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2 J. Theor. Phys.state, involving a formation enthalpy for the oherene domains. The "thermodynamis" of theoherent phase is omputed and the super-radiant phase transition is re-derived in this ontext.This is a new state of matter, whih may termed oherent matter. It is di�ult at this momentto envisage all the possible onsequenes of suh a state, though the oherent sattering seems tobe very promising.Eletromagneti �eld. As it is well-known, the lagrangian of the eletromagneti �eld is
Lf =

1

8π

∫

dr
(

E2 − H2
)

, (1)where E is the eletri �eld and H is the magneti �eld. These �elds are given by
E = −1

c

∂A

∂t
− gradϕ , H = curlA , (2)where c denotes the veloity of light and A and ϕ are the eletromagneti potentials. Underthese onditions, the �elds satisfy automatially the �rst pair of Maxwell's equations (curlE =

−1
c
∂H/∂t, divH = 0), while the variation of the ation Sf =

∫

dtLf with respet to the potentialsgives the seond pair of Maxwell's equations (curlH = 1
c
∂E/∂t, divE = 0). If, in addition, thepotentials obey the Lorentz gauge

1

c

∂ϕ

∂t
+ divA = 0 , (3)then they satisfy the wave equation.In the presene of a harge density ρ and a urrent density j = vρ (whih obey the ontinuityequation ∂ρ/∂t + divj = 0), where v denotes the veloity of the harge, the interating term

Lint =
1

c

∫

dr · jA −
∫

drρϕ (4)must be added to the lagrangian. The same sheme of variation of the ation leads to the Maxwell'sequations
curlH =

1

c
∂E/∂t +

4π

c
j , divE = 4πρ (5)in the presene of matter and to the wave equations

1

c2

∂2

∂t2
ϕ − ∆ϕ = 4πρ ,

1

c2

∂2

∂t2
A − ∆A =

4π

c
j (6)with soures.We adopt herein the radiation gauge ϕ = 0 (as for neutral atomi matter, where ρ = 0 but j 6= 0and divj = 0), whih, by (3), gives the transversality ondition divA = 0. We represent the vetorpotential as

A =
∑

αk

√

2π~c2

V ωk

[

eα(k)aαke
ikr + e∗

α(k)a∗
αk

e−ikr
]

, (7)where ~ is Plank's onstant, V denotes the volume, ωk = ck are the frequenies of the free �eld(equation (6) with j = 0), α is the polarization label (α = ±1) and eα(k) denote the polarizationvetors, eα(k)k = 0 (transversality ondition), eα(k)e∗
β(k) = δαβ (two independent polarizations).We represent the polarization vetors as e+(k) = exe
iχ, e−(k) = eye

iχ, where χ is an arbitraryphase and ex,y the two (real) unit vetors perpendiular to k direted along the z-axis, and notethat e+(−k) = eye
−iχ = e∗

−(k), e−(−k) = exe
−iχ = e∗

+(k).



J. Theor. Phys. 3Making use of this representation for the vetor potential A we get
1

8π

∫

drE2 =
∑

αk

~

4ωk

(

ȧαkȧ−α−k + ȧ∗
αk

ȧ∗
−α−k

+ ȧαkȧ
∗
αk

+ ȧ∗
αk

ȧαk

) (8)and
1

8π

∫

drB2 =
∑

αk

~ωk

4

(

aαka−α−k + a∗
αk

a∗
−α−k

+ aαka
∗
αk

+ a∗
αk

aαk

) (9)whih help in onstruting the lagrangian Lf given by (1).Similarly, making use of the Fourier transform
j =

1√
V

∑

k

j(k)eikr (10)for the urrent density, with j∗(−k) = j(k), we get the interating part of the lagrangian given byequation (4) as
Lint =

∑

αk

√

2π~

ωk
[eα(k)j∗(k)aαk + e∗

α(k)j(k)a∗
αk

] . (11)By (4), we an see that, in the radiation gauge, this interation part of the ation is equivalentwith the dipolar interation.The variation of the ation ∫

dt(Lf + Lint) with respet to aαk leads to the equation of motion
äαk + ä∗

−α−k
+ ω2

k

(

aαk + a∗
−α−k

)

=

√

8πωk

~
e∗

α(k)j(k) , (12)whih is Maxwell's equation (6) within the representation given by equation (7). It is worth notingthat this equation of motion is equally valid both in the lassial and quantum ase ([aαk, a
∗
βk′

]

=
δαβδkk′, [aαk, aβk′] = 0 ).From the lagrangian Lf +Lint written in the a's representation we an onstrut the hamiltonian,either lassially or quantally, by introduing the momentum pαk = δLf/δȧαk = (~/2ωk) (ȧ−α−k + ȧ∗

αk
).It is given by

Hf =
1

8π

∫

dr
(

E2 + H2
) (13)and Hint = −Lint as expeted, and leads to the same equation of motion (12).Matter. The lagrangian of a non-relativisti partile with mass m and harge q in an eletro-magneti �eld is given by

Lmf =
1

2
mv2 +

q

c
vA (14)(in the radiation gauge). We an see that the interating part of the lagrangian in equation (14)is the same as the interating part Lint given by equation (4) (sine j = vρ = qvδ(r)). Therefore,the soure terms in equations of motion (12) for the eletromagneti �eld will not be modi�ed onadding the matter lagrangian, as it should be.The equation of motion for the partile is readily obtained frm (14) as Lorentz's fore3

d

dt
(mv) = qE +

q

c
v ×H . (15)3Bu using the identity grad(ab) = (agrad)b+(bgrad)a+a× curlb+b× curla. The fully relativisti equationof motion replaes mv in (15) by mv/

√

1 − v2/c2.



4 J. Theor. Phys.The momentum of the partile is given by P = mv + qA/c, and the hamiltonian reads Hmf =
(P−qA/c)2/2m, leading, of ourse, to the same equation of motion for the partile. We an write

Hmf = P 2/2m − q

mc
PA +

q2

2mc2
A2 , (16)and may view the last two terms in equation (16) as the interating part of the hamiltonian. Ifwe ompute the ontribution of this interation to the equation of motion of the eletromagneti�eld,4 we �nd a term of the form −P+ qA/c, whih, by using P = mv + qA/c, reads −mv. Thisshows again that indeed, the interation is governed by veloity v, as in equation (12). Therefore,we onsider the non-interating part of matter, to whih we add the free eletromgneti �eld andthe interation as given by equation (4) or (11).The quantization of matter requires the presene of the momentum P in the hamiltonian Hmf .We an write it as

Hmf = P 2/2m − q

c
vA − q2

2mc2
A2 , (17)where the term linear in A is the same as the interation given in Lint. In order to estimate theinterations in equation (17) we may employ the Lienard-Wiehert potential for a harge movingwith veloity v. We have A ∼ qv/cr at distane r, so the interation term linear in A in (17)is ∼ (q2/r)(v/c)2, while the interation term quadrati in A in (17) is ∼ (q2/mc2r)(q2/r)(v/c)2.We may see that for atomi matter we may safely neglet the interation term quadrati in A.To the same approximation to the non-relativisti dynamis, the quantization brings yet anotherinteration, −(~q/mc)Hs, whih implies the magneti momentum (s is the partile spin). It is easyto see that it an be estimated as ∼ (~2/ma2E)1/2(q2/r)(v/c)2, where a is the mean inter-partiledistane and E is an atomi transition energy. This interation an also be negleted, though, insome ases, it may bring ontributions omparable with those brought by the term linear in A.In any ase it may be inluded in the interation term linear in A, as the spin urrent.We onsider a set of N independent, idential atomi partiles labelled by i, and write theirinternal hamiltonian as

Hm =
∑

i

Hm(i) . (18)We introdue a set of orthonormal eigenfuntions ϕn(i), suh as
Hm(i)ϕn(j) = εnδij ,

∫

drϕ∗
n(i)ϕm(j) = δijδnm (19)and onstrut a set of normalized eigenfuntions

ϕn =
∑

i

cniϕn(i) (20)for the whole ensemble,
Hmϕn == εnϕn , (21)where the oe�ients cni are suh as to satisfy the normalization onditions,

∑

i

|cni|2 = 1 . (22)4In the quantum ase the PA-term must be symmetrized.



J. Theor. Phys. 5In view of the fat that the partiles are idential the oe�ients cni are of the form cni = eiθni/
√

N ,where θni are some phases, so we may write the wavefuntions as
ϕn =

1√
N

∑

i

eiθniϕn(i) . (23)We notie that any n-state with wavefuntion ϕn an be oupied by any number of partiles, upto N . Therefore, we introdue the �eld operator
Ψ =

∑

n

bnϕn (24)and assume boson-like ommutation relations for the operators bn, [bn, b∗m] = δnm, [bn, bm] = 0, forlarge, marosopi values of the number of partiles
N =

∑

n

b∗nbn . (25)The lagrangian of this ensemble of partiles an be represented as
Lm =

1

2

∫

dr (Ψ∗ · i~∂Ψ/∂t − i~∂Ψ∗/∂t · Ψ) −
∫

drΨ∗HmΨ , (26)or
Lm =

1

2

∑

n

i~
[

b∗nḃn − ḃ∗nbn

]

−
∑

n

εnb
∗
nbn , (27)where

Hm =
∑

n

εnb
∗
nbn (28)is the hamiltonian. They lead to the equations of motion

i~ḃn = εnbn , (29)whih is Shrodinger's equation. It is worth noting that the same equation is obtained for bnviewed as lassial variables.Sine the harge density is given by
ρ =

∑

i

qiδ(r− ri) (30)for an ensemble of point-like harges qi plaed at positions ri, the urrent density an be writtenas
j =

1

V

∑

ik

qivie
−ikri · eikr =

1√
V

∑

k

j(k)eikr . (31)Here we have assumed that ri gets an additional degree of freedom, ri → ri + ui, and the veloity
vi orresponds to u̇i. We write therefore the Fourier transform of the urrent density as

j(k) =
1√
V

∑

i

J(i)e−ikri , (32)



6 J. Theor. Phys.where J(i) = qivi is the urrent of the i-th partile. Now, it is easy to see that the interatingpart Lint of the lagrangian given by equation (11) beomes
Lint =

∑

nmαk

√

2π~

V ωk

[eα(k)I∗mn(k)aαk + e∗
α(k)Inm(k)a∗

αk
] b∗nbm , (33)where

Inm(k) =
1

N

∑

i

Jnm(i)e−i(θni−θmi)e−ikri (34)with J = qv the urrent for eah partile. The equations of motion (29) beome
i~ḃn = εnbn −

∑

mαk

√

2π~

V ωk

[eα(k)I∗mn(k)aαk + e∗
α(k)Inm(k)a∗

αk
] bm , (35)while the equation of motion (12) for the eletromagneti �eld reads now

äαk + ä∗
−α−k

+ ω2
k

(

aαk + a∗
−α−k

)

=
∑

nm

√

8πωk

V ~
e∗

α(k)Inm(k)b∗nbm . (36)It is worthwhile writing expliitly the energy of the interating matter and radiation. The fullhamiltonian reads H = Hm + Hf + Hint, where
Hm =

∑

n εnb∗nbn ,

Hf =
∑

αk

~

4ωk

(

ȧαkȧ−α−k + ȧ∗
αk

ȧ∗
−α−k

+ ȧαkȧ
∗
αk

+ ȧ∗
αk

ȧαk

)

+

+
∑

αk

~ωk

4

(

aαka−α−k + a∗
αk

a∗
−α−k

+ aαka
∗
αk

+ a∗
αk

aαk

)

=

=
∑

αk

~ωk

2
(aαka

∗
αk

+ a∗
αk

aαk) ,

Hint = −
∑

nmαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαk + e∗

α(k)Inm(k)a∗
αk

] b∗nbm .

(37)
The equation of motion for aαk reads

i~ȧαk = [aαk, H ] = ~ωkaαk −
∑

nm

√

2π~

V ωk
e∗

α(k)Inm(k)b∗nbm , (38)whih is equivalent with equation (36).We have already assumed aαk → aαke
−iωkt in deriving the quantized �eld hamiltonian. It isonvenient to make a similar assumption bn → bne−iεnt/~ for the operators of the partiles quanta.Under these irumstanes the equations of motion beome

i~ḃn = −
∑

mαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαke

i
~
(εn−εm−~ωk)+

+e∗
α(k)Inm(k)a∗

αk
e

i
~
(εn−εm+~ωk)]bm ,

i~ȧαk = −
∑

nm

√

2π~

V ωk
e∗

α(k)Inm(k)e
i
~
(εn−εm+~ωk) · b∗nbm ,

(39)



J. Theor. Phys. 7and the interation hamiltonian reads
Hint = −∑

nmαk

√

2π~

V ωk
[eα(k)I∗mn(k)aαke

i
~
(εn−εm−~ωk)+

+e∗
α(k)Inm(k)a∗

αk
e

i
~
(εn−εm+~ωk)]b∗nbm .

(40)Now it is easy to reognize the interation piture of the eletromagneti �eld with partilesquanta, amenable to perturbation theory for alulating transition amplitudes, as in absorptionor radiation of photons, or radiation sattering on matter.Marosopi oupation. Coherene. The transition amplitudes involving highly-exitedstates are small. The most relevant transitions generated by the interation hamiltonian (40) arethose between the ground-state and the lowest-exited states of the matter. Following Preparata5we examine herein whether a marosopi oupation of suh states, and of the orrespondingphoton states, is favourable.First, let a, a∗be the destrution and reation operators for bosoni states|n〉, with oupationnumber n, suh as a |0〉 = 0, a |n〉 =
√

n |n − 1〉, a∗ |n〉 =
√

n + 1 |n + 1〉, [a, a∗] = 1, the numberof quanta being given by N = a∗a, N |n〉 = n |n〉. We may represent a as a = eiθ
√

N and get
[a, a∗] = eiθNe−iθ − N = 1; hene, [N, θ] = 1, or N = i∂/∂θ. The quantal states have a de�niteoupation number n, so their phase is ompletely undetermined. The lassial, marosopiallyoupied states have a determined phase and a ompletely undetermined oupation number.They an be represented as |α〉 =

∑

n Cn |n〉, and from a |α〉 = α |α〉, we get the oe�ients Cn.Suh a normalized state reads6
|α〉 = e−|α|2/2

∑

n

αn

√
n!

|n〉 , (41)and the (mean) number of quanta in state |α〉 is N = |α|2; its mean square deviation is √
N .Therefore, the q-number a an be viewed as a c-number α, whih is a omplex number whosemodulus is the square root of the oupation number N . Suh marosopially oupied statesare alled oherent states beause they have a de�nite phase; they imply an o�-diagonal order.For suh oherent states we denote the photon operators a by α and the partiles states operators

b by β.Coherene domains. Making use of equation (34) the interation lagrangian given by equation(33) an be written as
Lint =

∑

nmαk

√

2π~

V ωk
Fnm(αk)

(

aαk + a∗
−α−k

)

b∗nbm , (42)where
Fnm(αk) =

1

N

∑

i

eα(k)Jnm(i)eikri−i(θni−θmi) . (43)For any pair (nm) of energy levels, we represent the position ri of any partile i as ri = Rp + rpi,where the vetors Rp de�ne a spatial lattie haraterized by the set of integers p = (p1, p2, p3)and rpi are restrited to the �rst Wigner-Seitz ell of suh a latie. The lattie Rp is hosen suhthat the magnitudes of its shortest reiproal vetors kr, r = 1, 2, 3, are equal with the magnitude5G. Preparata, lo it.6R. J. Glauber, Phys. Rev. 131 2766 (1963).



8 J. Theor. Phys.of the relevant wavevetors k, i.e. those wavevetors whih satisfy ~ωk = εn − εm > 0. It is easyto see that only a ubi and a trigonal (rhombohedral) symmetry is thus allowed. For instane,a ubi lattie is haraterized in this ase by a periodiity length λ = 2π/k, where k is themagnitude of the relevant wavevetor. A similar periodiity length (di�erent from λ) ours forthe rhombohedral lattie. We limit the relevant wavevetors k to this �nite set of basi reiproalvetors, for whih krRp = 2π × integer. Equation (43) beomes then
Fnm(αkr) =

1

N

∑

pi

eα(kr)Jnm(i)eikrrpi−i(θni−θmi) , (44)where the summation over p stands for all the elementary ells in the spatial lattie .The summation over i in the Wigner-Seitz ell of the remaining phase fators in equation (44) isin general vanishing, in view of the randomness of suh phase fators. We note that there is botha spatial phase krrpi in equation (44) and an internal phase θni − θmi, leaving aside the variousorientations of the urrent density Jnm(i) with respet to the polarization vetor eα(k). However,we an de�ne a subset of Nnm(αkr) partiles suh that their phases θni ful�ll the ondition
krrpi − (θni − θmi) = K , (45)where K is a onstant. We an see that these sub-sets of partiles are disjoint, i.e. if a partilesatis�es ondition (45) for a given kr it does not satisfy it for a di�erent kr. In addition, anypartile belongs to a well-determined pair (nm). It is also reasonable to assume that all thepartiles Nnm(αkr) have their urrent density Jnm(i) alligned with the polarization vetor eα(kr),i.e. eα(kr)Jnm(i) = Jnm. Under these irumstanes, up to a phase fator exp(K), equation (44)gives Fnm(αkr) = JnmNnm(αkr)/N . It is reasonable to assume in addition the ompleteness ofthe partition operated by ondition (45), i.e. ∑

(nm)αkr
Nnm(αkr) = N .Condition (45) is a strong ondition, whih tells that the phases of the internal motion of the

i-th partile is orrelated to the position of that partile. It implies a long-range order in aooperative phenomenon, where the phase of the internal motion "feels" the partile position.Equation (45) may be taken as the basi ondition for oherene. We all suh an ensembleof partiles whih satis�es ondition (45) a lattie of oherene domains. Sine, typially, thewavelength λr = 2π/kr ≫ a, where a is the mean inter-partile distane, we an see that forpartiles loated near the entre of the Wigner-Seitz ell we may take θni − θmi ≃ 0 and K = 0,while for partiles loated near the boundaries of the Wigner-Seitz ell the phases are suh as
θni − θmi get non-vanishing values, suh as to preserve the onstant value K = 0.It is easy to see that for various pairs (nm) we have a superposition of suh latties of oherenedomains. Similarly, these latties an also be one- or two-dimensional. For instane, a one-dimensional lattie of oherene domains looks like a set of parallel sheets (layered struture),with the relevant periodiity length λ. A two-dimensional lattie of oherene domains looks likea set of parallel threads, with a orresponding periodiity.Here we restrit ourselves to the ground-state of the ensemble of partiles, labelled by n = 0, andthe �rst exited state n = 1, i.e. to only one pair (01). We assume a marosopi oupation forthese states, whih means to use c-numbers β0,1 for their operators b0,1. Under these irumstanesthe interation redues to the ontribution arising from those photons whih satisfy the onserva-tion of energy ε1 − ε0 = ~ω0, where ω0 = ck0. As it was said above, we limit these wavevetorsto the basi reiproal vetors kr of the oherene lattie, of magnitude kr = k0 = 2π/λ0. Theiroperators aαkr , kr = k0, are then replaed by c-numbers α, the same for any polarization α andany kr. There is no partiular reason to have an anisotropy or a polarization dependene for these



J. Theor. Phys. 9relevant photon modes. It is easy to see that the interation lagrangian given by equation (42)beomes then
Lint =

√

2π~

V ω0
J01 (α + α∗) (β∗

1β0 + β1β
∗
0) , (46)where we have taken J01 = J10. A similar replaement of the �eld operators by c-numbers is madein the �eld lagrangian given by equations (8) and (9) and in the partiles lagrangian given byequation (27). The summation over αkr, kr = k0, in the �eld lagrangian Lf gives a fator 12, fora three-dimensional lattie. This fator an be absorbed in the photon operators, so we an writedown the "lassial" lagrangian

Lf = ~

4ω0

(

α̇2 + α̇∗2 + 2 |α̇|2
)

− ~ω0

4

(

α2 + α∗2 + 2 |α|2
)

,

Lm = 1
2
i~

(

β∗
0 β̇0 − β̇∗

0β0 + β∗
1 β̇1 − β̇∗

1β1

)

−
(

ε0 |β0|2 + ε1 |β1|2
)

,

Lint = g√
N

(α + α∗) (β0β
∗
1 + β1β

∗
0) ,

(47)where the oupling onstant is given by
g =

√

π~/6a3ω0J01 . (48)Is worth noting that the interation lagrangian given by equation (47) di�ers from its "quantum"(�eld-theoretial) ounterpart by the non-vanishing overlapping of the oherent states, whihallows both α and α∗in the "elementary" interation proesses. It is also worth noting that whilethe �eld lagrangian Lf in equation (47) is the lassial lagrangian, the partiles lagrangian Lm andthe interation lagrangian Lint in equations (47) are "lassial" only with respet to the seond-quantization (�eld operators), while they preserve their quantum harater with respet to the"�rst quantization".In order to have some numerial estimates, we may take as a typial value for the energy diferene
ε1 − ε0 = ~ω0 = 10eV , whih orresponds to a photon wavelength λ0 = 103Å. This wavelength ismuh longer than the typial inter-partile distane a. We an obtain an estimate of the ouplingonstant g by representing the matrix element J01 of the urrent density as J01 ∼ qv ∼ qa0ω0 =
dω0, where q denotes a harge moving with veloity v inside eah partile with a harateristiradius a0, d being the orresponding dipole moment.7 Taking q = e (the eletron harge) we get

g =
√

π~ω0(e2/6a0)(a0/a)3/2 , (49)whih gives g ∼ 0.8eV for ~ω0 = 10eV , a0 = 0.53Å (the Bohr radius) and a ∼ 3Å. For one- andtwo-dimensional oherene latties this oupling onstant inreases by fators √3 and respetively
√

3/2, as a result of the fator ∑

αkr
in front of the �eld lagrangian Lf .Equations of motion. Making use of the lagrangian given above we get the equations of motion

α̈ + α̈∗ + ω2
0 (α + α∗) =

2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) (50)and

i~β̇0 = ε0β0 − g√
N

(α + α∗)β1 ,

i~β̇1 = ε1β1 − g√
N

(α + α∗) β0 .

(51)7This orresponds to the dipole approximation, whih, in the non-relativisti limit leaves aside the spin and theso-alled diamagneti ontributions to the urrent density.



10 J. Theor. Phys.We rewrite these equations of motion with the real quantity A = α + α∗,
Ä + ω2

0A = 2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) ,

i~β̇0 = ε0β0 − g√
N

Aβ1 ,

i~β̇1 = ε1β1 − g√
N

Aβ0 .

(52)The orresponding hamiltonian reads
Hf = ~

4ω0

Ȧ2 + ~ω0

4
A2 ,

Hm = ε0 |β0|2 + ε1 |β1|2 ,

Hint = − g√
N

A (β0β
∗
1 + β1β

∗
0) .

(53)It is onserved,
Hf + Hm + Hint = E , (54)where E is the energy. The number of partiles is also onserved: from equations (52) we geteasily

|β0|2 + |β1|2 = N . (55)Making use of equations (52) we get straightforwardly another onservation law, given by
~

4ω0

(

Ȧ2 + ω2
0A

2
)

− g√
N

A (β0β
∗
1 + β1β

∗
0) +

(ε1 − ε0)

2

(

|β1|2 − |β0|2
)

= Q , (56)where Q is a onstant energy; it an be heked out without di�ulty that this is not an indepen-dent onservation law; it amounts to E − N (ε1 + ε0) /2 = Q.The stationary solutions of equations (52) are obtained by putting β0,1 = B0,1e
iθ; the equations ofmotion beome

Ä + ω2
0A = 4ω0g

~
√

N
B0B1 ,

i~Ḃ0 − ~θ̇B0 = ε0B0 − g√
N

AB1 ,

i~Ḃ1 − ~θ̇B1 = ε1B1 − g√
N

AB0

(57)The last two equations tell that B0,1 and θ̇ = Ω are onstant in time and the partiular solutionof the �rst equation in (57) is
A =

4g

~ω0

√
N

B0B1 . (58)Now it is easy to �nd out the solutions
A = 2g

~ω0

√
N

[

1 − (~ω0/2g)4
]1/2

,

B2
0 = 1

2
N

[

1 + (~ω0/2g)2
]

,

B2
1 = 1

2
N

[

1 − (~ω0/2g)2
]

,

(59)
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Ω = ω0

[

−1

2
+

2g2

~2ω2
0

]

, (60)where ε1 − ε0 = ~ω0 has been used and ε0 was put equal to zero.We an see that the ensemble of atomi partiles and the assoiated eletromagneti �eld an beput into a oherent state, the oupation amplitudes osillating with frequeny Ω, providing theritial ondition
g > gcr = ~ω0/2 (61)is ful�lled. The total energy of the oherene domain is given by

E = − g2

~ω0
N

[

1 − (~ω0/2g)2
]2

= −~ΩB2
1 . (62)It is lower than the non-interating ground-state energy Nε0 = 0. It may be viewed as theenthalpy of formation for the oherene domain. It must be emphasized that this e�et of setingup a oherene in matter is di�erent from the lasing e�et, preisely by this formation enthalpy.The oupled ensemble of matter and radiation is unstable for a marosopi oupation of theatomi quantum states and the assoiated photon states. From equations (62) and (60) we maysee that (~Ω/2)

[

1 − (~ω0/2g)2
] an be viewed as the hemial potential assoiated to the number

N of partiles.Obviously, the oherene solutions obtained here are non-perturbative; they are not analyti in theoupling onstant g. It is worth noting that the stationary solutions given by equations (59) and(60) an also be obtained by minimizing the hamiltonian (54) with the onstraint B2
0 + B2

1 = Ngiven by equation (55).It is also worth noting that the eletromagneti potential given by equation (7) for aαkr = α,
kr = k0, does not depend on the time. Consequently, the eletri �eld is vanishing in the oherenedomains. The magneti �eld is not vanishing, in general. The vetor potential A(r) given byequation (7) exhibits spatial osillations aording to the reiproal vetors kr. The magneti�eld may attain high values, depending on the oupling strength g. Typially, the magnitude ofthe magneti �eld is of the order of √

~ω0/a3. For ~ω0 = 10eV and a ∼ 3Å this �eld may be ashigh as ∼ 106Gs. We may speulate that suh a magneti �eld might be a good andidate for theWeisss' moleular �eld of ferromagnetism.The polarization
P =

1

V

∑

i

p(i) (63)of the oherene domains, where p(i) is the dipole momentum of the i-th partile, an easily bealulated by using equations (23), (24) and (59); we get
P = 1

V N

∑

i p(i)
[

β∗
0β1e

−i(θ0i−θ1i) + β∗
1β0e

i(θ0i−θ1i)
]

=

= 1
V

∑

i p(i) cos (θ1i − θ0i)
[

1 − (~ω0/2g)4
]1/2

,

(64)where p(i) = p01(i) = p10(i). In general, without partiular assumptions on p(i), the phasesummation in equation (64) vanishes and the polarization is zero. It is easy to see for instanethat an external �eld whih would modulate the distribution of the dipole momenta p(i) with aperiodiity orresponding to the reiproal vetors kr may give rise to a non-vanishing polarization,in view of the oherene ondition (45).



12 J. Theor. Phys.Elementary exitations of the oherene domains. We hange the oordinates in thelagrangian given by equations (47) aording to A → A + δA, β0,1 → β0,1 + δβ0,1, where
δβ0,1 = (δB0,1 + iB0,1δθ0,1) eiΩt. The �rst-order variation of the lagrangian gives the equationsof motion (52), so we are left with the seond-order variation of the lagrangian, where δA, δβ0,1are viewed as the new oordinates. In addition, we impose the onservation of the number ofpartiles B0δB0 + B1δB1 = 0. With this onstraint we get the variation of the lagrangian

δLf = ~

4ω0
δȦ2 − ~ω0

4
δA2 ,

δLm = ~B1

[

δB1

(

δθ̇0 − δθ̇1

)

− δḂ1 (δθ0 − δθ1)
]

−

− (~ΩN/B2
0 + ~ω0) δB2

1 − ~ΩB2
0δθ

2
0 − ~ (Ω + ω0)B2

1δθ
2
1 ,

δLint = 2g√
N

B2

0
−B2

1

B0

δAδB1 − 2g√
N

AB1

B0

δB2
1 + 2g√

N
AB0B1δθ0δθ1 .

(65)
The hamiltonian an readily be obtained from equation (65). It is onvenient to introdue theoupling strength λ = 2g/~ω0 (λ > 1) and to make use of equations (59) and (60). We get thehamiltonian

δH = ~

4ω0
δȦ2 + ~ω0

4

(

δA − 2
√

N
λB0

δB1

)2

+

+2~ω0 (λ2 − 1) δB2
1 + ~ω0N

λ4−1
4λ2 (δθ0 − δθ1)

2 ,

(66)whih tells, �rst, that the relevant phase oordinate is δϕ = δθ0 − δθ1 and, seond, that theoordinates δA, δB1and δϕ are assoiated with the elementary exitations (exited states).The equations of motions orresponding to the lagrangian given by equations (65) an be writtenas
B0

(

δÄ + ω2
0δA

)

− 2ω2

0

√
N

λ
δB1 = 0 ,

ω0Nλ2δB1 − B2
0B1δϕ̇ − ω0

√
N

2λ
B0δA = 0 ,

ω0N
λ4−1
4λ2 δϕ + B1δḂ1 = 0 .

(67)Their solutions are of the form (δA, δB1, δϕ)eiωt, where the frequenies ω are given by
ω2

1,2 =
1

2
ω2

0

[

λ4 + 1 ±
√

(λ4 − 1)2 + 4

]

. (68)The exitations energies orrespond to the frequenies Ω1,2 = Ω ± ω1,2. In the weak ouplinglimit these frequenies behave as ω1 ≃
√

2ω0 and ω2 ≃
√

λ2 − 1ω0 (Ω1,2 ≃ ω1,2). In this limit thesolution orreponding to the former frequeny is δA ≃ −2δB1 ≃ −i
√

N(λ2 − 1)δϕ, while the oneorresponding to the seond frequeny is δA ≃ 2δB1 ≃ i
√

2Nδϕ. Sine for the former solution
δA and δB1 vanish in the limit λ → 1, while δϕ is non-vanishing, we may all this elementaryexitation "phason". As for the seond solution, sine all oordinates are non-vanishing, we mayall it "amplitudon". Although this terminology is reminisent of the well-known dynamis of theharge-density waves,8 the analogy is insubstantial to a large extent."Thermodynamis" of the oherent phase. In the limit of low temperatures the thermody-namis is ontrolled by the oherent ground-state energy given by equation (62); the elementary8P. A. Lee, T. M. Rie and P. W. Anderson, Solid State Commun. 14 703 (1974); G. Gruner, Revs. Mod.Phys. 60 1129 (1988).



J. Theor. Phys. 13exitations derived above bring no thermodynamial ontribution. We an ompute diretly thepartition funtion Z = tr exp [β (µN − H)], where β = 1/T is the inverse of the temperature, µ isthe hemial potential and the hamiltonian H is given by equations (53) with |β0|2 + |β1|2 = N .The trae is omputed by ∫

dβ0xdβ0y..., where β0 = β0x + iβ0y, et. In the thermodynamial limitwe get
Z ≃

∫

dρ · eβNµρ

√

~ω0 (~ω0 − µ) − 4g2̺
≃ eβNµ~ω0(~ω0−µ)/4g2 (69)for µ < 0. The thermodynami potential is given by Ω = Nµ~ω0 (~ω0 − µ) /4g2. We an seethat the oherent phase is perfetly ordered, with a vanishing entropy. The hemial potential

µ = ~ω0/2 − 2g2/~ω0 < 0 implies g > ~ω0/2, whih is the ritial ondition given by equation(61). The energy (and free energy) is given by E = Ω + µN = −N~ω0 (~ω0/4g − g/~ω0)
2, whihoinides with the ground-state energy given by equation (62).Super-radiant phase transition. The oherent state desribed herein is haraterized by amarosopi oupation of the photon state and the two levels. It is indeed known that mat-ter oupled to radiation may su�er an instability toward a super-radiant state at some ritialtemperature, depending on the oupling onstant.9We start with the quantum hamiltonian written as

Hf = ~ω0

∑

µ

(

a∗
µaµ + 1/2

)

, Hs = ~ω0b
∗
1b1 ,

Hint = − 1√
N

(Gb∗1b0 + G∗b∗0b1) ,
(70)where µ stands for the pair αkr, G =

∑

µ gµaµ and gµ =
√

2π~/V ω0J01N(µ)/
√

N . This is knownas the Dike-Preparata hamiltonian.First we introdue the spin operators
Sz = b∗0b0 − b∗1b1 =

∑

i (b
∗
0ib0i − b∗1ib1i) =

∑

i szi ,

S+ = b∗0b1 =
∑

i b
∗
0ib1i =

∑

i s+i ,

S− = b∗1b0 =
∑

i b
∗
1ib0i =

∑

i s−i ,

(71)where s's are Pauli matries. The trae over b's in the partition funtion Z = tr exp (−βH), where
H = Hf + Hs + Hint, an then be represented as

trb exp (−βHs − βHint) = e−β~ω0N/2
(

trehs
)N

, (72)where
hx =

β

2
√

N
(G∗ + G) , hy =

iβ

2
√

N
(G∗ − G) , hz = β~ω0/2 . (73)It is easy to establish the equality trehs = 2 cosh h, where h = β (G∗G/N + ~

2ω2
0/4)

1/2. Thepartition funtion an now be written as
Z = e−β~ω0(N+s)/2tr

{

e−β~ω0

P

µ a∗
µaµ

[

2 cosh β
(

G∗G/N + ~
2ω2

0/4
)1/2

]N
}

, (74)9Y. K. Wang and F. T. Hioe, Phys. Rev. A7 831 (1973); S. Sivasubramanian, A. Widom and Y. N. Srivastava,Int. J. Mod. Phys. B15 537 (2001); S. Sivasubramanian, A. Widom and Y. N. Srivastava, Mod. Phys. B16 1201(2002); S. Sivasubramanian, A. Widom and Y. N. Srivastava, J. Phys.: Cond. Matt. 15 1109 (2003).



14 J. Theor. Phys.where s =
∑

µ. We an see easily that there exists a unitary transformation A, aµ = Aµνcν ,whih diagonalizes the quadrati form G∗G =
∑

µν gµgνa
∗
µaν , while preserving the diagonal form

∑

µ a∗
µaµ. It has only one non-vanishing eigenvalue

G2
0 =

∑

µ

g2
µ =

2π~

V ω0
J2

01

∑

µ

N2(µ)/N , (75)orresponding to one photon mode denoted by c. We take N(µ) = N/s, and get G2
0 = g2, where gis given by equation (49) (for s = 12). We keep now in the partition funtion only the ontributionswhih are relevant in the thermodynamial limit, and get

Z ≃ e−β~ω0N/2tr

{

e
−β~ω0c∗c+N ln

»

2 cosh β(g2c∗c/N+~2ω2

0
/4)

1/2

–} (76)The trae in this equation is omputed in the lassial limit, where the temperature is muh higherthan all the relevant energy sales (e.g., β~ω0 ≪ 1). We get
Z ≃ e−β~ω0N/2

∫ ∞

0

dx · e−Nφ(x) , (77)where
φ(x) = β~ω0x − ln

[

2 cosh β
(

g2x + ~
2ω2

0/4
)1/2

]

. (78)The main ontribution to the integral in equation (77) omes from the minimum value of thefuntion φ(x) (Laplae's method), loated at x0 given by
2~ω0

g2

√

g2x0 + ~2ω2
0/4 = tanh β

√

g2x0 + ~2ω2
0/4 . (79)This equation has no solution for g < ~ω0, at any temperature (x0 = 0). For g > ~ω0, thereexists a ritial temperature Tc given by ~

2ω2
0/g

2 = tanhβc~ω0/2 (or βc ≃ 2~ω0/g
2), suh thatfor temperatures higher than Tc equation (79) has no solution (x0 = 0), while for T < Tc it has anon-vanishing solution. In the former ase the ensemble of partiles is in the normal state, witha free energy per partile given by

f0 = ~ω0/2 − β−1 ln [2 cosh β~ω0/2] (80)(interation-free ensemble). For T slightly below Tc we expand equation (79) in powers of
√

g2x0 + ~2ω2
0/4 − ~ω0/2 and get

x0 ≃
1

2
(1 − T/Tc)

1/2 . (81)Now it is easy to get the free energy per partile
f ≃ f0 −

~ω0

4
(1 − T/Tc)

2 . (82)As one an see, the entropy is ontinuous at the ritial temperature, while the spei� heat has adisontinuity, C = C0 + ~ω0/2Tc. The transition is of the seond kind, with the order parameterthe photon oupation number. Indeed, it is easy to ompute the mean oupation number forphotons, whih vanishes for T > Tc and is proportional to x0 given by equation (81) for T < Tc.It is worth noting that the super-radiant transition is desribed by a quantum hamiltonian, while



J. Theor. Phys. 15the oherent phase obeys a lassial dynamis. This aounts also for the di�erene in the tworitial onditions g > ~ω0/2 and g > ~ω0.Misellanea.Plasmons. We onsider an ensemble of idential partiles with mass m and harge q movingagainst a rigid, neutralizing bakground, as in a jellium model. The small disturbanes of partilesdensity are represented as δn = −ndivu, where n is the partiles onentration and u is a loaldisplaement �eld. The hamiltonian of these density disturbanes reads
Hp =

nm

2

∫

dru̇2(r) +
n2

2

∫

drdr′ϕ(r − r′)divu(r)divu(r′) , (83)where ϕ(r) = q2/r is the Coulomb interation. We introdue the Fourier transform
u(r) =

1√
V

∑

k

u(k)eikr , (84)
u∗(−k) = u(k) and notie that only the longitudinal oordinates are relevant. Therefore, we use
u(k) = ku(k)/k , u∗(−k) = −u(k) and get

Hp = −nm

2

∑

k

u̇(k)u̇(−k) − 2πn2q2
∑

k

u(k)u(−k) , (85)whih leads to the equation of motion
ü(k) + ω2

pu(k) = 0 , (86)where ωp given by ω2
p = 4πnq2/m is the plasma frequeny.The quantization of the plasma hamiltonian proeeds in the usual way, by introduing the reationand annihilation boson-like operators b∗(k), b(k) through

u(k) = i
√

~/2nmωp

(

bk + b∗−k

)

,

u̇(k) = −
√

~ωp/2nm
(

bk − b∗−k

)

,

(87)whih gives the hamiltonian
Hp =

1

2
~ωp

∑

k

(b∗
k
bk + bkb

∗
k
) . (88)We write down here also the lagrangian

Lp = ~

4ωp

∑

k

(

ḃkḃ−k + ḃkḃ
∗
k

+ ḃ∗−k
ḃ−k + ḃ∗−k

ḃk
∗)−

−~ωp

4

∑

k

(

bkb−k + bkb
∗
k

+ b∗−k
b−k + b∗−k

b∗
k

)

,

(89)whih leads to the equation of motion (86) written as
b̈k + b̈∗−k

+ ω2
p

(

bk + b∗−k

)

= 0 . (90)The urrent density assoiated with the plasmons is j = nqu̇. Obviously, there is no ouplingof the form jA, between plasmons and photons, sine j is longitudinal and A is transversal withrespet to the wavevetor k, as it is well-known.



16 J. Theor. Phys.One may imagine a plasmoni model of atoms, moleules, moleular aggregrates, muh along thelines skethed above. Then, the partile states are indeed the plasmon exitations; the ouplingis of the form abb∗, as derived in the preeding setions, and the relevant partiles states are theground-state and the exited plasma state, whih would imply ω0 = ωp. The theory desribedafore applies, but it is merely a reformulation of the oupling through the urrent J in terms ofthe oupling through the plasma frequeny. They also aggree in order of magnitude.Phonons. We may note that a oupling of the form ab is possible between transverse optialphonons in a rystal lattie and photons, where a stands for photons and b for the phonon states.The assoiated oherent state, whih involves a marosopi oupation of the photons andphonons states amounts to a stati transverse distortion of the rystal lattie. Suh a state wasnot yet investigated so far, to the knowledge of the present author.An interesting situation ours in the eletron-phonon oupling in one dimension, or in layeredstrutures with so-alled nesting Fermi surfae. There, the eletron states are boson-like, aordingto the Bloh-Tomonaga theory, and we may be in the situation of a oherent state with ab-likeoupling, where a orresponds to phonons and b to (bosonized) eletroni states. This state isnothing else but the well-known Peierls distortion and Frohlih harge density.Super�uidity and superondutivity. The oherene of the Bose partiles like He4 atomsin the super�uid state is well-known. We must stress here however that this oherene refers tothe motion of the partiles, in ontrast to the internal motion of partiles desribed herein. Theformer is quite possible, and is related to quite interesting phenomena related to the oherentsattering.As regards the superondutivity, the phonon-mediated eletroni pairs ertainly exhibit a maro-sopi oupation, as approximate boson-like exitations. However, to the knowledge of this au-thor, there is yet no �eld mediating the pair interation, suh as to resemble the oherent theorydesribed herein. Other various speulations regading the high-Tc superondutivity or the oldfusion (mediated, supposedly, by an atomi plasma)10 are even farther away from any resemblaneto a oherent state as desribed herein.Conlusion. In onlusion we may say that the interation of matter with eletromagneti in-teration may lead to oherene domains, governed basially by a two-level state, providing theoupling onstant is greater than a ritial value. The oherene domains are made possible bya spatial arrangement in a regular lattie of the phases of the internal motion of the partiles,aording to the oherene ondition (45).These oherene domains are haraterized by a maro-sopi oupation of the quantum states. The non-linear equations of motion have been solvedfor the oherent ground state and the elementary exitations have been identi�ed. The solutionis a non-perturbational one, the radiation frequeny being renormalized in an appreiable way.Perhaps the most diret experimental proof for the existene of suh a oherent state is the iden-ti�ation of suh elementary exitations whih are non-trivially renormalized in omparison withthe radiation frequenies. The "thermodynamis" of the oherent phase is omputed and thesuper-radiant phase transition is re-derived in this ontext.A non-trivial generalization of the present approah should address the issue of several level pairs
(nm). The equations of motion (52) beome then matriial equations, and getting their solutionis a more di�ult task.Aknowledgments. The author is indebted to E. Preoteasa for many fruitful disussions.© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro10See G. Preaprata, lo it


