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Abstract

The attraction force between a polarizable point-like particle and a semi-infinite solid is
derived by computing the eigenmodes of the electromagnetic field interacting with matter.
The calculations are based on the electromagnetic potentials and the equation of motion of
the polarization, as in the elementary classical theory of dispersion. These two ingredients
lead to coupled integral equations for polarization, which we solve. The force is computed
from the zero-point energy (vacuum fluctuations) of the electromagnetic field interacting with
matter. A d~*-force is found in the non-retarded regime (Coulomb interaction), where d is
the distance between the particle and the surface of the body. This force corresponds to the
classical van der Waals-London interaction. It arises from the surface plasmons excited in the
body. In the retarded regime there is no force between the particle and the semi-infinite solid,
nor between any pair of particles. Such a negative result is due to the fact that we assume
a classical dynamics for the point-like particle, which is valid in the non-retarded regime but
does not hold anymore in the retarded one.

As it is well known, the zero-point energy (vacuum fluctuations) gives rise to an atttractive force
between two polarizable pieces of matter.[1]-[3] In the non-retarded limit (Coulomb interaction)
this is the well-known van der Waals-L.ondon force; for a pair of point-like particles separated by
distance R it goes like R™7. For a pair of semi-infinite bodies (two halves of space) separated by
distance d, the van der Waals-London force goes like d=3. Originally, such an attractive force
has been derived by Casimir in the retarded regime,|4| by estimating the eigenmodes of the
electromagnetic field interacting with two ideal, perfectly reflecting semi-infinite metals separated
by distance d; in this case the Casimir force goes like d~4. A similar force (~ d~°) was also derived
for an atom-metal couple, or for a pair of atoms (~ R7%).|5|

Recently we re-investigated this subject within our theory of the electromagnetic field interacting
with polarizable matter.|6] This theory is based on the electromagnetic potentials and the equation
of motion of the polarization, as in the elementary theory of classical dispesion. These two
ingredients lead to coupled integral equations, whose eigenmodes spectrum was calculated for
two semi-infinite bodies. It was shown that the van der Waals-London force arises from surface
plasmons, while the Casimir force originates in the surface plasmon-polariton modes. We extend
here these calculations to a point-like particle interacting with a semi-infinite body, where we
assume a classical dynamics for the particle. We show that an attractive force appears in this
case, which goes like d—*, where d is the distance between the particle and the surface of the body.
This force occurs in the non-retarded limit, it is due to the surface plasmons, and corresponds to
the van der Waals interaction. The result can be checked directly by applying the theory to a
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pair of point-like particles. In the retarded regime there is no branch of roots for the dispersion
equations of the eigenmodes, and, consequently, there is no such a force. Similarly, there is no
such a force between any pair of classical point-like particles. This negative result, in contrast
with Casimir’s result, is due to the fact that in the retarded regime the classical dynamics is not
valid anymore for the point-like particle, in contrast with the non-retarded regime.

We consider a point-like polarizable particle located at Rg = (0,0, —d) and a semi-infinite (half-
space) solid extending over the region z > 0, with a free surface in the (z,y)-plane. We adopt
a generic model of matter polarization, consisting of mobile elementary charges —e and mass
m, and describe their density disturbances by dn = —ndivu, where u is a displacement field
and n (constant) is the particle concentration. Such a description is valid for wavelengths much
longer than the diplacement field u. The charge density is p = endivu and the current density is
Jj = —enu.

For the semi-infinite solid the displacement field is taken as u = (v, w)f(z), where v is the in-plane
(x,y)-component, w is the component along the z-axis and 6(z) =1 for z > 0, 6(z) =0 for z < 0
is the step function. The charge density is given by

0
p = endivu = en (divv + 8_11)) 0(z) + enw(z = 0)d(z) , (1)
z

where we can notice the (de)polarization charge occurring at the surface. Similarly, the current
density can be written as j = —en(v,w)0(z). These charge and current densities give rise to an

electric field E = —%%—? — grad®, where the well-known electromagnetic potentials are given by
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We use the notation R = (r, z), Fourier representation
V(I‘, <3 t) = Z / dwv(k, Z; w)eikl‘e—iwt (3)
k

and a similar one for w, and the well-known Fourier transform
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for the Coulomb potential, where A is the in-plane cross-sectional area. When retardation is
included, we use the Fourier transform|7]

(4)
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where k = y/w?/c? — k2.

Similarly, we consider a small, polarizable particle of radius a and charge —¢q, located at Ry, and
represents its displacement field by a®ugd(R — Ryg). Its charge density can then be written as

po = q (upgrad) 6(R — Ry) (6)

and the current density is given by jo = —qugd(R — Ry). We can see that the total charge of the
particle is zero, and we can also recognize in equation (6) the dipole momentum —quy. The charge
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density pp and the current density jo give rise to an electric field Ey which can be computed by
using equation (2).

The displacement u obeys the equation of motion
mii = —e (E + Eg) — mwiu | (7)

where wy is a parameter. Such an equation is well known in the elementary theory of dispersion, it
being able to simulate a metallic plasma (w; = 0), or a dielectric. We leave aside the dissipation,
a possible external field, and limit ourselves to non-relativistic motion. Similarly, we adopt for the
displacement field ug of the particle charge the equation of motion

mily = —qE [r=r, — mwiuy , (8)

where wy is another parameter (usually much greater than the characteristic electromagnetic
frequencies).

In general, if E is the field which acts upon the particle charge we get

g 1 q
49 °* g~__1
mw? — Wi mw?

E (9)
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from equation (8), by a temporal Fourier transform. It follows that the dipole momentum per
unit volume is —qug = (¢*/ma’w?)E, whence we get the particle polarization
¢’ w;

p0
= 10
madwi  Amwd (10)

where wyy = \/4m¢?/ma? is the plasma frequency.

We compute the electric fields E and Ey by making use of the electromagnetic potentials (2) and
the charge and current densities given by above. Then, we introduce these fields in the equations
of motion (7) and (8), get coupled integral equations for the displacements u and ug, solve them
and obtain their electromagnetic eigenmodes. The corresponding eigenfrequencies are thereafter
used to compute the force acting between the charged particle and a semi-infinite body.

o =

First, we do the calculations for the non-retarded case, where E = —grad®, Eqg = —grad®y, ®
and @, being the Coulomb potentials created by charges p (equation (1)) and, respectively po
(equation (6)). Making use of the Fourier transforms given by equations (3) and (4), leaving aside
the arguments k, w for simplicity and introducing the notations v = kv /k, vy = kvo/k, equation

(8) leads to
1 /
(w2 — wg) Vg = ikwize_kd/dz’ [v(2) —dw(Z)] e (11)
0

and wy = —ivg, where w; = y/4mneq/m. In the same manner, equation (7) gives

1 2
(W —wi —w2)v = —§w2v(0)e_kz + :—Akvoe_k(d“) (12)

and ikw = %, where w, = y/4mne?/m is the plasma frequency of the semi-infinite body and

v(0) = v(z = 0). Making use of this latter relation and integrating by parts, equation (11)

becomes )
(w? — wg) vo = 5@0?@(0)6_“ . (13)
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It is worth noting, according to equations (12) and (13), that the semi-infinite body and the
point-like particle are coupled through the frequency w;, which can be written also as

2

Wi = (na3)1/2 Wppo (14)

where wyg is given in equation (10). Without coupling, equation (12) gives the well-known bulk
plasmon frequency w? = wi 4+ w? (v(0) = 0) and the surface plasmons w? = wi + fw? (for
v =v(0)e ).

The coupled surface plasmons can be obtained by solving the system of equations (12) and (13).
In the limit of large wy the frequency of the surface plasmons is given by

1 3k
P =wl+-w?— ol 2e 2k : (15)
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where the polarizability a given by equation (10) has beee introduced. For a metallic plasma
wy; = 0 and we get the frequencies

3
Q= %wp (1 - 2m%€e—2kd) : (16)

for a dielectric wy > w, and we get the frequencies

3
Q~w <1 - 4w2aa1%6_2kd) : (17)

where we have introduced the polarization oy = w? /47wy

We compute the force by
0 1
F=— —hQ 18
S5 (15

where we recognize the zero-point energy (vacuum fluctuations) of the surface plasmons. Although
the temperature effects can easily be included, it is easy to see that they are irrelevant for realistic
situations, so we leave them aside, as usually. Using the frequency given by equation (16) for a
semi-infinite plasma we get

8v2 d

Similarly, for a dielectric, making use of the frequencies given by equation (17), we get the force

(19)
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F (20)
It is well known that a similar force, which goes like d=3, there exists between two semi-infinite
bodies separated by distance d. It gives a R~ %-interaction energy between any pair of atoms,
where R is the inter-atomic distance. This is the well-known van der Waals-London interaction
(force goes like R™7). The same van der Waals-London force is implied in the present case. It
can be checked directly, by applying the procedure described above for two point-like polarizable
particles separated by distance d. For the same frequency wy for both particles we get a force

N 1577/(4)0 OélOégCLG

F
4 a7’

(21)

where aj sare the polarizabilities of the two particles, which is a van der Waals-London force.
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We pass now to the retarded interaction, where we use the Fourier transform given by equation
(5). We introduce the notations v; = kv/k and vy = k; v/k, where k, is a vector perpendicular
to k (kk; = 0) of the same magnitude k (k; = k). We use similar notations for vg; 2. The
electric fields are computed straightforwardly by equations (2). Then, we use the equations of
motion (7) and (8) in order to get coupled integral equations for the displacements fields u and
ug. It is worth noting in deriving these equations the non-intervertibility of the derivatives and
the integrals, according to the identity

0o . /

2/ dz/f(z,)em‘z_z
0

8 o / / a in‘z—z/
— dz f(z )=—e =
0z /0 g )02
for any function f(z), z > 0.1t is due to the discontinuity in the derivative of the function e
for z = 2. From the equations of motion for the field uy we get immediately wy = %vm. Similarly,

(2) (22)

P

from the equations of motion for the field u we get w = ng %“1, where
’ w2 (U2
K =4 |k2— 2. (23)
\/ 2 w?—wi

Therefore, we are left with equations in the unknowns v; 5 and vg; 2. Leaving aside, as usualy, the
arguments k, w we get the first set of integral equations

2 2

(w2 _ w%) vy = Z;JC;; fo dz' 'U2 ) ik|lz—2'| _ ;:A‘:z ’U()2€m(z+d) :
(24)
(W — W) vo2 = — S fo dz'vy (2 )eld+2)
Taking the second derivative of the first equation we get
o*v
9> 22 + K =0. (25)

Looking, therefore for solutions of the form vy, = Aye™'?, where A, are undetermined amplitudes,
we get the dispersion equation
' 3
K +K K a’ gied

T AR + 27riaze =0. (26)

Similarly, the second set of equations is given by

24k? .
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It is easy to see that v; satisfies the same equation (25); solutions of the form v, = A% lead to
the dispersion equation
K +K Kk + Kk K a

- - — . + 2mia—e
K —k kK —k? kK2 -—K? A

~0. (28)
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The dispersion equations (26) and (28) have not a branch of roots, which might become dense
in the limit of large xd. Therefore, we conclude that there is no force in the retarded regime,
between a polarizable point-like particle and a semi-infinite solid. The polarization strength of the
classical point-like particle is too weak when retardation is included to give rise to such a force.
The same negative result can be obtained within the present approach for a pair of point-like
classical particles.

In conclusion, we may say that we have computed herein the spectrum of the eigenmodes of the
electromagnetic field interacting with a semi-infinite body and a polarizable point-like particle
located at the distance d from the surface of the body. We have evaluated the attraction force
in this case, from the zero-point energy (vacuum fluctuations), and found that a van der Waals-
London force arises from the excitation of the surface plasmons in the non-retarded regime; this
force goes like d=*. We found no such force when retardation is included, either between a paticle
and a semi-infinite body or between a pair of particles. This result is due to the fact that we
assume a classical dynamics for the point-like particles, which is valid in the non-retarded regime
but does not hold anymore in the retarded one.
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