ, e−(k) = eye

iχ, where χ is an arbitraryphase and ex,y the two (real) unit ve
tors perpendi
ular to k dire
ted along the z-axis, and notethat e+(−k) = eye
−iχ = e∗

−(k), e−(−k) = exe
−iχ = e∗

+(k).



J. Theor. Phys. 3Making use of this representation for the ve
tor potential A we get
1

8π

∫

drE2 =
∑

αk

~

4ωk

(

ȧαkȧ−α−k + ȧ∗
αk

ȧ∗
−α−k

+ ȧαkȧ
∗
αk

+ ȧ∗
αk

ȧαk

) (8)and
1

8π

∫

drB2 =
∑

αk

~ωk

4

(

aαka−α−k + a∗
αk

a∗
−α−k

+ aαka
∗
αk

+ a∗
αk

aαk

) (9)whi
h help in 
onstru
ting the lagrangian Lf given by (1).Similarly, making use of the Fourier transform
j =

1√
V

∑

k

j(k)eikr (10)for the 
urrent density, with j∗(−k) = j(k), we get the intera
ting part of the lagrangian given byequation (4) as
Lint =

∑

αk

√

2π~

ωk
[eα(k)j∗(k)aαk + e∗

α(k)j(k)a∗
αk

] . (11)By (4), we 
an see that, in the radiation gauge, this intera
tion part of the a
tion is equivalentwith the dipolar intera
tion.The variation of the a
tion ∫

dt(Lf + Lint) with respe
t to aαk leads to the equation of motion
äαk + ä∗

−α−k
+ ω2

k

(

aαk + a∗
−α−k

)

=

√

8πωk

~
e∗

α(k)j(k) , (12)whi
h is Maxwell's equation (6) within the representation given by equation (7). It is worth notingthat this equation of motion is equally valid both in the 
lassi
al and quantum 
ase ([aαk, a
∗
βk′

]

=
δαβδkk′, [aαk, aβk′] = 0 ).From the lagrangian Lf +Lint written in the a's representation we 
an 
onstru
t the hamiltonian,either 
lassi
ally or quantally, by introdu
ing the momentum pαk = δLf/δȧαk = (~/2ωk) (ȧ−α−k + ȧ∗

αk
).It is given by

Hf =
1

8π

∫

dr
(

E2 + H2
) (13)and Hint = −Lint as expe
ted, and leads to the same equation of motion (12).Matter. The lagrangian of a non-relativisti
 parti
le with mass m and 
harge q in an ele
tro-magneti
 �eld is given by

Lmf =
1

2
mv2 +

q

c
vA (14)(in the radiation gauge). We 
an see that the intera
ting part of the lagrangian in equation (14)is the same as the intera
ting part Lint given by equation (4) (sin
e j = vρ = qvδ(r)). Therefore,the sour
e terms in equations of motion (12) for the ele
tromagneti
 �eld will not be modi�ed onadding the matter lagrangian, as it should be.The equation of motion for the parti
le is readily obtained frm (14) as Lorentz's for
e3

d

dt
(mv) = qE +

q

c
v ×H . (15)3Bu using the identity grad(ab) = (agrad)b+(bgrad)a+a× curlb+b× curla. The fully relativisti
 equationof motion repla
es mv in (15) by mv/

√

1 − v2/c2.



4 J. Theor. Phys.The momentum of the parti
le is given by P = mv + qA/c, and the hamiltonian reads Hmf =
(P−qA/c)2/2m, leading, of 
ourse, to the same equation of motion for the parti
le. We 
an write

Hmf = P 2/2m − q

mc
PA +

q2

2mc2
A2 , (16)and may view the last two terms in equation (16) as the intera
ting part of the hamiltonian. Ifwe 
ompute the 
ontribution of this intera
tion to the equation of motion of the ele
tromagneti
�eld,4 we �nd a term of the form −P+ qA/c, whi
h, by using P = mv + qA/c, reads −mv. Thisshows again that indeed, the intera
tion is governed by velo
ity v, as in equation (12). Therefore,we 
onsider the non-intera
ting part of matter, to whi
h we add the free ele
tromgneti
 �eld andthe intera
tion as given by equation (4) or (11).The quantization of matter requires the presen
e of the momentum P in the hamiltonian Hmf .We 
an write it as

Hmf = P 2/2m − q

c
vA − q2

2mc2
A2 , (17)where the term linear in A is the same as the intera
tion given in Lint. In order to estimate theintera
tions in equation (17) we may employ the Lienard-Wie
hert potential for a 
harge movingwith velo
ity v. We have A ∼ qv/cr at distan
e r, so the intera
tion term linear in A in (17)is ∼ (q2/r)(v/c)2, while the intera
tion term quadrati
 in A in (17) is ∼ (q2/mc2r)(q2/r)(v/c)2.We may see that for atomi
 matter we may safely negle
t the intera
tion term quadrati
 in A.To the same approximation to the non-relativisti
 dynami
s, the quantization brings yet anotherintera
tion, −(~q/mc)Hs, whi
h implies the magneti
 momentum (s is the parti
le spin). It is easyto see that it 
an be estimated as ∼ (~2/ma2E)1/2(q2/r)(v/c)2, where a is the mean inter-parti
ledistan
e and E is an atomi
 transition energy. This intera
tion 
an also be negle
ted, though, insome 
ases, it may bring 
ontributions 
omparable with those brought by the term linear in A.In any 
ase it may be in
luded in the intera
tion term linear in A, as the spin 
urrent.We 
onsider a set of N independent, identi
al atomi
 parti
les labelled by i, and write theirinternal hamiltonian as

Hm =
∑

i

Hm(i) . (18)We introdu
e a set of orthonormal eigenfun
tions ϕn(i), su
h as
Hm(i)ϕn(j) = εnδij ,

∫

drϕ∗
n(i)ϕm(j) = δijδnm (19)and 
onstru
t a set of normalized eigenfun
tions

ϕn =
∑

i

cniϕn(i) (20)for the whole ensemble,
Hmϕn == εnϕn , (21)where the 
oe�
ients cni are su
h as to satisfy the normalization 
onditions,

∑

i

|cni|2 = 1 . (22)4In the quantum 
ase the PA-term must be symmetrized.



J. Theor. Phys. 5In view of the fa
t that the parti
les are identi
al the 
oe�
ients cni are of the form cni = eiθni/
√

N ,where θni are some phases, so we may write the wavefun
tions as
ϕn =

1√
N

∑

i

eiθniϕn(i) . (23)We noti
e that any n-state with wavefun
tion ϕn 
an be o

upied by any number of parti
les, upto N . Therefore, we introdu
e the �eld operator
Ψ =

∑

n

bnϕn (24)and assume boson-like 
ommutation relations for the operators bn, [bn, b∗m] = δnm, [bn, bm] = 0, forlarge, ma
ros
opi
 values of the number of parti
les
N =

∑

n

b∗nbn . (25)The lagrangian of this ensemble of parti
les 
an be represented as
Lm =

1

2

∫

dr (Ψ∗ · i~∂Ψ/∂t − i~∂Ψ∗/∂t · Ψ) −
∫

drΨ∗HmΨ , (26)or
Lm =

1

2

∑

n

i~
[

b∗nḃn − ḃ∗nbn

]

−
∑

n

εnb
∗
nbn , (27)where

Hm =
∑

n

εnb
∗
nbn (28)is the hamiltonian. They lead to the equations of motion

i~ḃn = εnbn , (29)whi
h is S
hrodinger's equation. It is worth noting that the same equation is obtained for bnviewed as 
lassi
al variables.Sin
e the 
harge density is given by
ρ =

∑

i

qiδ(r− ri) (30)for an ensemble of point-like 
harges qi pla
ed at positions ri, the 
urrent density 
an be writtenas
j =

1

V

∑

ik

qivie
−ikri · eikr =

1√
V

∑

k

j(k)eikr . (31)Here we have assumed that ri gets an additional degree of freedom, ri → ri + ui, and the velo
ity
vi 
orresponds to u̇i. We write therefore the Fourier transform of the 
urrent density as

j(k) =
1√
V

∑

i

J(i)e−ikri , (32)



6 J. Theor. Phys.where J(i) = qivi is the 
urrent of the i-th parti
le. Now, it is easy to see that the intera
tingpart Lint of the lagrangian given by equation (11) be
omes
Lint =

∑

nmαk

√

2π~

V ωk

[eα(k)I∗mn(k)aαk + e∗
α(k)Inm(k)a∗

αk
] b∗nbm , (33)where

Inm(k) =
1

N

∑

i

Jnm(i)e−i(θni−θmi)e−ikri (34)with J = qv the 
urrent for ea
h parti
le. The equations of motion (29) be
ome
i~ḃn = εnbn −

∑

mαk

√

2π~

V ωk

[eα(k)I∗mn(k)aαk + e∗
α(k)Inm(k)a∗

αk
] bm , (35)while the equation of motion (12) for the ele
tromagneti
 �eld reads now

äαk + ä∗
−α−k

+ ω2
k

(

aαk + a∗
−α−k

)

=
∑

nm

√

8πωk

V ~
e∗

α(k)Inm(k)b∗nbm . (36)It is worthwhile writing expli
itly the energy of the intera
ting matter and radiation. The fullhamiltonian reads H = Hm + Hf + Hint, where
Hm =

∑

n εnb∗nbn ,

Hf =
∑

αk

~

4ωk

(

ȧαkȧ−α−k + ȧ∗
αk

ȧ∗
−α−k

+ ȧαkȧ
∗
αk

+ ȧ∗
αk

ȧαk

)

+

+
∑

αk

~ωk

4

(

aαka−α−k + a∗
αk

a∗
−α−k

+ aαka
∗
αk

+ a∗
αk

aαk

)

=

=
∑

αk

~ωk

2
(aαka

∗
αk

+ a∗
αk

aαk) ,

Hint = −
∑

nmαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαk + e∗

α(k)Inm(k)a∗
αk

] b∗nbm .

(37)
The equation of motion for aαk reads

i~ȧαk = [aαk, H ] = ~ωkaαk −
∑

nm

√

2π~

V ωk
e∗

α(k)Inm(k)b∗nbm , (38)whi
h is equivalent with equation (36).We have already assumed aαk → aαke
−iωkt in deriving the quantized �eld hamiltonian. It is
onvenient to make a similar assumption bn → bne−iεnt/~ for the operators of the parti
les quanta.Under these 
ir
umstan
es the equations of motion be
ome

i~ḃn = −
∑

mαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαke

i
~
(εn−εm−~ωk)+

+e∗
α(k)Inm(k)a∗

αk
e

i
~
(εn−εm+~ωk)]bm ,

i~ȧαk = −
∑

nm

√

2π~

V ωk
e∗

α(k)Inm(k)e
i
~
(εn−εm+~ωk) · b∗nbm ,

(39)
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tion hamiltonian reads
Hint = −∑

nmαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαke

i
~
(εn−εm−~ωk)+

+e∗
α(k)Inm(k)a∗

αk
e

i
~
(εn−εm+~ωk)]b∗nbm .

(40)Now it is easy to re
ognize the intera
tion pi
ture of the ele
tromagneti
 �eld with parti
lesquanta, amenable to perturbation theory for 
al
ulating transition amplitudes, as in absorptionor radiation of photons, or radiation s
attering on matter.Ma
ros
opi
 o

upation. Coheren
e. The transition amplitudes involving highly-ex
itedstates are small. The most relevant transitions generated by the intera
tion hamiltonian (40) arethose between the ground-state and the lowest-ex
ited states of the matter. Following Preparata5we examine herein whether a ma
ros
opi
 o

upation of su
h states, and of the 
orrespondingphoton states, is favourable.First, let a, a∗be the destru
tion and 
reation operators for bosoni
 states|n〉, with o

upationnumber n, su
h as a |0〉 = 0, a |n〉 =
√

n |n − 1〉, a∗ |n〉 =
√

n + 1 |n + 1〉, [a, a∗] = 1, the numberof quanta being given by N = a∗a, N |n〉 = n |n〉. We may represent a as a = eiθ
√

N and get
[a, a∗] = eiθNe−iθ − N = 1; hen
e, [N, θ] = 1, or N = i∂/∂θ. The quantal states have a de�niteo

upation number n, so their phase is 
ompletely undetermined. The 
lassi
al, ma
ros
opi
allyo

upied states have a determined phase and a 
ompletely undetermined o

upation number.They 
an be represented as |α〉 =

∑

n Cn |n〉, and from a |α〉 = α |α〉, we get the 
oe�
ients Cn.Su
h a normalized state reads6
|α〉 = e−|α|2/2

∑

n

αn

√
n!

|n〉 , (41)and the (mean) number of quanta in state |α〉 is N = |α|2; its mean square deviation is √
N .Therefore, the q-number a 
an be viewed as a c-number α, whi
h is a 
omplex number whosemodulus is the square root of the o

upation number N . Su
h ma
ros
opi
ally o

upied statesare 
alled 
oherent states be
ause they have a de�nite phase; they imply an o�-diagonal order.For su
h 
oherent states we denote the photon operators a by α and the parti
les states operators

b by β.Coheren
e domains. Making use of equation (34) the intera
tion lagrangian given by equation(33) 
an be written as
Lint =

∑

nmαk

√

2π~

V ωk
Fnm(αk)

(

aαk + a∗
−α−k

)

b∗nbm , (42)where
Fnm(αk) =

1

N

∑

i

eα(k)Jnm(i)eikri−i(θni−θmi) . (43)For any pair (nm) of energy levels, we represent the position ri of any parti
le i as ri = Rp + rpi,where the ve
tors Rp de�ne a spatial latti
e 
hara
terized by the set of integers p = (p1, p2, p3)and rpi are restri
ted to the �rst Wigner-Seitz 
ell of su
h a lati
e. The latti
e Rp is 
hosen su
hthat the magnitudes of its shortest re
ipro
al ve
tors kr, r = 1, 2, 3, are equal with the magnitude5G. Preparata, lo
 
it.6R. J. Glauber, Phys. Rev. 131 2766 (1963).



8 J. Theor. Phys.of the relevant waveve
tors k, i.e. those waveve
tors whi
h satisfy ~ωk = εn − εm > 0. It is easyto see that only a 
ubi
 and a trigonal (rhombohedral) symmetry is thus allowed. For instan
e,a 
ubi
 latti
e is 
hara
terized in this 
ase by a periodi
ity length λ = 2π/k, where k is themagnitude of the relevant waveve
tor. A similar periodi
ity length (di�erent from λ) o

urs forthe rhombohedral latti
e. We limit the relevant waveve
tors k to this �nite set of basi
 re
ipro
alve
tors, for whi
h krRp = 2π × integer. Equation (43) be
omes then
Fnm(αkr) =

1

N

∑

pi

eα(kr)Jnm(i)eikrrpi−i(θni−θmi) , (44)where the summation over p stands for all the elementary 
ells in the spatial latti
e .The summation over i in the Wigner-Seitz 
ell of the remaining phase fa
tors in equation (44) isin general vanishing, in view of the randomness of su
h phase fa
tors. We note that there is botha spatial phase krrpi in equation (44) and an internal phase θni − θmi, leaving aside the variousorientations of the 
urrent density Jnm(i) with respe
t to the polarization ve
tor eα(k). However,we 
an de�ne a subset of Nnm(αkr) parti
les su
h that their phases θni ful�ll the 
ondition
krrpi − (θni − θmi) = K , (45)where K is a 
onstant. We 
an see that these sub-sets of parti
les are disjoint, i.e. if a parti
lesatis�es 
ondition (45) for a given kr it does not satisfy it for a di�erent kr. In addition, anyparti
le belongs to a well-determined pair (nm). It is also reasonable to assume that all theparti
les Nnm(αkr) have their 
urrent density Jnm(i) alligned with the polarization ve
tor eα(kr),i.e. eα(kr)Jnm(i) = Jnm. Under these 
ir
umstan
es, up to a phase fa
tor exp(K), equation (44)gives Fnm(αkr) = JnmNnm(αkr)/N . It is reasonable to assume in addition the 
ompleteness ofthe partition operated by 
ondition (45), i.e. ∑

(nm)αkr
Nnm(αkr) = N .Condition (45) is a strong 
ondition, whi
h tells that the phases of the internal motion of the

i-th parti
le is 
orrelated to the position of that parti
le. It implies a long-range order in a
ooperative phenomenon, where the phase of the internal motion "feels" the parti
le position.Equation (45) may be taken as the basi
 
ondition for 
oheren
e. We 
all su
h an ensembleof parti
les whi
h satis�es 
ondition (45) a latti
e of 
oheren
e domains. Sin
e, typi
ally, thewavelength λr = 2π/kr ≫ a, where a is the mean inter-parti
le distan
e, we 
an see that forparti
les lo
ated near the 
entre of the Wigner-Seitz 
ell we may take θni − θmi ≃ 0 and K = 0,while for parti
les lo
ated near the boundaries of the Wigner-Seitz 
ell the phases are su
h as
θni − θmi get non-vanishing values, su
h as to preserve the 
onstant value K = 0.It is easy to see that for various pairs (nm) we have a superposition of su
h latti
es of 
oheren
edomains. Similarly, these latti
es 
an also be one- or two-dimensional. For instan
e, a one-dimensional latti
e of 
oheren
e domains looks like a set of parallel sheets (layered stru
ture),with the relevant periodi
ity length λ. A two-dimensional latti
e of 
oheren
e domains looks likea set of parallel threads, with a 
orresponding periodi
ity.Here we restri
t ourselves to the ground-state of the ensemble of parti
les, labelled by n = 0, andthe �rst ex
ited state n = 1, i.e. to only one pair (01). We assume a ma
ros
opi
 o

upation forthese states, whi
h means to use c-numbers β0,1 for their operators b0,1. Under these 
ir
umstan
esthe intera
tion redu
es to the 
ontribution arising from those photons whi
h satisfy the 
onserva-tion of energy ε1 − ε0 = ~ω0, where ω0 = ck0. As it was said above, we limit these waveve
torsto the basi
 re
ipro
al ve
tors kr of the 
oheren
e latti
e, of magnitude kr = k0 = 2π/λ0. Theiroperators aαkr , kr = k0, are then repla
ed by c-numbers α, the same for any polarization α andany kr. There is no parti
ular reason to have an anisotropy or a polarization dependen
e for these
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tion lagrangian given by equation (42)be
omes then
Lint =

√

2π~

V ω0
J01 (α + α∗) (β∗

1β0 + β1β
∗
0) , (46)where we have taken J01 = J10. A similar repla
ement of the �eld operators by c-numbers is madein the �eld lagrangian given by equations (8) and (9) and in the parti
les lagrangian given byequation (27). The summation over αkr, kr = k0, in the �eld lagrangian Lf gives a fa
tor 12, fora three-dimensional latti
e. This fa
tor 
an be absorbed in the photon operators, so we 
an writedown the "
lassi
al" lagrangian

Lf = ~

4ω0

(

α̇2 + α̇∗2 + 2 |α̇|2
)

− ~ω0

4

(

α2 + α∗2 + 2 |α|2
)

,

Lm = 1
2
i~

(

β∗
0 β̇0 − β̇∗

0β0 + β∗
1 β̇1 − β̇∗

1β1

)

−
(

ε0 |β0|2 + ε1 |β1|2
)

,

Lint = g√
N

(α + α∗) (β0β
∗
1 + β1β

∗
0) ,

(47)where the 
oupling 
onstant is given by
g =

√

π~/6a3ω0J01 . (48)Is worth noting that the intera
tion lagrangian given by equation (47) di�ers from its "quantum"(�eld-theoreti
al) 
ounterpart by the non-vanishing overlapping of the 
oherent states, whi
hallows both α and α∗in the "elementary" intera
tion pro
esses. It is also worth noting that whilethe �eld lagrangian Lf in equation (47) is the 
lassi
al lagrangian, the parti
les lagrangian Lm andthe intera
tion lagrangian Lint in equations (47) are "
lassi
al" only with respe
t to the se
ond-quantization (�eld operators), while they preserve their quantum 
hara
ter with respe
t to the"�rst quantization".In order to have some numeri
al estimates, we may take as a typi
al value for the energy diferen
e
ε1 − ε0 = ~ω0 = 10eV , whi
h 
orresponds to a photon wavelength λ0 = 103Å. This wavelength ismu
h longer than the typi
al inter-parti
le distan
e a. We 
an obtain an estimate of the 
oupling
onstant g by representing the matrix element J01 of the 
urrent density as J01 ∼ qv ∼ qa0ω0 =
dω0, where q denotes a 
harge moving with velo
ity v inside ea
h parti
le with a 
hara
teristi
radius a0, d being the 
orresponding dipole moment.7 Taking q = e (the ele
tron 
harge) we get

g =
√

π~ω0(e2/6a0)(a0/a)3/2 , (49)whi
h gives g ∼ 0.8eV for ~ω0 = 10eV , a0 = 0.53Å (the Bohr radius) and a ∼ 3Å. For one- andtwo-dimensional 
oheren
e latti
es this 
oupling 
onstant in
reases by fa
tors √3 and respe
tively
√

3/2, as a result of the fa
tor ∑

αkr
in front of the �eld lagrangian Lf .Equations of motion. Making use of the lagrangian given above we get the equations of motion

α̈ + α̈∗ + ω2
0 (α + α∗) =

2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) (50)and

i~β̇0 = ε0β0 − g√
N

(α + α∗)β1 ,

i~β̇1 = ε1β1 − g√
N

(α + α∗) β0 .

(51)7This 
orresponds to the dipole approximation, whi
h, in the non-relativisti
 limit leaves aside the spin and theso-
alled diamagneti
 
ontributions to the 
urrent density.



10 J. Theor. Phys.We rewrite these equations of motion with the real quantity A = α + α∗,
Ä + ω2

0A = 2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) ,

i~β̇0 = ε0β0 − g√
N

Aβ1 ,

i~β̇1 = ε1β1 − g√
N

Aβ0 .

(52)The 
orresponding hamiltonian reads
Hf = ~

4ω0

Ȧ2 + ~ω0

4
A2 ,

Hm = ε0 |β0|2 + ε1 |β1|2 ,

Hint = − g√
N

A (β0β
∗
1 + β1β

∗
0) .

(53)It is 
onserved,
Hf + Hm + Hint = E , (54)where E is the energy. The number of parti
les is also 
onserved: from equations (52) we geteasily

|β0|2 + |β1|2 = N . (55)Making use of equations (52) we get straightforwardly another 
onservation law, given by
~

4ω0

(

Ȧ2 + ω2
0A

2
)

− g√
N

A (β0β
∗
1 + β1β

∗
0) +

(ε1 − ε0)

2

(

|β1|2 − |β0|2
)

= Q , (56)where Q is a 
onstant energy; it 
an be 
he
ked out without di�
ulty that this is not an indepen-dent 
onservation law; it amounts to E − N (ε1 + ε0) /2 = Q.The stationary solutions of equations (52) are obtained by putting β0,1 = B0,1e
iθ; the equations ofmotion be
ome

Ä + ω2
0A = 4ω0g

~
√

N
B0B1 ,

i~Ḃ0 − ~θ̇B0 = ε0B0 − g√
N

AB1 ,

i~Ḃ1 − ~θ̇B1 = ε1B1 − g√
N

AB0

(57)The last two equations tell that B0,1 and θ̇ = Ω are 
onstant in time and the parti
ular solutionof the �rst equation in (57) is
A =

4g

~ω0

√
N

B0B1 . (58)Now it is easy to �nd out the solutions
A = 2g

~ω0

√
N

[

1 − (~ω0/2g)4
]1/2

,

B2
0 = 1

2
N

[

1 + (~ω0/2g)2
]

,

B2
1 = 1

2
N

[

1 − (~ω0/2g)2
]

,

(59)
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y
Ω = ω0

[

−1

2
+

2g2

~2ω2
0

]

, (60)where ε1 − ε0 = ~ω0 has been used and ε0 was put equal to zero.We 
an see that the ensemble of atomi
 parti
les and the asso
iated ele
tromagneti
 �eld 
an beput into a 
oherent state, the o

upation amplitudes os
illating with frequen
y Ω, providing the
riti
al 
ondition
g > gcr = ~ω0/2 (61)is ful�lled. The total energy of the 
oheren
e domain is given by

E = − g2

~ω0
N

[

1 − (~ω0/2g)2
]2

= −~ΩB2
1 . (62)It is lower than the non-intera
ting ground-state energy Nε0 = 0. It may be viewed as theenthalpy of formation for the 
oheren
e domain. It must be emphasized that this e�e
t of setingup a 
oheren
e in matter is di�erent from the lasing e�e
t, pre
isely by this formation enthalpy.The 
oupled ensemble of matter and radiation is unstable for a ma
ros
opi
 o

upation of theatomi
 quantum states and the asso
iated photon states. From equations (62) and (60) we maysee that (~Ω/2)

[

1 − (~ω0/2g)2
] 
an be viewed as the 
hemi
al potential asso
iated to the number

N of parti
les.Obviously, the 
oheren
e solutions obtained here are non-perturbative; they are not analyti
 in the
oupling 
onstant g. It is worth noting that the stationary solutions given by equations (59) and(60) 
an also be obtained by minimizing the hamiltonian (54) with the 
onstraint B2
0 + B2

1 = Ngiven by equation (55).It is also worth noting that the ele
tromagneti
 potential given by equation (7) for aαkr = α,
kr = k0, does not depend on the time. Consequently, the ele
tri
 �eld is vanishing in the 
oheren
edomains. The magneti
 �eld is not vanishing, in general. The ve
tor potential A(r) given byequation (7) exhibits spatial os
illations a

ording to the re
ipro
al ve
tors kr. The magneti
�eld may attain high values, depending on the 
oupling strength g. Typi
ally, the magnitude ofthe magneti
 �eld is of the order of √

~ω0/a3. For ~ω0 = 10eV and a ∼ 3Å this �eld may be ashigh as ∼ 106Gs. We may spe
ulate that su
h a magneti
 �eld might be a good 
andidate for theWeisss' mole
ular �eld of ferromagnetism.The polarization
P =

1

V

∑

i

p(i) (63)of the 
oheren
e domains, where p(i) is the dipole momentum of the i-th parti
le, 
an easily be
al
ulated by using equations (23), (24) and (59); we get
P = 1

V N

∑

i p(i)
[

β∗
0β1e

−i(θ0i−θ1i) + β∗
1β0e

i(θ0i−θ1i)
]

=

= 1
V

∑

i p(i) cos (θ1i − θ0i)
[

1 − (~ω0/2g)4
]1/2

,

(64)where p(i) = p01(i) = p10(i). In general, without parti
ular assumptions on p(i), the phasesummation in equation (64) vanishes and the polarization is zero. It is easy to see for instan
ethat an external �eld whi
h would modulate the distribution of the dipole momenta p(i) with aperiodi
ity 
orresponding to the re
ipro
al ve
tors kr may give rise to a non-vanishing polarization,in view of the 
oheren
e 
ondition (45).
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itations of the 
oheren
e domains. We 
hange the 
oordinates in thelagrangian given by equations (47) a

ording to A → A + δA, β0,1 → β0,1 + δβ0,1, where
δβ0,1 = (δB0,1 + iB0,1δθ0,1) eiΩt. The �rst-order variation of the lagrangian gives the equationsof motion (52), so we are left with the se
ond-order variation of the lagrangian, where δA, δβ0,1are viewed as the new 
oordinates. In addition, we impose the 
onservation of the number ofparti
les B0δB0 + B1δB1 = 0. With this 
onstraint we get the variation of the lagrangian

δLf = ~

4ω0
δȦ2 − ~ω0

4
δA2 ,

δLm = ~B1

[

δB1

(

δθ̇0 − δθ̇1

)

− δḂ1 (δθ0 − δθ1)
]

−

− (~ΩN/B2
0 + ~ω0) δB2

1 − ~ΩB2
0δθ

2
0 − ~ (Ω + ω0)B2

1δθ
2
1 ,

δLint = 2g√
N

B2

0
−B2

1

B0

δAδB1 − 2g√
N

AB1

B0

δB2
1 + 2g√

N
AB0B1δθ0δθ1 .

(65)
The hamiltonian 
an readily be obtained from equation (65). It is 
onvenient to introdu
e the
oupling strength λ = 2g/~ω0 (λ > 1) and to make use of equations (59) and (60). We get thehamiltonian

δH = ~

4ω0
δȦ2 + ~ω0

4

(

δA − 2
√

N
λB0

δB1

)2

+

+2~ω0 (λ2 − 1) δB2
1 + ~ω0N

λ4−1
4λ2 (δθ0 − δθ1)

2 ,

(66)whi
h tells, �rst, that the relevant phase 
oordinate is δϕ = δθ0 − δθ1 and, se
ond, that the
oordinates δA, δB1and δϕ are asso
iated with the elementary ex
itations (ex
ited states).The equations of motions 
orresponding to the lagrangian given by equations (65) 
an be writtenas
B0

(

δÄ + ω2
0δA

)

− 2ω2

0

√
N

λ
δB1 = 0 ,

ω0Nλ2δB1 − B2
0B1δϕ̇ − ω0

√
N

2λ
B0δA = 0 ,

ω0N
λ4−1
4λ2 δϕ + B1δḂ1 = 0 .

(67)Their solutions are of the form (δA, δB1, δϕ)eiωt, where the frequen
ies ω are given by
ω2

1,2 =
1

2
ω2

0

[

λ4 + 1 ±
√

(λ4 − 1)2 + 4

]

. (68)The ex
itations energies 
orrespond to the frequen
ies Ω1,2 = Ω ± ω1,2. In the weak 
ouplinglimit these frequen
ies behave as ω1 ≃
√

2ω0 and ω2 ≃
√

λ2 − 1ω0 (Ω1,2 ≃ ω1,2). In this limit thesolution 
orreponding to the former frequen
y is δA ≃ −2δB1 ≃ −i
√

N(λ2 − 1)δϕ, while the one
orresponding to the se
ond frequen
y is δA ≃ 2δB1 ≃ i
√

2Nδϕ. Sin
e for the former solution
δA and δB1 vanish in the limit λ → 1, while δϕ is non-vanishing, we may 
all this elementaryex
itation "phason". As for the se
ond solution, sin
e all 
oordinates are non-vanishing, we may
all it "amplitudon". Although this terminology is reminis
ent of the well-known dynami
s of the
harge-density waves,8 the analogy is insubstantial to a large extent."Thermodynami
s" of the 
oherent phase. In the limit of low temperatures the thermody-nami
s is 
ontrolled by the 
oherent ground-state energy given by equation (62); the elementary8P. A. Lee, T. M. Ri
e and P. W. Anderson, Solid State Commun. 14 703 (1974); G. Gruner, Revs. Mod.Phys. 60 1129 (1988).
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itations derived above bring no thermodynami
al 
ontribution. We 
an 
ompute dire
tly thepartition fun
tion Z = tr exp [β (µN − H)], where β = 1/T is the inverse of the temperature, µ isthe 
hemi
al potential and the hamiltonian H is given by equations (53) with |β0|2 + |β1|2 = N .The tra
e is 
omputed by ∫

dβ0xdβ0y..., where β0 = β0x + iβ0y, et
. In the thermodynami
al limitwe get
Z ≃

∫

dρ · eβNµρ

√

~ω0 (~ω0 − µ) − 4g2̺
≃ eβNµ~ω0(~ω0−µ)/4g2 (69)for µ < 0. The thermodynami
 potential is given by Ω = Nµ~ω0 (~ω0 − µ) /4g2. We 
an seethat the 
oherent phase is perfe
tly ordered, with a vanishing entropy. The 
hemi
al potential

µ = ~ω0/2 − 2g2/~ω0 < 0 implies g > ~ω0/2, whi
h is the 
riti
al 
ondition given by equation(61). The energy (and free energy) is given by E = Ω + µN = −N~ω0 (~ω0/4g − g/~ω0)
2, whi
h
oin
ides with the ground-state energy given by equation (62).Super-radiant phase transition. The 
oherent state des
ribed herein is 
hara
terized by ama
ros
opi
 o

upation of the photon state and the two levels. It is indeed known that mat-ter 
oupled to radiation may su�er an instability toward a super-radiant state at some 
riti
altemperature, depending on the 
oupling 
onstant.9We start with the quantum hamiltonian written as

Hf = ~ω0

∑

µ

(

a∗
µaµ + 1/2

)

, Hs = ~ω0b
∗
1b1 ,

Hint = − 1√
N

(Gb∗1b0 + G∗b∗0b1) ,
(70)where µ stands for the pair αkr, G =

∑

µ gµaµ and gµ =
√

2π~/V ω0J01N(µ)/
√

N . This is knownas the Di
ke-Preparata hamiltonian.First we introdu
e the spin operators
Sz = b∗0b0 − b∗1b1 =

∑

i (b
∗
0ib0i − b∗1ib1i) =

∑

i szi ,

S+ = b∗0b1 =
∑

i b
∗
0ib1i =

∑

i s+i ,

S− = b∗1b0 =
∑

i b
∗
1ib0i =

∑

i s−i ,

(71)where s's are Pauli matri
es. The tra
e over b's in the partition fun
tion Z = tr exp (−βH), where
H = Hf + Hs + Hint, 
an then be represented as

trb exp (−βHs − βHint) = e−β~ω0N/2
(

trehs
)N

, (72)where
hx =

β

2
√

N
(G∗ + G) , hy =

iβ

2
√

N
(G∗ − G) , hz = β~ω0/2 . (73)It is easy to establish the equality trehs = 2 cosh h, where h = β (G∗G/N + ~

2ω2
0/4)

1/2. Thepartition fun
tion 
an now be written as
Z = e−β~ω0(N+s)/2tr

{

e−β~ω0

P

µ a∗
µaµ

[

2 cosh β
(

G∗G/N + ~
2ω2

0/4
)1/2

]N
}

, (74)9Y. K. Wang and F. T. Hioe, Phys. Rev. A7 831 (1973); S. Sivasubramanian, A. Widom and Y. N. Srivastava,Int. J. Mod. Phys. B15 537 (2001); S. Sivasubramanian, A. Widom and Y. N. Srivastava, Mod. Phys. B16 1201(2002); S. Sivasubramanian, A. Widom and Y. N. Srivastava, J. Phys.: Cond. Matt. 15 1109 (2003).
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∑

µ. We 
an see easily that there exists a unitary transformation A, aµ = Aµνcν ,whi
h diagonalizes the quadrati
 form G∗G =
∑

µν gµgνa
∗
µaν , while preserving the diagonal form

∑

µ a∗
µaµ. It has only one non-vanishing eigenvalue

G2
0 =

∑

µ

g2
µ =

2π~

V ω0
J2

01

∑

µ

N2(µ)/N , (75)
orresponding to one photon mode denoted by c. We take N(µ) = N/s, and get G2
0 = g2, where gis given by equation (49) (for s = 12). We keep now in the partition fun
tion only the 
ontributionswhi
h are relevant in the thermodynami
al limit, and get

Z ≃ e−β~ω0N/2tr

{

e
−β~ω0c∗c+N ln

»

2 cosh β(g2c∗c/N+~2ω2

0
/4)

1/2

–} (76)The tra
e in this equation is 
omputed in the 
lassi
al limit, where the temperature is mu
h higherthan all the relevant energy s
ales (e.g., β~ω0 ≪ 1). We get
Z ≃ e−β~ω0N/2

∫ ∞

0

dx · e−Nφ(x) , (77)where
φ(x) = β~ω0x − ln

[

2 cosh β
(

g2x + ~
2ω2

0/4
)1/2

]

. (78)The main 
ontribution to the integral in equation (77) 
omes from the minimum value of thefun
tion φ(x) (Lapla
e's method), lo
ated at x0 given by
2~ω0

g2

√

g2x0 + ~2ω2
0/4 = tanh β

√

g2x0 + ~2ω2
0/4 . (79)This equation has no solution for g < ~ω0, at any temperature (x0 = 0). For g > ~ω0, thereexists a 
riti
al temperature Tc given by ~

2ω2
0/g

2 = tanhβc~ω0/2 (or βc ≃ 2~ω0/g
2), su
h thatfor temperatures higher than Tc equation (79) has no solution (x0 = 0), while for T < Tc it has anon-vanishing solution. In the former 
ase the ensemble of parti
les is in the normal state, witha free energy per parti
le given by

f0 = ~ω0/2 − β−1 ln [2 cosh β~ω0/2] (80)(intera
tion-free ensemble). For T slightly below Tc we expand equation (79) in powers of
√

g2x0 + ~2ω2
0/4 − ~ω0/2 and get

x0 ≃
1

2
(1 − T/Tc)

1/2 . (81)Now it is easy to get the free energy per parti
le
f ≃ f0 −

~ω0

4
(1 − T/Tc)

2 . (82)As one 
an see, the entropy is 
ontinuous at the 
riti
al temperature, while the spe
i�
 heat has adis
ontinuity, C = C0 + ~ω0/2Tc. The transition is of the se
ond kind, with the order parameterthe photon o

upation number. Indeed, it is easy to 
ompute the mean o

upation number forphotons, whi
h vanishes for T > Tc and is proportional to x0 given by equation (81) for T < Tc.It is worth noting that the super-radiant transition is des
ribed by a quantum hamiltonian, while
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oherent phase obeys a 
lassi
al dynami
s. This a

ounts also for the di�eren
e in the two
riti
al 
onditions g > ~ω0/2 and g > ~ω0.Mis
ellanea.Plasmons. We 
onsider an ensemble of identi
al parti
les with mass m and 
harge q movingagainst a rigid, neutralizing ba
kground, as in a jellium model. The small disturban
es of parti
lesdensity are represented as δn = −ndivu, where n is the parti
les 
on
entration and u is a lo
aldispla
ement �eld. The hamiltonian of these density disturban
es reads
Hp =

nm

2

∫

dru̇2(r) +
n2

2

∫

drdr′ϕ(r − r′)divu(r)divu(r′) , (83)where ϕ(r) = q2/r is the Coulomb intera
tion. We introdu
e the Fourier transform
u(r) =

1√
V

∑

k

u(k)eikr , (84)
u∗(−k) = u(k) and noti
e that only the longitudinal 
oordinates are relevant. Therefore, we use
u(k) = ku(k)/k , u∗(−k) = −u(k) and get

Hp = −nm

2

∑

k

u̇(k)u̇(−k) − 2πn2q2
∑

k

u(k)u(−k) , (85)whi
h leads to the equation of motion
ü(k) + ω2

pu(k) = 0 , (86)where ωp given by ω2
p = 4πnq2/m is the plasma frequen
y.The quantization of the plasma hamiltonian pro
eeds in the usual way, by introdu
ing the 
reationand annihilation boson-like operators b∗(k), b(k) through

u(k) = i
√

~/2nmωp

(

bk + b∗−k

)

,

u̇(k) = −
√

~ωp/2nm
(

bk − b∗−k

)

,

(87)whi
h gives the hamiltonian
Hp =

1

2
~ωp

∑

k

(b∗
k
bk + bkb

∗
k
) . (88)We write down here also the lagrangian

Lp = ~

4ωp

∑

k

(

ḃkḃ−k + ḃkḃ
∗
k

+ ḃ∗−k
ḃ−k + ḃ∗−k

ḃk
∗)−

−~ωp

4

∑

k

(

bkb−k + bkb
∗
k

+ b∗−k
b−k + b∗−k

b∗
k

)

,

(89)whi
h leads to the equation of motion (86) written as
b̈k + b̈∗−k

+ ω2
p

(

bk + b∗−k

)

= 0 . (90)The 
urrent density asso
iated with the plasmons is j = nqu̇. Obviously, there is no 
ouplingof the form jA, between plasmons and photons, sin
e j is longitudinal and A is transversal withrespe
t to the waveve
tor k, as it is well-known.
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 model of atoms, mole
ules, mole
ular aggregrates, mu
h along thelines sket
hed above. Then, the parti
le states are indeed the plasmon ex
itations; the 
ouplingis of the form abb∗, as derived in the pre
eding se
tions, and the relevant parti
les states are theground-state and the ex
ited plasma state, whi
h would imply ω0 = ωp. The theory de
sribedafore applies, but it is merely a reformulation of the 
oupling through the 
urrent J in terms ofthe 
oupling through the plasma frequen
y. They also aggree in order of magnitude.Phonons. We may note that a 
oupling of the form ab is possible between transverse opti
alphonons in a 
rystal latti
e and photons, where a stands for photons and b for the phonon states.The asso
iated 
oherent state, whi
h involves a ma
ros
opi
 o


upation of the photons andphonons states amounts to a stati
 transverse distortion of the 
rystal latti
e. Su
h a state wasnot yet investigated so far, to the knowledge of the present author.An interesting situation o

urs in the ele
tron-phonon 
oupling in one dimension, or in layeredstru
tures with so-
alled nesting Fermi surfa
e. There, the ele
tron states are boson-like, a

ordingto the Blo
h-Tomonaga theory, and we may be in the situation of a 
oherent state with ab-like
oupling, where a 
orresponds to phonons and b to (bosonized) ele
troni
 states. This state isnothing else but the well-known Peierls distortion and Frohli
h 
harge density.Super�uidity and super
ondu
tivity. The 
oheren
e of the Bose parti
les like He4 atomsin the super�uid state is well-known. We must stress here however that this 
oheren
e refers tothe motion of the parti
les, in 
ontrast to the internal motion of parti
les des
ribed herein. Theformer is quite possible, and is related to quite interesting phenomena related to the 
oherents
attering.As regards the super
ondu
tivity, the phonon-mediated ele
troni
 pairs 
ertainly exhibit a ma
ro-s
opi
 o

upation, as approximate boson-like ex
itations. However, to the knowledge of this au-thor, there is yet no �eld mediating the pair intera
tion, su
h as to resemble the 
oherent theorydes
ribed herein. Other various spe
ulations regading the high-Tc super
ondu
tivity or the 
oldfusion (mediated, supposedly, by an atomi
 plasma)10 are even farther away from any resemblan
eto a 
oherent state as des
ribed herein.Con
lusion. In 
on
lusion we may say that the intera
tion of matter with ele
tromagneti
 in-tera
tion may lead to 
oheren
e domains, governed basi
ally by a two-level state, providing the
oupling 
onstant is greater than a 
riti
al value. The 
oheren
e domains are made possible bya spatial arrangement in a regular latti
e of the phases of the internal motion of the parti
les,a

ording to the 
oheren
e 
ondition (45).These 
oheren
e domains are 
hara
terized by a ma
ro-s
opi
 o

upation of the quantum states. The non-linear equations of motion have been solvedfor the 
oherent ground state and the elementary ex
itations have been identi�ed. The solutionis a non-perturbational one, the radiation frequen
y being renormalized in an appre
iable way.Perhaps the most dire
t experimental proof for the existen
e of su
h a 
oherent state is the iden-ti�
ation of su
h elementary ex
itations whi
h are non-trivially renormalized in 
omparison withthe radiation frequen
ies. The "thermodynami
s" of the 
oherent phase is 
omputed and thesuper-radiant phase transition is re-derived in this 
ontext.A non-trivial generalization of the present approa
h should address the issue of several level pairs
(nm). The equations of motion (52) be
ome then matri
ial equations, and getting their solutionis a more di�
ult task.A
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ussions.
© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro10See G. Preaprata, lo
 
it


