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tThe attra
tion for
e between a polarizable point-like parti
le and a semi-in�nite solid isderived by 
omputing the eigenmodes of the ele
tromagneti
 �eld intera
ting with matter.The 
al
ulations are based on the ele
tromagneti
 potentials and the equation of motion ofthe polarization, as in the elementary 
lassi
al theory of dispersion. These two ingredientslead to 
oupled integral equations for polarization, whi
h we solve. The for
e is 
omputedfrom the zero-point energy (va
uum �u
tuations) of the ele
tromagneti
 �eld intera
ting withmatter. A d
−4-for
e is found in the non-retarded regime (Coulomb intera
tion), where d isthe distan
e between the parti
le and the surfa
e of the body. This for
e 
orresponds to the
lassi
al van der Waals-London intera
tion. It arises from the surfa
e plasmons ex
ited in thebody. In the retarded regime there is no for
e between the parti
le and the semi-in�nite solid,nor between any pair of parti
les. Su
h a negative result is due to the fa
t that we assumea 
lassi
al dynami
s for the point-like parti
le, whi
h is valid in the non-retarded regime butdoes not hold anymore in the retarded one.As it is well known, the zero-point energy (va
uum �u
tuations) gives rise to an atttra
tive for
ebetween two polarizable pie
es of matter.[1℄-[3℄ In the non-retarded limit (Coulomb intera
tion)this is the well-known van der Waals-London for
e; for a pair of point-like parti
les separated bydistan
e R it goes like R−7. For a pair of semi-in�nite bodies (two halves of spa
e) separated bydistan
e d, the van der Waals-London for
e goes like d−3. Originally, su
h an attra
tive for
ehas been derived by Casimir in the retarded regime,[4℄ by estimating the eigenmodes of theele
tromagneti
 �eld intera
ting with two ideal, perfe
tly re�e
ting semi-in�nite metals separatedby distan
e d; in this 
ase the Casimir for
e goes like d−4. A similar for
e (∼ d−5) was also derivedfor an atom-metal 
ouple, or for a pair of atoms (∼ R−8).[5℄Re
ently we re-investigated this subje
t within our theory of the ele
tromagneti
 �eld intera
tingwith polarizable matter.[6℄ This theory is based on the ele
tromagneti
 potentials and the equationof motion of the polarization, as in the elementary theory of 
lassi
al dispesion. These twoingredients lead to 
oupled integral equations, whose eigenmodes spe
trum was 
al
ulated fortwo semi-in�nite bodies. It was shown that the van der Waals-London for
e arises from surfa
eplasmons, while the Casimir for
e originates in the surfa
e plasmon-polariton modes. We extendhere these 
al
ulations to a point-like parti
le intera
ting with a semi-in�nite body, where weassume a 
lassi
al dynami
s for the parti
le. We show that an attra
tive for
e appears in this
ase, whi
h goes like d−4, where d is the distan
e between the parti
le and the surfa
e of the body.This for
e o

urs in the non-retarded limit, it is due to the surfa
e plasmons, and 
orresponds tothe van der Waals intera
tion. The result 
an be 
he
ked dire
tly by applying the theory to a
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les. In the retarded regime there is no bran
h of roots for the dispersionequations of the eigenmodes, and, 
onsequently, there is no su
h a for
e. Similarly, there is nosu
h a for
e between any pair of 
lassi
al point-like parti
les. This negative result, in 
ontrastwith Casimir's result, is due to the fa
t that in the retarded regime the 
lassi
al dynami
s is notvalid anymore for the point-like parti
le, in 
ontrast with the non-retarded regime.We 
onsider a point-like polarizable parti
le lo
ated at R0 = (0, 0,−d) and a semi-in�nite (half-spa
e) solid extending over the region z > 0, with a free surfa
e in the (x, y)-plane. We adopta generi
 model of matter polarization, 
onsisting of mobile elementary 
harges −e and mass
m, and des
ribe their density disturban
es by δn = −ndivu, where u is a displa
ement �eldand n (
onstant) is the parti
le 
on
entration. Su
h a des
ription is valid for wavelengths mu
hlonger than the dipla
ement �eld u. The 
harge density is ρ = endivu and the 
urrent density is
j = −enu̇.For the semi-in�nite solid the displa
ement �eld is taken as u = (v, w)θ(z), where v is the in-plane
(x, y)-
omponent, w is the 
omponent along the z-axis and θ(z) = 1 for z > 0, θ(z) = 0 for z < 0is the step fun
tion. The 
harge density is given by

ρ = endivu = en

(

divv +
∂w

∂z

)

θ(z) + enw(z = 0)δ(z) , (1)where we 
an noti
e the (de)polarization 
harge o

urring at the surfa
e. Similarly, the 
urrentdensity 
an be written as j = −en(v̇, ẇ)θ(z). These 
harge and 
urrent densities give rise to anele
tri
 �eld E = −1
c

∂A

∂t
− gradΦ, where the well-known ele
tromagneti
 potentials are given by

A(R, t) =
1

c

∫

dR′ j(R
′, t − |R − R′| /c)

|R −R′| , Φ(R, t) =

∫

dR′ρ(R′, t − |R −R′| /c)
|R− R′| . (2)We use the notation R = (r, z), Fourier representation

v(r, z; t) =
∑

k

∫

dωv(k, z; ω)eikre−iωt (3)and a similar one for w, and the well-known Fourier transform
1√

r2 + z2
=

1

A

∑

k

2π

k
e−k|z|eikr (4)for the Coulomb potential, where A is the in-plane 
ross-se
tional area. When retardation isin
luded, we use the Fourier transform[7℄

ei ω
c

√
r2+z2

√
r2 + z2

=
1

A

∑

k

2πi

κ
eikreiκ|z| , (5)where κ =

√

ω2/c2 − k2.Similarly, we 
onsider a small, polarizable parti
le of radius a and 
harge −q, lo
ated at R0, andrepresents its displa
ement �eld by a3u0δ(R −R0). Its 
harge density 
an then be written as
ρ0 = q (u0grad) δ(R− R0) , (6)and the 
urrent density is given by j0 = −qu̇0δ(R−R0). We 
an see that the total 
harge of theparti
le is zero, and we 
an also re
ognize in equation (6) the dipole momentum −qu0. The 
harge



J. Theor. Phys. 3density ρ0 and the 
urrent density j0 give rise to an ele
tri
 �eld E0 whi
h 
an be 
omputed byusing equation (2).The displa
ement u obeys the equation of motion
mü = −e (E + E0) − mω2

1u , (7)where ω1 is a parameter. Su
h an equation is well known in the elementary theory of dispersion, itbeing able to simulate a metalli
 plasma (ω1 = 0), or a diele
tri
. We leave aside the dissipation,a possible external �eld, and limit ourselves to non-relativisti
 motion. Similarly, we adopt for thedispla
ement �eld u0 of the parti
le 
harge the equation of motion
mü0 = −qE |R=R0

− mω2
0u0 , (8)where ω0 is another parameter (usually mu
h greater than the 
hara
teristi
 ele
tromagneti
frequen
ies).In general, if E is the �eld whi
h a
ts upon the parti
le 
harge we get

u0 =
q

m

1

ω2 − ω2
0

E ≃ − q

mω2
0

E (9)from equation (8), by a temporal Fourier transform. It follows that the dipole momentum perunit volume is −qu0 = (q2/ma3ω2
0)E, when
e we get the parti
le polarization

α =
q2

ma3ω2
0

=
ω2

p0

4πω2
0

, (10)where ωp0 =
√

4πq2/ma3 is the plasma frequen
y.We 
ompute the ele
tri
 �elds E and E0 by making use of the ele
tromagneti
 potentials (2) andthe 
harge and 
urrent densities given by above. Then, we introdu
e these �elds in the equationsof motion (7) and (8), get 
oupled integral equations for the displa
ements u and u0, solve themand obtain their ele
tromagneti
 eigenmodes. The 
orresponding eigenfrequen
ies are thereafterused to 
ompute the for
e a
ting between the 
harged parti
le and a semi-in�nite body.First, we do the 
al
ulations for the non-retarded 
ase, where E = −gradΦ, E0 = −gradΦ0, Φand Φ0 being the Coulomb potentials 
reated by 
harges ρ (equation (1)) and, respe
tively ρ0(equation (6)). Making use of the Fourier transforms given by equations (3) and (4), leaving asidethe arguments k, ω for simpli
ity and introdu
ing the notations v = kv/k, v0 = kv0/k, equation(8) leads to
(

ω2 − ω2
0

)

v0 =
1

2
kω2

i e
−kd

∫

0

dz′ [v(z′) − iw(z′)] e−kz′ (11)and w0 = −iv0, where ωi =
√

4πneq/m. In the same manner, equation (7) gives
(

ω2 − ω2
1 − ω2

p

)

v = −1

2
ω2

pv(0)e−kz +
ω2

i

nA
kv0e

−k(d+z) (12)and ikw = ∂v
∂z
, where ωp =

√

4πne2/m is the plasma frequen
y of the semi-in�nite body and
v(0) = v(z = 0). Making use of this latter relation and integrating by parts, equation (11)be
omes

(

ω2 − ω2
0

)

v0 =
1

2
ω2

i v(0)e−kd . (13)



4 J. Theor. Phys.It is worth noting, a

ording to equations (12) and (13), that the semi-in�nite body and thepoint-like parti
le are 
oupled through the frequen
y ωi, whi
h 
an be written also as
ω2

i =
(

na3
)1/2

ωpωp0 , (14)where ωp0 is given in equation (10). Without 
oupling, equation (12) gives the well-known bulkplasmon frequen
y ω2 = ω2
1 + ω2

p (v(0) = 0) and the surfa
e plasmons ω2 = ω2
1 + 1

2
ω2

p (for
v = v(0)e−kz).The 
oupled surfa
e plasmons 
an be obtained by solving the system of equations (12) and (13).In the limit of large ω0 the frequen
y of the surfa
e plasmons is given by

Ω2 = ω2
1 +

1

2
ω2

p − 2πα
a3k

A
ω2

pe
−2kd , (15)where the polarizability α given by equation (10) has beee introdu
ed. For a metalli
 plasma

ω1 = 0 and we get the frequen
ies
Ω =

1√
2
ωp

(

1 − 2πα
a3k

A
e−2kd

)

; (16)for a diele
tri
 ω1 ≫ ωp and we get the frequen
ies
Ω ≃ ω1

(

1 − 4π2αα1
a3k

A
e−2kd

)

, (17)where we have introdu
ed the polarization α1 = ω2
p/4πω2

1.We 
ompute the for
e by
F =

∂

∂d

∑

k

1

2
~Ω , (18)where we re
ognize the zero-point energy (va
uum �u
tuations) of the surfa
e plasmons. Althoughthe temperature e�e
ts 
an easily be in
luded, it is easy to see that they are irrelevant for realisti
situations, so we leave them aside, as usually. Using the frequen
y given by equation (16) for asemi-in�nite plasma we get

F =
3~ωp

8
√

2
· αa3

d4
. (19)Similarly, for a diele
tri
, making use of the frequen
ies given by equation (17), we get the for
e

F =
3π~ω1

4
· αα1a

3

d4
. (20)It is well known that a similar for
e, whi
h goes like d−3, there exists between two semi-in�nitebodies separated by distan
e d. It gives a R−6-intera
tion energy between any pair of atoms,where R is the inter-atomi
 distan
e. This is the well-known van der Waals-London intera
tion(for
e goes like R−7). The same van der Waals-London for
e is implied in the present 
ase. It
an be 
he
ked dire
tly, by applying the pro
edure des
ribed above for two point-like polarizableparti
les separated by distan
e d. For the same frequen
y ω0 for both parti
les we get a for
e

F =
15~ω0

4
· α1α2a

6

d7
, (21)where α1,2are the polarizabilities of the two parti
les, whi
h is a van der Waals-London for
e.



J. Theor. Phys. 5We pass now to the retarded intera
tion, where we use the Fourier transform given by equation(5). We introdu
e the notations v1 = kv/k and v2 = k⊥v/k, where k⊥ is a ve
tor perpendi
ularto k (kk⊥ = 0) of the same magnitude k (k⊥ = k). We use similar notations for v01,2. Theele
tri
 �elds are 
omputed straightforwardly by equations (2). Then, we use the equations ofmotion (7) and (8) in order to get 
oupled integral equations for the displa
ements �elds u and
u0. It is worth noting in deriving these equations the non-intervertibility of the derivatives andthe integrals, a

ording to the identity

∂

∂z

∫ ∞

0

dz
′

f(z
′

)
∂

∂z′ e
iκ

˛

˛

˛z−z
′
˛

˛

˛

= κ2

∫ ∞

0

dz
′

f(z
′

)e
iκ

˛

˛

˛z−z
′
˛

˛

˛ − 2iκf(z) (22)for any fun
tion f(z), z > 0.It is due to the dis
ontinuity in the derivative of the fun
tion e
iκ

˛

˛

˛z−z
′
˛

˛

˛for z = z
′ . From the equations of motion for the �eld u0 we get immediately w0 = k

κ
v01. Similarly,from the equations of motion for the �eld u we get w = ik

κ′2
∂v1

∂z
, where

κ
′

=

√

κ2 −
ω2

p

c2
· ω2

ω2 − ω2
1

. (23)Therefore, we are left with equations in the unknowns v1,2 and v01,2. Leaving aside, as usualy, thearguments k, ω we get the �rst set of integral equations
(ω2 − ω2

1) v2 = − iω2
pω2

2c2κ

∫

0
dz′v2(z

′)eiκ|z−z′| − iω2

i ω2

2nAc2κ
v02e

iκ(z+d) ,

(ω2 − ω2
0) v02 = − iω2

i
ω2

2c2κ

∫

0
dz′v2(z

′)eiκ(d+z′) .

(24)Taking the se
ond derivative of the �rst equation we get
∂2v2

∂z2
+ κ

′2v2 = 0 . (25)Looking, therefore for solutions of the form v2 = A2e
iκ′z, where A2 are undetermined amplitudes,we get the dispersion equation

κ
′

+ κ

κ′ − κ
· κ

κ2 + k2
+ 2πiα

a3

A
e2iκd = 0 . (26)Similarly, the se
ond set of equations is given by

(

ω2 − ω2
1 + ω2

p
k2

κ′2

)

v1 = − iω2
pκ

“

κ
′
2+k2

”

κ′2

∫

0
dz′v1(z

′)eiκ|z−z′|+

+
ω2

pk2

2κ′2 v1(0)eiκz − iω2

i (κ2−k2)
2nAκ

v01e
iκ(z+d) ,

(ω2 − ω2
0) v01 = − iω2

i κ

2

∫

0
dz′

[

v1(z
′) + ik2

κκ′2

∂v1(z′)
∂z′

]

eiκ(d+z′) .

(27)
It is easy to see that v1 satis�es the same equation (25); solutions of the form v1 = A1e

iκ′z lead tothe dispersion equation
κ

′

+ κ

κ′ − κ
· κκ

′

+ k2

κκ′ − k2
· κ

κ2 − k2
+ 2πiα

a3

A
e2iκd = 0 . (28)



6 J. Theor. Phys.The dispersion equations (26) and (28) have not a bran
h of roots, whi
h might be
ome densein the limit of large κd. Therefore, we 
on
lude that there is no for
e in the retarded regime,between a polarizable point-like parti
le and a semi-in�nite solid. The polarization strength of the
lassi
al point-like parti
le is too weak when retardation is in
luded to give rise to su
h a for
e.The same negative result 
an be obtained within the present approa
h for a pair of point-like
lassi
al parti
les.In 
on
lusion, we may say that we have 
omputed herein the spe
trum of the eigenmodes of theele
tromagneti
 �eld intera
ting with a semi-in�nite body and a polarizable point-like parti
lelo
ated at the distan
e d from the surfa
e of the body. We have evaluated the attra
tion for
ein this 
ase, from the zero-point energy (va
uum �u
tuations), and found that a van der Waals-London for
e arises from the ex
itation of the surfa
e plasmons in the non-retarded regime; thisfor
e goes like d−4. We found no su
h for
e when retardation is in
luded, either between a pati
leand a semi-in�nite body or between a pair of parti
les. This result is due to the fa
t that weassume a 
lassi
al dynami
s for the point-like parti
les, whi
h is valid in the non-retarded regimebut does not hold anymore in the retarded one.Referen
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