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2 J. Theor. Phys.pair of point-like partiles. In the retarded regime there is no branh of roots for the dispersionequations of the eigenmodes, and, onsequently, there is no suh a fore. Similarly, there is nosuh a fore between any pair of lassial point-like partiles. This negative result, in ontrastwith Casimir's result, is due to the fat that in the retarded regime the lassial dynamis is notvalid anymore for the point-like partile, in ontrast with the non-retarded regime.We onsider a point-like polarizable partile loated at R0 = (0, 0,−d) and a semi-in�nite (half-spae) solid extending over the region z > 0, with a free surfae in the (x, y)-plane. We adopta generi model of matter polarization, onsisting of mobile elementary harges −e and mass
m, and desribe their density disturbanes by δn = −ndivu, where u is a displaement �eldand n (onstant) is the partile onentration. Suh a desription is valid for wavelengths muhlonger than the diplaement �eld u. The harge density is ρ = endivu and the urrent density is
j = −enu̇.For the semi-in�nite solid the displaement �eld is taken as u = (v, w)θ(z), where v is the in-plane
(x, y)-omponent, w is the omponent along the z-axis and θ(z) = 1 for z > 0, θ(z) = 0 for z < 0is the step funtion. The harge density is given by

ρ = endivu = en

(

divv +
∂w

∂z

)

θ(z) + enw(z = 0)δ(z) , (1)where we an notie the (de)polarization harge ourring at the surfae. Similarly, the urrentdensity an be written as j = −en(v̇, ẇ)θ(z). These harge and urrent densities give rise to aneletri �eld E = −1
c

∂A

∂t
− gradΦ, where the well-known eletromagneti potentials are given by

A(R, t) =
1

c

∫

dR′ j(R
′, t − |R − R′| /c)

|R −R′| , Φ(R, t) =

∫

dR′ρ(R′, t − |R −R′| /c)
|R− R′| . (2)We use the notation R = (r, z), Fourier representation

v(r, z; t) =
∑

k

∫

dωv(k, z; ω)eikre−iωt (3)and a similar one for w, and the well-known Fourier transform
1√

r2 + z2
=

1

A

∑

k

2π

k
e−k|z|eikr (4)for the Coulomb potential, where A is the in-plane ross-setional area. When retardation isinluded, we use the Fourier transform[7℄

ei ω
c

√
r2+z2

√
r2 + z2

=
1

A

∑

k

2πi

κ
eikreiκ|z| , (5)where κ =

√

ω2/c2 − k2.Similarly, we onsider a small, polarizable partile of radius a and harge −q, loated at R0, andrepresents its displaement �eld by a3u0δ(R −R0). Its harge density an then be written as
ρ0 = q (u0grad) δ(R− R0) , (6)and the urrent density is given by j0 = −qu̇0δ(R−R0). We an see that the total harge of thepartile is zero, and we an also reognize in equation (6) the dipole momentum −qu0. The harge



J. Theor. Phys. 3density ρ0 and the urrent density j0 give rise to an eletri �eld E0 whih an be omputed byusing equation (2).The displaement u obeys the equation of motion
mü = −e (E + E0) − mω2

1u , (7)where ω1 is a parameter. Suh an equation is well known in the elementary theory of dispersion, itbeing able to simulate a metalli plasma (ω1 = 0), or a dieletri. We leave aside the dissipation,a possible external �eld, and limit ourselves to non-relativisti motion. Similarly, we adopt for thedisplaement �eld u0 of the partile harge the equation of motion
mü0 = −qE |R=R0

− mω2
0u0 , (8)where ω0 is another parameter (usually muh greater than the harateristi eletromagnetifrequenies).In general, if E is the �eld whih ats upon the partile harge we get

u0 =
q

m

1

ω2 − ω2
0

E ≃ − q

mω2
0

E (9)from equation (8), by a temporal Fourier transform. It follows that the dipole momentum perunit volume is −qu0 = (q2/ma3ω2
0)E, whene we get the partile polarization

α =
q2

ma3ω2
0

=
ω2

p0

4πω2
0

, (10)where ωp0 =
√

4πq2/ma3 is the plasma frequeny.We ompute the eletri �elds E and E0 by making use of the eletromagneti potentials (2) andthe harge and urrent densities given by above. Then, we introdue these �elds in the equationsof motion (7) and (8), get oupled integral equations for the displaements u and u0, solve themand obtain their eletromagneti eigenmodes. The orresponding eigenfrequenies are thereafterused to ompute the fore ating between the harged partile and a semi-in�nite body.First, we do the alulations for the non-retarded ase, where E = −gradΦ, E0 = −gradΦ0, Φand Φ0 being the Coulomb potentials reated by harges ρ (equation (1)) and, respetively ρ0(equation (6)). Making use of the Fourier transforms given by equations (3) and (4), leaving asidethe arguments k, ω for simpliity and introduing the notations v = kv/k, v0 = kv0/k, equation(8) leads to
(

ω2 − ω2
0

)

v0 =
1

2
kω2

i e
−kd

∫

0

dz′ [v(z′) − iw(z′)] e−kz′ (11)and w0 = −iv0, where ωi =
√

4πneq/m. In the same manner, equation (7) gives
(

ω2 − ω2
1 − ω2

p

)

v = −1

2
ω2

pv(0)e−kz +
ω2

i

nA
kv0e

−k(d+z) (12)and ikw = ∂v
∂z
, where ωp =

√

4πne2/m is the plasma frequeny of the semi-in�nite body and
v(0) = v(z = 0). Making use of this latter relation and integrating by parts, equation (11)beomes

(

ω2 − ω2
0

)

v0 =
1

2
ω2

i v(0)e−kd . (13)



4 J. Theor. Phys.It is worth noting, aording to equations (12) and (13), that the semi-in�nite body and thepoint-like partile are oupled through the frequeny ωi, whih an be written also as
ω2

i =
(

na3
)1/2

ωpωp0 , (14)where ωp0 is given in equation (10). Without oupling, equation (12) gives the well-known bulkplasmon frequeny ω2 = ω2
1 + ω2

p (v(0) = 0) and the surfae plasmons ω2 = ω2
1 + 1

2
ω2

p (for
v = v(0)e−kz).The oupled surfae plasmons an be obtained by solving the system of equations (12) and (13).In the limit of large ω0 the frequeny of the surfae plasmons is given by

Ω2 = ω2
1 +

1

2
ω2

p − 2πα
a3k

A
ω2

pe
−2kd , (15)where the polarizability α given by equation (10) has beee introdued. For a metalli plasma

ω1 = 0 and we get the frequenies
Ω =

1√
2
ωp

(

1 − 2πα
a3k

A
e−2kd

)

; (16)for a dieletri ω1 ≫ ωp and we get the frequenies
Ω ≃ ω1

(

1 − 4π2αα1
a3k

A
e−2kd

)

, (17)where we have introdued the polarization α1 = ω2
p/4πω2

1.We ompute the fore by
F =

∂

∂d

∑

k

1

2
~Ω , (18)where we reognize the zero-point energy (vauum �utuations) of the surfae plasmons. Althoughthe temperature e�ets an easily be inluded, it is easy to see that they are irrelevant for realistisituations, so we leave them aside, as usually. Using the frequeny given by equation (16) for asemi-in�nite plasma we get

F =
3~ωp

8
√

2
· αa3

d4
. (19)Similarly, for a dieletri, making use of the frequenies given by equation (17), we get the fore

F =
3π~ω1

4
· αα1a

3

d4
. (20)It is well known that a similar fore, whih goes like d−3, there exists between two semi-in�nitebodies separated by distane d. It gives a R−6-interation energy between any pair of atoms,where R is the inter-atomi distane. This is the well-known van der Waals-London interation(fore goes like R−7). The same van der Waals-London fore is implied in the present ase. Itan be heked diretly, by applying the proedure desribed above for two point-like polarizablepartiles separated by distane d. For the same frequeny ω0 for both partiles we get a fore

F =
15~ω0

4
· α1α2a

6

d7
, (21)where α1,2are the polarizabilities of the two partiles, whih is a van der Waals-London fore.



J. Theor. Phys. 5We pass now to the retarded interation, where we use the Fourier transform given by equation(5). We introdue the notations v1 = kv/k and v2 = k⊥v/k, where k⊥ is a vetor perpendiularto k (kk⊥ = 0) of the same magnitude k (k⊥ = k). We use similar notations for v01,2. Theeletri �elds are omputed straightforwardly by equations (2). Then, we use the equations ofmotion (7) and (8) in order to get oupled integral equations for the displaements �elds u and
u0. It is worth noting in deriving these equations the non-intervertibility of the derivatives andthe integrals, aording to the identity
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˛ − 2iκf(z) (22)for any funtion f(z), z > 0.It is due to the disontinuity in the derivative of the funtion e
iκ

˛

˛
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′
˛

˛

˛for z = z
′ . From the equations of motion for the �eld u0 we get immediately w0 = k

κ
v01. Similarly,from the equations of motion for the �eld u we get w = ik

κ′2
∂v1

∂z
, where

κ
′

=

√

κ2 −
ω2

p

c2
· ω2

ω2 − ω2
1

. (23)Therefore, we are left with equations in the unknowns v1,2 and v01,2. Leaving aside, as usualy, thearguments k, ω we get the �rst set of integral equations
(ω2 − ω2

1) v2 = − iω2
pω2

2c2κ

∫
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dz′v2(z
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v02e
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0) v02 = − iω2
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2c2κ

∫

0
dz′v2(z

′)eiκ(d+z′) .

(24)Taking the seond derivative of the �rst equation we get
∂2v2

∂z2
+ κ

′2v2 = 0 . (25)Looking, therefore for solutions of the form v2 = A2e
iκ′z, where A2 are undetermined amplitudes,we get the dispersion equation

κ
′

+ κ
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· κ

κ2 + k2
+ 2πiα

a3

A
e2iκd = 0 . (26)Similarly, the seond set of equations is given by
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(27)
It is easy to see that v1 satis�es the same equation (25); solutions of the form v1 = A1e

iκ′z lead tothe dispersion equation
κ

′

+ κ

κ′ − κ
· κκ

′

+ k2
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· κ
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+ 2πiα

a3

A
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6 J. Theor. Phys.The dispersion equations (26) and (28) have not a branh of roots, whih might beome densein the limit of large κd. Therefore, we onlude that there is no fore in the retarded regime,between a polarizable point-like partile and a semi-in�nite solid. The polarization strength of thelassial point-like partile is too weak when retardation is inluded to give rise to suh a fore.The same negative result an be obtained within the present approah for a pair of point-likelassial partiles.In onlusion, we may say that we have omputed herein the spetrum of the eigenmodes of theeletromagneti �eld interating with a semi-in�nite body and a polarizable point-like partileloated at the distane d from the surfae of the body. We have evaluated the attration forein this ase, from the zero-point energy (vauum �utuations), and found that a van der Waals-London fore arises from the exitation of the surfae plasmons in the non-retarded regime; thisfore goes like d−4. We found no suh fore when retardation is inluded, either between a patileand a semi-in�nite body or between a pair of partiles. This result is due to the fat that weassume a lassial dynamis for the point-like partiles, whih is valid in the non-retarded regimebut does not hold anymore in the retarded one.Referenes[1℄ E. Lifshitz, ZhETF 29 94 (1956) (Sov. Phys. JETP 2 73 (1956)).[2℄ I. E. Dzyaloshinskii, E. M. Lifshitz and L. P. Pitaevskii, "The general theory of van der Waalsfores," Adv. Phys. 10 165-209 (1961).[3℄ L. Landau and E. Lifshitz, Course of Theoretial Physis, vol. 5 (Statistial Physis), part. 2(Butterworth-Heinemann, Oxford, 2003).[4℄ H. Casimir, "On the atttration between two perfetly onduting plates," Pro. Kon. Ned.Ak. Wet. 51 793 (1948).[5℄ H. B. G. Casimir and D. Polder, "The in�uene of retardation on the London-van der Waalsfore," Phys. Rev. 73 360-372 (1948).[6℄ M. Apostol and G. Vaman, "Eletromagneti eigenmodes in matter. van der Waals-Londonand Casimir fores," J. Theor. Phys. 177 1-12 (2009).[7℄ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Produts (Aademi Press,2000), pp. 714-715, 6.677; 1,2.© J. Theor. Phys. 2009, apoma�theor1.theory.nipne.ro


