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ρü = µ∆u + (λ + µ) graddivu , (1)where ρ is the body density, u is the �eld displaement and λ , µ are the Lame oe�ients. Weleave aside the external fores and write this equation in the form
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ü− ∆u = q · grad · divu , (2)where vt =
√

µ/ρ is the veloity of the transverse waves, q = v2
l /v

2
t − 1 and vl =

√

(λ + 2µ)/ρ isthe veloity of the longitudinal waves. As it is well-known, for reasons of stability, the inequality
q > 1/3 (atually q > 1 for real bodies) holds. A partiular solution of equation (2) is given bythe well-known Kirhho� potential[20℄



2 J. Theor. Phys.
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dR′ grad·divu(R′,t−|R−R′|/vt)
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. (3)Indeed, making use of Fourier transforms and using also the well-known integral
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eiKR+iωR/vt
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= − 4πv2
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ω2 − v2
t K2

, (4)we get the eigenvalue equation
(

−ρω2 + µK2
)

u = − (λ + µ) (Ku)K , (5)where ωdenotes the frequeny and K is the wavevetor. One an hek immediately that equa-tion (5) gives the well-known transverse and longitudinal elasti waves propagating in an in�niteisotropi body.For a semi-in�nite body extending over the region z > 0, with a free surfae in the (x, y)-plane
z = 0, we use

u → uθ(z) = (v, u3)θ(z) (6)for the displaement �eld, where θ(z) = 1 for z > 0, θ(z) = 0 for z < 0 is the step funtion, vis the (x, y) in-plane omponent and u3 is the normal-to-surfae omponent of the displaement(direted along the z-oordinate). We use Fourier transforms of the type
u(r, z; t) =

∑

k

∫

dωu(kω; z)eikre−iωt , (7)where R = (r, z). The divergene ourring in equation (3) an then be written as
divu =

(

divv +
∂u3

∂z

)

θ(z) + u3(0)δ(z) , (8)where we an see the ourrene of the surfae term u3(0) = u3(z = 0). The gradient an beomputed similarly, bu using the Fourier transform given by equation (7).We assume a ertain region in the body, whose shape and extension is desribed by a funtion
g(r, z), where the density of the body is modi�ed aording to

ρ → ρ + ρg(r, z) . (9)We employ equation (9) for desribing an inhomogeneity in the body. It is easy to see that thishange in density introdues a new soure term in equation (2), whih an be written as
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h(kω; z)eikre−iωt , (10)where
h(kω; z) =

∑

k1

g(k − k1, z)u(k1ω; z) . (11)Consequently, equation (3) beomes
u(R, t) = q
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(12)



J. Theor. Phys. 3Making use of the representations given above, and after performing onveniently a few integrationsby parts, equation (12) an be simpli�ed appreiably. The intervening integrals an be performedstraightforwardly. They redue to the known integral[21℄
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eiωx/c =
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κ0

eiκ0|z| , (13)where J0 is the Bessel funtion of the �rst kind and zeroth order and
κ0 =

√
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− k2 . (14)We get the system of oupled integral equations
v(kω; z) = − iqk

2κ0

∫
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(15)and
u3(kω; z) = − q
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0 dz′h3(kω; z′)eiκ0|z−z′| ,
(16)where h‖ is the in-plane omponent of the vetor h de�ned by equation (11) and h3 is its ompoenntalong the z-diretion.It is onvenient to introdue the notations v1 = kv/k, v2 = k⊥v/k, and similar ones for the vetor

h, where k⊥ is a vetor perpendiular to k, kk⊥ = 0, and of the same magnitude k. Under theseonditions equation (15) for v2redues to
v2(kω; z) =

iω2

2v2
t κ0

∫

0
dz′h2(kω; z′)eiκ0|z−z′| . (17)This equation orresponds to the transverse wave polarized perpendiular to the plane of propa-gation (it is known in eletromagnetism as the s-wave, from the German "senkreht" whih means"perpendiular"). Taking the seond derivative with respet to z in this equation we get

∂2v2

∂z2
= −κ2

0v2 −
ω2

v2
t

h2 . (18)Here, it is worth noting the non-invertibility of the (seond) derivative and the integral in equation(17), as a result of the disontinuity in the derivative of the funtion eiκ0|z−z′| for z = z′. In equation(18) we perform a Fourier transform with respet to the oordinate z. Introduing the wavevetors
K = (k, κ) and K1 = (k, κ1) and making use of equation (14), equation (18) beomes
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v2(Kω) = −ω2

v2
t

∑

K1

g(K− K1)v2(K1ω) . (19)We assume �rst that funtion g(R) is a onstant, g(R) = g. Then, g(K) = gδK,0 and equation(19) gives the frequeny
ω =

vt√
1 + g

K , (20)



4 J. Theor. Phys.whih shows that the wave veloity is renormalized as a onsequene of the hange in density,as desribed by the parameter g. Seond, we assume that the funtion g(R) is loalized at somepositionR0 in the body over a small spatial range of linear extension a. Then, its Fourier transforman be taken almost onstant, g(K)≃ ga3/V , over a range ∼ 1/a, where V is the volume of thebody and g = g(R0). Under these onditions we get from equation (19) the dispersion relation
1 = −ω2ga3

v2
t V

∑

K

1

ω2/v2
t − K2

. (21)For small values of g the solutions of this equation are given by
ω2/v2

t = K2 − gω2

6π2v2
t

= K2 − g

6π2
K2 + ..., (22)whene, in the �rst approximation, we get another renormalizaton of the wave veloity

vt → vt

(

1 − g

12π2

)

. (23)We note that this renormalization does not depend on the spatial extension of the funtion g(R).We also note that these results are the same for an in�nite body. For a general funtion g(R) weobtains a renormalization of the veloity omprised between the two limiting ases given above byequations (20) and (23). We an also onsider a layer of thikness a, i.e. take g(R) = g(z − z0)and g(k, κ) ≃ (ga/L) δk,0, where L is the spatial extension of the body along the z-diretion and
g(k, κ) extends over a range ∼ 1/a as a funtion of κ. The veloity is then renormalized aordingto

vt → vt

(

1 − g

4π

)

. (24)We turn now to equation (15) written for v1 and equation (16) for u3. We leave aside arguments
k , ω for simpliity, and preserve expliitly only the argument z. It is easy to see that these twoequations imply
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H3(z) , (25)where
H1,3(z) =

∫

0
dz′h1,3(z

′)eiκ0|z−z′| . (26)We introdue u3(z) as given by equation (25) in equation (15) for v1(z) and take the seondderivative in the resulting equation. We get
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, (27)where
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− k2 . (28)We introdue Fourier transforms with respet to the z-oordinate both in equation (25) andequation (27). The Fourier transforms of the funtions H1,3(z) are
H1,3(κ) = − 2iκ0

κ2 − κ2
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J. Theor. Phys. 5for κ 6= κ0. Restoring the arguments, h1(κ) is written, by equation (11), as
h1(K) =

∑

K1

g(K− K1)v1(K1) ; (30)a similar expression holds for h3. Doing so, we get two oupled equations
u3(K) − κ

k
v1(K) +
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= 0 (31)and
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t κkω2∑
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(32)In analyzing these equations we proeeed as before. For a onstant funtion g(R) = g, whoseFourier transform is g(K) = gδK,0, equations (31) and (32) give two types of waves. For thelongitudinal wave, u3 = κv1/k, equation (31) is satis�ed identially, while from equation (32) weget a renormalization of the veloity vl whih is the same as that given above by equation (20).For the transverse wave u3 = −kv1/κ (p-wave, whose polarization lies in the plane of propagation)we get from equations (31) and (32) the same renormalization of the velity vt as that given byequation (20).We assume now a funtion g(R) loalized at some position R0 within the body and extending overa range ∼ a. Its Fourier transform an be taken as g(K) ≃ ga3/V for K extending over a range
∼ 1/a and g = g(R0). It is easy to see that, aording to equations (31) and (32), the veloity
vt is not renormalized in the �rst order of the (small) parameter g, but the veloity vl aquires arenormalization given by

vl → vl

(

1 − g

36π2

)

. (33)Similarly, for a layer of thikness a the veloity vt is not renormalized in the �rst order of theparameter g but the frequeny of the longitudinal waves beomes
ω = vlK

(

1 − gak

4

)

; (34)we an see that the longitudial waves beome dispersive in this ase.For omparison we give here the results for a density inhomogeneity in an in�nite elasti body.By using Fourier transforms, equation (12) leads to
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h(Kω) , (35)where
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g(K−K1)u(K1ω) (36)and we have used the integral given by equation (4). Equation (35) redues to
u1,2(Kω) +

ω2

ω2 − v2
l,tK

2

∑

K1
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6 J. Theor. Phys.for the longitudinal waves u1 = uK/K (veloity vl) and, respetively, transerse waves u2 =
uK⊥/K (veloity vt), where K⊥ is a vetor perpendiular to the wavevetor K, KK⊥ = 0, andof the same magnitude K. Both equations (37) lead to a dispersion equation of the same formas the one orresponding to the s-wave (equation (19)). For an extended inhomogeneity both
vt,l are renormalized aording to equation (20), for a loalized inhomogeneity both veloities arerenormalized aording to equation (23). This is di�erent than the semi-in�nite body (omparewith equation (33)).In onlusion we may say that we have introdued herein a new method, based on the Kirhho�eletromagneti potentials, to estimate the e�ets of density inhomogeneities on the propagationof the elasti waves in isotropi bodies. We have applied this method both to an in�nite bodyand a semi-in�nite (half-spae) body. For an in�nite body a density inhomogeneity renormalizesthe veloity of the transverse and longitudinal waves. We have estimated this e�et both foran extended and a loalized inhomogeneity, or for a layer, assuming that the strength of theinhomegenity is small (parameetr g). For a semi-in�nite body the present method leads to oupledintegral equations whih we have solved. The transverse s-wave is a�eted in the same manneras in an in�nite body, and this holds also for all the waves for an extended inhomogeneity, asexpeted. For a loalized inhomogeneity the transverse p-wave is a�eted in the seond-order ofthe parameter g, while the longitudinal wave undergoes a renormalization of veloity (di�erentthan in an in�nite body). In addition, for a layer inhomogeneity, the longitudinal waves beomedispersive.The method presented here an be extended to other types of inhomogeneities, as, for instane,those produed in the elasti properties of the body (the Lame oe�ients). This problem is leftfor a forthoming investigation.Aknowledgments. The author is indebted to the members of the Institute for Earth's Physis atMagurele-Buharest for enouraging support and to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for many useful, enlightening disussions.Referenes[1℄ B. B. Baker and E. T. Copson, The Mathematial theory of Huygens' Priniple, (Clarendon,Oxford, 1950).[2℄ J. D. Ahenbah, Wave Proapgation in Elasti Solids, (North Holland, 1973).[3℄ E. G. Henneke, "Re�etion-refration of a stress wave at a plane boundary between anisotropimedia," J. Aoust. So. Am. 51 210-217 (1972).[4℄ P. G. Rihards and C. W. Frasier, "Sattering of elasti waves from depth-dependent inho-mogeneiteis," Geophysis 41 441-458 (1976).[5℄ B. H. Amstrong, "Frequeny-independent bakground internal frition in heterogeneoussolids," Geophysis 45 1042-1054 (1980).[6℄ S. I. Rokhlin, T. K. Bolland and L. Adler, "Re�etion and refration of elasti waves on aplane interfae betwen two generally anisotropi media," J. Aoust. So. Am. 79 906-918(1986).[7℄ R.-S. Wu, "Representation integrals for elasti wave propagation ontaining either the dis-plaement term or the stress term alone," Phys. Rev. Lett. 62 497-500 (1989).
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