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Abstract

The specific heat is computed for an ensemble of fermions confined to a slab.

An ensemble of N identical fermions, each of mass m, is confined to a rectangular box of area A
and thickness d. The single-particle wavefunctions along the z-direction perpendicular to the slab
are proportional to sin (πnz/d), for n = 1, 2, ..., so that the single-particle energies are given by

εn(k) = h̄2k2/2m + ε0n
2 , (1)

where k is the (continuous) in-plane wavevector and ε0 = π2h̄2/2md2. The number of particles is
given by

N = g
A

(2π)2

∫
dk

∞∑
n=1

1

exp [εn (k)− µ] β + 1
, (2)

where g is the spin degeneracy, µ is the chemical potential and β = 1/T is the inverse of the
temperature. We assume that

βε0 � 1 , (3)

so that we may replace the summation over n in (2) by an integral, according to the formula

b∑
a

f(n) =
∫ b+1/2

a−1/2
dn · f(n)− 1

24
f
′
(n) |b+1/2

a−1/2 . (4)

For the Fermi distribution in (2) this formula reads

∞∑
n=1

f(n) =
1

2

∫ +∞

−∞
dn · f(n)− 1

2
f(0) , (5)

so that (2) becomes

N = g
V

4π2

(
2m

h̄2

)3/2
[∫ ∞

0
dε · ε1/2

exp (ε− µ) β + 1
−
√

ε0

2

∫ ∞
0

dε · 1

exp (ε− µ) β + 1

]
, (6)

where the volume V = Ad; it contains the bulk contribution and a small correction term in
√

ε0,
due to the finite size of the sample. Estimating the Fermi integrals by∫ ∞

0
dε · f(ε) · 1

exp (ε− µ) β + 1
=

∫ µ

0
dε · f(ε) +

π2T 2

6
f
′
(µ) + ... , (7)
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valid for µβ � 1, we get

N = g
V

6π2

(
2mT

h̄2

)3/2

(ln z)3/2

[
1 +

π2

8

1

(ln z)2 −
3

4

√
ε0β

1

(ln z)1/2

]
, (8)

where the fugacity z = exp (µβ) has been introduced. We introduce the Fermi energy εF =
h̄2k2

F /2m, where the Fermi wavevector kF is given by N = gV k3
F /6π2, and obtain from (8)

ln z = (βεF )

[
1− π2

12

1

(βεF )2

] {
1 +

1

2

√
ε0/εF

[
1 +

π2

12

1

(βεF )2

]}
, (9)

for βεF � 1.

By similar calculations we obtain the energy of the ensemble as being given by

βE = g V
10π2

(
2mT
h̄2

)3/2
(ln z)5/2 ·

·
{
1 + 5π2

8
1

(ln z)2
− 5

8

√
ε0β

1

(ln z)1/2

[
1 + π2

3
1

(ln z)2

]}
,

(10)

whence, using (8) and (9), we get

E/N =
3

5
εF +

3

8

√
ε0εF +

π2

4

(
1− 1

4

√
ε0/εF

)
T 2

εF

, (11)

and the specific heat

c =
π2

2

(
1− 1

4

√
ε0/εF

)
T

εF

. (12)

The grand-canonical potential Ω = −pV = −(1/β) ln Q, where p is the pressure and Q is the
grand-partition function, is given by

βΩ = −g
A

(2π)2

∫
dk

∞∑
n=1

ln {1 + exp [µ− εn(k)] β} , (13)

and, by similar manipulations, we obtain

Ω = −2

3
E + g

A

12π

m

h̄2

∫ ∞
0

dε · ε

exp (ε− µ) β + 1
. (14)

On the other hand, by using (13) and (14), we obtain the entropy

S = β2∂Ω

∂β
=

5

3
βE −N ln z − g

A

12π

m

h̄2β
∫ ∞
0

dε · ε

exp (ε− µ) β + 1
, (15)

and we can check easily that S ∼ T for T → 0; whence the specific heat given by (12) represents
both the specific heat at constant volume and the specific heat at constant pressure.
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Introducing the inter-particle distance a by V = Na3, we have εF =
(
h̄2/2ma2

)
(6π2/g)

2/3
and

ε0/εF = (πg/6)2/3 (a/d)2, so that (12) becomes

c =
ma2

h̄2

[
(πg/6)2/3 − 1

4

a

d
(πg/6)

]
T , (16)

and one can see easily that the correction term is that of a two-dimensional ensemble of fermions;
indeed, in this case we have

c =
π2

3

T

εF

=
ma2

h̄2 (πg/6) T , (17)

where εF =
(
h̄2/ma2

)
(2π/g) and A = Na2.
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