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2 J. Theor. Phys.(eletrons). This representation is valid for Ku(K) ≪ 1, where K is the wavevetor and u(K) isthe Fourier omponent of the displaement �eld. We assume a rigid neutralizing bakground ofpositive harge, as in the well-known jellium model.We assume a plane wave inident on the plasma surfae under angle α. Its frequeny is given by
ω = cK, where c is the veloity of light and the wavevetor K = (k, κ) has the in-plane omponent
k and the perpendiular-to-plane omponent κ, suh as k = K sin α and κ = K cos α. In addition,
k = k(cos ϕ, sin ϕ). The eletri �eld is taken as E0 = E0(cos β, 0,− sinβ)eikreiκze−iωt, and weimpose the ondition cos β sin α cos ϕ − sin β cos α = 0 (transversality ondition KE0 = 0). Theangle β de�nes the diretion of the polarization of the inident �eld.In the presene of an eletromagneti �eld E0 we use the equation of motion

ü = − e

m
E − e

m
E0 , (1)for the displaement �eld u, where −e is the eletron harge, m is the eletron mass and E is thepolarizing �eld. We leave aside the dissipation e�ets (whih an easily be inluded in equation(1)). We onsider an ideal semi-in�nite plasma extending over the half-spae z > 0 (and boundedby the vauum for z < 0). The displaement �eld u is then represented as (v, u3)θ(z), where vis the displaement omponent in the (x, y)-plane, u3 is the displaement omponent along the

z-diretion and θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtion. We use Fouriertransforms of the type
u(r, z; t) =

∑

k

∫

dωu(k, z; ω)eikre−iωt (2)where r is the (x, y)-in-plane position vetor. Equation (1) beomes
ω2u =

e

m
E +

e

m
E0e

iκz , (3)for z > 0. In equation (3) we have preseved expliitly only the z-dependene (i.e. we leave asidethe fators eikre−iωt). We �nd it onvenient to employ the vetor potential
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∫
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R
(4)and the salar potential
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∫

dr′
∫

dz′
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R
, (5)where j = −neu̇θ(z)eikre−iωt is the urrent density, ρ = nedivu = ne

(

ikv + ∂u3

∂z

)

θ(z)eikre−iωt +

neu3(0)δ(z)eikre−iωt is the harge density and R =
√

(r − r′)2 + (z − z′)2. The integrals in equa-tions (4) and (5) implies the known integral[20℄
∫ ∞

|z|
dxJ0

(
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√

x2 − z2

)

eiωx/c =
i

κ
eiκ|z| , (6)where J0 is the zeroth-order Bessel funtion of the �rst kind (and κ2 = ω2/c2−k2). It is onvenientto use the projetions of the in-plane displaement �eld v on the vetor k and on the vetor

k⊥ = k(− sin ϕ, cos ϕ), k⊥k = 0. We denote these omponents by v1 = kv/k and v2 = k⊥v/k,and use also the omponents E1 = kE/k, E2 = k⊥E/k and similar ones for the external �eld E0.We give here the omponents of the external �eld
E01 = E0 cos β cos ϕ , E02 = −E0 cos β sin ϕ , E03 = −E0 sin β . (7)



J. Theor. Phys. 3One an hek immediately the transversality ondition E01k + E03κ = 0. Making use of E =
−1

c
∂A

∂t
− gradΦ, equations (4) and (5) give the eletri �eld
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(8)for z > 0. It is worth observing in deriving these equations the non-intervertibility of the deriva-tives and the integrals, aording to the identity
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∣ − 2iκf(z) (9)for any funtion f(z), z > 0; it is due to the disontinuity in the derivative of the funtion e
iκ
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∣for z = z
′ . Now, we employ equation of motion (3) in equations (8) and get the integral equations
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(10)
for the oordinates v1,2 and u3 in the region z > 0, where ωp =

√

4πne2/m is the plasma frequeny.The seond equation (10) an be solved straightforwardly by notiing that
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2)v2 = 0 . (12)The solution of this equation is
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z , (13)where
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p . (14)The wavevetor κ

′an also be written in a more familiar form κ
′

= (ω/c)
√

ε − sin2 α, where
ε = 1− ω2

p/ω
2 is the dieletri funtion. The orresponding omponent of the (total) eletri �eld(the refrated �eld) an be obtained from equation (3); it is given by (mω2/e) v2. For κ2 < ω2

p/c
2(ω cos α < ωp) this �eld does not propagate. For κ2 > ω2

p/c
2 (ω greater than the transparenyedge ωp/ cos α) it represents a refrated wave (transpareny regime) with the refration angle α

′given by Snell's law
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Figure 1: Re�etion oe�ient for a semi-in�nite plasma for β = π/6 and various inidene angles
α. One an see the shoulder ourring at the transpareny edge ωp/ cosα and the zero ourringat ω2 = ω2

p/ (1 − tan2 α) for α = β = π/6 (R2 = 0,ϕ = 0).The polariton frequeny is given by
ω2 = c2K2 = ω2

p + c2K
′2 , (16)as it is well known, where K

′
2 = κ

′
2 + k2.The �rst and the third equations (10) an be solved by using an equation similar with equation(11) and by notiing that they imply

κ
′2u3 = ik

∂v1

∂z
. (17)We get
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(
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z (18)and
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κ − κ
′
)

κκ′ + k2
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′
z . (19)Similarly, the orresponding omponents of the refrated �eld are given by equation (3). It is easyto hek the transversality ondition v1k + u3κ

′

= 0.We an see that the polarization �eld E in equation (1) anels out the original, inident �eld E0and gives the total, refrated �eld mω2u/e inside the plasma. This is an illustration of the so-alledEwald-Oseen extintion theorem.[8, 21℄ We note that a possible treatment of the propagation ofthe eletromagneti waves in matter by means of integral equations was suggested previously.[21℄In order to get the re�eted wave (region z < 0) we turn to equations (8) and use therein thesolutions given above for v1,2 and u3. It is worth noting here that the disontinuity term ω2

pu3 does



J. Theor. Phys. 5not appear anymore in these equations (beause z
′

> 0 and z < 0 and we annot have z = z
′).The integrations in equations (8) are straightforward and we get the �eld
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−iκz (21)and

E3 = −E03
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e−iκz . (22)We an see that this �eld represents the re�eted wave (κ → −κ), and we an hek its transversal-ity to the propagation wavevetor. Making use of the re�eted �eld Erefl given by equations (20)-(22) and the refrated �eld Erefr obtained from equations (3) and (8) (Erefr = E+E0 = mω2u/e)one an hek the ontinuity of the eletri �eld and eletri displaement at the surfae (z = 0)in the form E1,2refl + E01,2 = E1,2refr, E3refl + E03 = εE3refr, where ε = 1 − ω2

p/ω
2. The angleof total polarization (Brewster's angle) is given by κκ

′ − k2 = 0, or tan2 α = 1 − ω2

p/ω
2 = ε (for

α < π/4). The above equations provide generalized Fresnel's relations between the amplitudes ofthe re�eted, refrated and inident waves at the surfae for any inidene angle and polarization.They an also be written by using ω2 = ω2

p/ (1 − ε), where ε is the dieletri funtion.The re�etion oe�ient R = |Erefl|2 / |E0|2 an be obtained straightforwardly from the re�eted�elds given by equations (20)-(22). It an be written as
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, (23)where
R1 =

∣

∣

∣

∣

∣

∣

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

∣

∣

∣

∣

∣

∣

2 (24)and
R2 =

∣

∣

∣

∣

∣

∣

cos α
√

ω2 cos2 α − ω2
p − ω sin2 α

cos α
√

ω2 cos2 α − ω2
p + ω sin2 α

∣

∣

∣

∣

∣

∣

2

. (25)The �rst term in the rhs of equation (23) orresponds to β = 0 (ϕ = π/2; s-wave, eletri �eldperpendiular to the plane of inidene), while the seond term orresponds to β = α (ϕ = 0;
p-wave, eletri �eld in the plane of inidene). It is easy to see that there exists a usp (shoulder)in the behaviour of the funtion R(ω), ourring at the transpareny edge ω = ωp/ cos α, wherethe re�etion oe�ient exhibits a sudden enhanement on passing from the propagating regimeto the damped one, as expeted (total re�etion). The ondition for total re�etion an also bewritten as sin α =

√
ε, where R = 1 (R1,2 = 1), as it is well known. For illustration, the re�etionoe�ient is shown in Fig. 1 for β = π/6 and various inidene angles. The re�etion oe�ientis vanishing for ω2 = ω2

p/ (1 − tan2 α) for α = β < π/4 (R2 = 0, ϕ = 0).The present approah an be extended to a plasma slab of �nite thikness d, 0 < z < d, wherethe displaement �eld u an be represented as (v, u3) [θ(z) − θ(z − d)]. We have omputed theeletromagneti �eld inside the slab, the re�eted and transmitted �elds and the re�etion andtransmission oe�ients. The �eld inside the slab onsists of a superposition of two plane waves
e±iκ

′
z, where κ

′ is given by the same equation (14). The transpareny edge is given by the sameequation ω cos α = ωp as for a semi-in�nite plasma. Generalized Fresnel's relations have thereby



6 J. Theor. Phys.been obtained, for both surfaes of the slab, any inidene angle and polarization. Apart fromharateristi osillations, the re�etion and transmission oe�ients exhibit an appreiable en-hanement on passing from the propagating regime to the damped regime. The method an alsobe applied to other strutures with more partiular geometries.The same method an be used for treating the plasmons in strutures with speial geometries.Indeed, the eletri fore in equation of motion (1) must then be replaed by the Coulomb (non-retarded) fore. By using this proedure we have obtained for a semi-in�nite plasma the well-known bulk plasmons with frequeny ωp and surfae plasmons with frequeny ωp/
√

2. Similarly,for a plasma slab we have derived the plasmon frequenies given by ω2

p

(

1 ± e−kd
)

/2.[22℄-[29℄ Wehave also omputed the energy loss for these plasmas and the dieletri response. It is shownthat the surfae terms do not hange the bulk dieletri funtion as usually de�ned (i.e. for aplane wave), sine the surfae ontributions to the dieletri response are loalized. The surfaeontribution to the energy loss exhibits harateristi osillations in the transient regime near thesurfaes.It is worth investigating the eigenvalues of the homogeneous system of integral equations (10), forparameter κ given by κ =
√

ω2/c2 − k2. Suh eigenvalues are given by the roots of the vanishingdenominator in equations (18) and (19), i.e. by equation κκ
′

+ k2 = 0. This equation has realroots for ω only for the damped regime, i.e. for κ = i |κ| and κ
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. (26)We an see that ω ∼ ck in the long wavelength limit and it approahes the surfae-plasmonfrequeny ω ∼ ωp/
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2 in the non-retarded limit (ck → ∞). These exitations are surfaeplasmon-polariton modes. They imply v2 = 0 and v1, u3 ∼ e
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∣
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∣
z. In addition, a arefulanalysis of the homogeneous system of equations (10) reveals another branh of exitations,given by ω = ωp, whih, ourring in this ontext, may be termed the bulk plasmon-polaritonmodes. They are haraterized by v2 = 0 and v1(k, 0) = 0. For all these modes we have

u3 =
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ic2k/
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ω2 − c2k2 − ω2

p

)]

(∂v1/∂z).Other e�ets related to the dynamis of plasmons and polaritons for a semi-in�nite eletronplasma, or, in general, various plasmas with retangular geometries, as well as strutures withmore partiular geometries, an be omputed similarly by using the method presented here. Thedissipation an be inluded in this treatment (as for metals) and a model an be formulatedfor dieletris, amenable to the method presented above. This will allow the treatment of morerealisti ases as well as various interfaes, in partiular plasmas (or metals) bounded by dieletris.These investigations are left for forthoming publiations.Aknowledgments. The authors are indebted to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for many useful disusssions, and to dr. L. C. Cune for his help invarious stages of this work.Referenes[1℄ See, for instane, L. Landau and E. Lifshitz, Course of Theoretial Phyiss, vol. 8, Eletrody-namis of Continuous Media, Elsevier, Oxford (1984).
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