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tromagneti
 �elds in 
ylindri
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ylindri
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ylindri
alhole bored into a slab of �nite thi
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omplementary stru
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ylindri
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ases we get exa
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tromagneti
 potentials.This method has been used by us re
ently for a semi-in�nite plasma, a plasma slab and asphere (Mie theory), where we get exa
t, physi
al solutions. First, we (re-)derive the plas-mons for a two-dimensional plasma sheet and 
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ir
ular aperture and the disk, wherewe en
ounter unphysi
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ylindri
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an be 
alled "
ylindri
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; 42.25.Fx1 Introdu
tionThe interest for the ele
tromagneti
 �eld intera
ting with matter in stru
tures with spe
ial, re-stri
ted geometries[1℄-[9℄ is motivated by the role played by plasmons and polaritons (in
ludingsurfa
e plasmons and surfa
e plasmon-polariton modes) in the re�e
ted, refra
ted, transmitted ordi�ra
ted �eld[10℄-[32℄. On the other hand, there has always been an interest in the status of theso-
alled "e�e
tive medium permittivity" theory in stru
tures with spe
ial geometries. Re
ently,we have introdu
ed a method for treating su
h problems, based on the equation of motion formatter polarization and the Kir
hho� radiation formulae for ele
tromagneti
 potentials[33℄. Typi-
ally, this approa
h leads to 
oupled integral equations. By using this method we have derived thesurfa
e plasmons and the surfa
e plasmon-polaritons in a semi-in�nite (half-spa
e) plasma and a



2 J. Theor. Phys.plasma slab[34℄, together with the re�e
ted, refra
ted and transmitted �eld, and obtained gener-alized Fresnel equations. Making use of the same method we re-derived Mie theory of di�ra
tionby a metalli
 sphere[35℄, where we have stressed upon the role played by the "spheri
al" plas-mons, and 
al
ulated van der Waals-London and Casimir for
es a
ting between two semi-in�nitebodies[36℄, as arising from the ele
tromagneti
 eigenmodes of matter intera
ting with the ele
tro-magneti
 �eld. Interfa
e plasmons have also been derived in re
tangular geometries for variouspairs of bodies (metals and diele
tri
s)[34℄.We attempt herein to extend this method to bodies with 
ylindri
al geometries, fo
using in par-ti
ular on the plasmon and polariton modes and the di�ra
ted �eld. This problem has beenta
kled extensively in the past[37℄-[44℄, within various approximations. In parti
ular, di�ra
tionof s
alar �elds by small holes or 
ir
ular apertures in a metalli
 s
reen have been investigated byapproximate methods[45, 46℄, under 
ertain boundary 
onditions. First, we derive the plasmonmodes for a two-dimensional plasma sheet (a s
reen), and 
ompute the re�e
ted and transmittedele
tromagneti
 �eld for a plane wave in
ident on the sheet. Next, we show that unphysi
al ultra-violet divergen
ies o

ur for plasmons in a two-dimensional plasma sheet with a 
ir
ular aperture,as well as for a disk. We were not able to solve the 
oupled integral equations for di�ra
tion bya 
ir
ular aperture (or a disk). We get exa
t solutions for "
ylindri
al" plasmons in an in�nite
ylindri
al hole and an in�nite 
ylindri
al rod. For a 
ir
ular 
ylindri
al hole bored into a plasmaslab of �nite thi
kness, as well as for a �nite 
ylindri
al rod we were not able to solve the 
oupledintegral equations. The 
al
ulations are performed for an ideal plasma, but they 
an be extendedstraightforwardly to a diele
tri
, loss in
luded.We adopt a simple model of an ideal jellium-like plasma 
onsisting of mobile 
harges −e with mass
M and 
on
entration n moving in a uniform, rigid, neutralizing ba
kground of positive 
harges.This model is a 
onvenient representation for an ideal metal in the range of opti
al frequen
ies. Weintrodu
e a disturban
e δn in the 
harge density given by δn = −ndivu, where u is a displa
ement�eld in the positions of the mobile 
harges. This representation is valid as long as Ku(K) ≪ 1,where u(K) is the Fourier transform of the displa
ement �eld u and K is the waveve
tor. Thedisturban
e of the 
harge density is given by ρ = endivu and the 
urrent density is given by
j = −enu̇. The displa
ement �eld is subje
ted to the equation of motion

M ü = −eE − eE0 , (1)where E is the internal ele
tri
 �eld and E0 is an external ele
tri
 �eld. In the non-retarded limit(where the body size is mu
h smaller than the relevant ele
tromagneti
 wavelengths) the �eld Eis the Coulomb �eld, so equation (1) 
an be written as
M ü = ngrad

∫

dr′U(|r − r′|)divu(r′) − eE0 , (2)where U(r) = e2/r is the Coulomb energy. In the retarded regime the �eld E is given by E =
−1

c
∂A

∂t
−gradΦ, where A and Φ are the ve
tor and, respe
tively, s
alar ele
tromagneti
 potentials.They are by the well-known Kir
hho� radiation formulae

A =
1

c

∫

dr′
j (r′, t − |r − r′| /c)

|r − r′| , Φ =
∫

dr′
ρ (r′, t − |r− r′| /c)

|r − r′| , (3)where c is the velo
ity of light.Making use of a temporal Fourier transform, equation (1) be
omes
ω2u =

e

M
(E + E0) . (4)



J. Theor. Phys. 3It is easy to see, by making use of the Maxwell equation divE = 4πρ, that equation (4) gives thewell-known diele
tri
 fun
tion ε = 1 − ω2
p/ω

2 for a bulk plasma, where ωp =
√

4πne2/M is theplasma frequen
y. The internal (polarizing) �eld is given by E = 4πneu (equal to −4πP, where
P is the polarization). Similarly, the equation of motion (4) and the Maxwell equation givenabove lead to the well-known 
ondu
tivity σ = ine2/Mω. In this treatment we leave aside themagnetization, relativisti
 e�e
ts and dissipation.Our general approa
h is to solve the integral equation (2) in the non-retarded limit in order to getthe plasmon modes. Similarly, we introdu
e the displa
ement �eld u in equation (3) (via 
hargeand 
urrent density) and use equation of motion (1) for expressing the ele
tri
 �eld in terms ofthe displa
ement �eld. This way, we get integral equations (in general 
oupled with respe
t to the
omponents of the displa
ement �eld), whi
h we solve in order to get the ele
tri
 �eld inside thebody (i.e., the refra
ted �eld). The eigenmodes of these equations give the polaritons. Havingknown the displa
ement �eld u, we use again eqation (3) in order to 
al
ulate the �eld outside thebody (i.e., re�e
ted, transmitted or di�ra
ted �eld). We note that the use of integral equations intreating the ele
tromagneti
 �eld intera
ting with matter was previously indi
ated in 
onne
tionwith the so-
alled Ewald-Oseen extin
tion theorem[47℄.We 
an add to equation (1) terms like −Mω2

0u − Mγu̇, where ω0 is a 
hara
teristi
 frequen
yand γ is a dissipation parameter. This amounts to repla
ing ω2 in equation (4) by ω2 − ω2
0 + iγω.We 
an view ωp, ω0 and γ as free parameters, thus being able to simulate various models ofmatter. For ω0 = γ = 0 we get the well-known diele
tri
 fun
tion of an ideal plasma; if ω0 = 0 wehave the diele
tri
 fun
tion of the opti
al properties of simple metals for ω ≫ γ (Drude model),and the diele
tri
 fun
tion 
orresponding to the stati
 (or quasi-stati
) 
urrents in metals for

ω ≪ γ; for ω0 ≫ ωp we have a diele
tri
 fun
tion of usual diele
tri
s with loss; and so on. Thediele
tri
 fun
tion obtained by su
h an equation of motion is well known in the elementary theoryof dispersion[48℄, and it provides support for the theory of the "e�e
tive medium permittivity".Herein, we limit ourselves to the equation of motion (1) for an ideal plasma, and apply it to
ylindri
al geometries.2 Two-dimensional plasma sheetWe 
onsider an in�nite two-dimensional plasma sheet in the (x, y)-plane (z = 0) with a surfa
e
harge 
on
entration ns. For reasons of dimensionality we introdu
e a small distan
e d and expressthe surfa
e 
on
entration as ns = nd, where n is the bulk 
harge 
on
entration. The displa
ement�eld u lies in the (x, y)-plane, and we denote the position ve
tor by r = (x, y). We use Fouriertransforms of the form
u(r, t) =

∑

k

∫

dωu(kω)eikre−iωt (5)and the well-known Fourier de
omposition
1

r
=

∑

k

2π

k
eikr (6)for the Coulomb potential. We use a similar Fourier transform E0(kω) for the external �eld

E0(r, t). For simpli
ity we often leave aside the arguments k, ω of the Fourier transforms.The Fourier transform of equation (2) gives
Mω2u =

2πne2d

k
(ku)k + eE0 , (7)
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e
u =

ω2
ped

kMω2
· kE0

2ω2 − ω2
pkd

k +
e

Mω2
E0 , (8)where ωp =

√

4πne2/M is the plasma frequen
y. We 
an see the well-known longitudinal (u ∼ k)plasmon mode ω = ωp

√

kd/2. A plasma slab of thi
kness d has two surfa
e-plasmon bran
hesgiven[34℄ by ω2 = ω2
p(1±e−kd)/2; one of them redu
es to ωp

√

kd/2 in the limit kd ≪ 1. The otherbran
h, whi
h redu
es to ωp, has no 
orrespondent for the plasma sheet.In the retarded regime we 
onsider an in
ident plane wave E0e
ikreiκze−iωt, with frequen
y ω = cKand waveve
tor K = (k, κ) (satisfying the transversality 
ondition KE0 = 0). For the "retarded"Coulomb potential we use the well-known de
omposition[49℄

ei ω

c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z| , (9)where κ =

√

ω2/c2 − k2. From equation of motion (1) and the retarded potentials given byequation (3) we get
Mω2u =

2πine2d

κ
(ku)k − 2πine2dω2

c2κ
u + eE0 . (10)It is 
onvenient to introdu
e longitudinal and transverse 
omponents through u1 = ku/k and,respe
tively, u2 = k⊥u/k, where k⊥ is a ve
tor perpendi
ular to the ve
tor k, kk⊥ = 0, and of thesame magnitude k. Similarly, we use notations E01 = kE0/k and E02 = k⊥E0/k. Then, equation(10) gives

u1 = 2e
M

· E01

2ω2+iω2
pκd

,

u2 = 2eκ
M

· E02

2κω2+iω2
pK2d

.
(11)We use these 
omponents of the displa
ement �eld in equation (3) for 
al
ulating the re�e
ted�eld Er (region z < 0) and the transmitted �eld Et (region z > 0). The results of this 
al
ulationare

Er1,3 = − iω2
pκd

2ω2+iω2
pκd

E01,3e
−iκz ,

Er2 = − iω2
pK2d

2κω2+iω2
pK2d

E02e
−iκz

(12)and
Et1,3 = 2ω2

2ω2+iω2
pκd

E01,3e
iκz ,

Et2 = 2ω2κ
2κω2+iω2

pK2d
E02e

iκz ,

(13)where we have preserved expli
itly only the e±iκz-dependen
e. The 
omponent denoted by label
3 is dire
ted along the z-axis. These �elds 
annot be obtained as the limiting 
ase d → 0 of aplasma slab of thi
kness d[34℄.The (total) �eld inside the sheet is given by equation (4) as Etot = Mω2u/e. It is worth noting thatthis �eld is equal to the transmitted �eld Et (
omponents 1 and 2). We 
an 
he
k the 
ontinuityof the �elds at z = 0 in the form E0 + Er = Et. All the �elds given above are propagating �elds(κ is real), there is no damped regime, or a total re�e
tion, et
, as expe
ted. The denominatorsin equations (11)-(13) do not vanish, so we have no polaritoni
 modes. The re�e
tion 
oe�
ient
R = |Er|2 /E2

0 de
reases monotoni
ally with in
reasing ω (R(ω = 0) = 1) and the transmission
oe�
ient T = |Et|2 /E2
0 has a monotoni
al in
rease to unity for ω → ∞.



J. Theor. Phys. 53 Cir
ular aperture and diskWe 
onsider a two-dimensional plasma sheet with a 
ir
ular aperture of radius a. In 
ilindri
al
oordinates the displa
ement �eld 
an be written as
u → uθ(ρ − a) , (14)where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step fun
tion. We use the Fourier transform

u(ρ, ϕ) =
∑

m

eimϕu(ρ, m) , (15)where the summation extends over all integers m, as well as the de
omposition[50℄
1

|r− r′| =
∑

m

eim(ϕ−ϕ′)
∫ ∞

0
dkJm(kρ)Jm(kρ′) (16)for the Coulomb potential. We 
ompute the divergen
e and the gradient o

uring in equation(2) and noti
e that the resulting 
oupled integral equations for the 
omponents uρ and uϕ imply

imuρ = ∂
∂ρ

(ρuϕ). This relation arises from (curlu)ρ = 0. We use this relation to get only oneintegral equation for the 
omponent uϕ(ρ, m). We leave aside the label ϕ and argument m anddenote this 
omponent simply by u(ρ). In the equation obeyed by fun
tion u(ρ) we perform a few
onvenient integrations by parts and use the Bessel equation
z2 d2Jm

dz2
+ z

∂Jm

∂z
+ (z2 − m2)Jm = 0 (17)to get

2ω2

ω2
pd

ρu(ρ) =
∫ ∞
0 k2dk

∫ ∞
a ρ′2dρ′Jm(kρ)Jm(kρ′)u(ρ′)−

−a2u(a)
∫∞
0 kdkJm(kρ)J

′

m(ka) − im
2πned

Φ ,

(18)where Φ = Φ(ρ, m) is the 
orresponding Bessel-Fourier 
omponent of the external potential (E0 =
−gradΦ). Here it is 
onvenient to introdu
e ρu(ρ) = v(ρ) and get

2ω2

ω2
pd

v(ρ) =
∫ ∞
0 k2dk

∫ ∞
a ρ′dρ′Jm(kρ)Jm(kρ′)v(ρ′)−

−av(a)
∫ ∞
0 kdkJm(kρ)J

′

m(ka) − im
2πned

Φ .

(19)We show below that this equation has no solution, be
ause of the ultraviolet divergen
ies o

urringfor k → ∞. Indeed, we use a Bessel-Fourier de
omposition of the form
v(ρ) =

∫ ∞

0
kdkJm(kρ)v(k) , v(k) =

∫ ∞

0
ρdρJm(kρ)v(ρ) (20)(and a similar one for the external potential). Equation (19) be
omes

(

−2ω2

ω2
pd

+ k
)

v(k) =

∫ ∞
0 λdλv(λ)

[

ka2
∫ 1
0 xdxJm(kax)Jm(λax) + aJ

′

m(ka)Jm(λa)
]

+ im
2πned

Φ(k) ,

(21)where we have used the 
hange of variable ρ′ = ax. Here we use the inversion formulae[51℄
v(k) =

∫ 1

0
xdxJm(kax)v(x) , v(x) = a2

∫ ∞

0
kdkJm(kax)v(k) (22)
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−2ω2

ω2
pd

∫ 1

0
xdxJm(kax)v(x) =

1

2a
J

′

m(ka)v(1) +
im

2πned
Φ(k) ; (23)we multiply both sides of this equation by kJm(kax) and integrate with respe
t to k; equation(23) leads to

− 2ω2

ω2
pda2

v(x) =
1

2a
v(1)

∫ ∞

0
kdkJm(kax)J

′

m(ka) +
im

2πned

∫ ∞

0
kdkJm(kax)Φ(k) . (24)Making use of a well-known re
urren
e formula for the Bessel fun
tions[52℄, the integral involving

J
′

m in equation (24) 
an be redu
ed to two integrals involving produ
ts Jm(kax)Jm±1(ka). Su
hintegrals are 
omputed in Refs. [53, 54℄, with the aid of hypergeometri
 fun
tions of argument x2.For solving equation (24) we are interested in the limit x → 1. We get
lim
x→1

∫ ∞

0
kdkJm(kax)J

′

m(ka) = − 2

πa2
lim
x→1

x

1 − x2
, (25)whi
h is divergent. We 
on
lude that equation (24) has no solution.There exists another de
omposition of the Coulomb potential ([50℄, p. 126),

1

|r − r′| =
2

π

∑

m

∫ ∞

0
dkeim(ϕ−ϕ′)Im(kρ<)Km(kρ>) , (26)where Im and Km are the modi�ed Bessel fun
tions of order m, and ρ< = min(ρ, ρ′), ρ> =

max(ρ, ρ′). Doing the same 
al
ulations as above, by using equation (26), we rea
h the same 
on-
lusion: there exist ultraviolet divergen
ies, whi
h prevent any �nite solution. A similar situationholds for a 
ir
ular disk.For di�ra
tion by the aperture we need a 
onvenient de
omposition of the "retarded" Coulombpotential. Making use of equation (9) we get easily
ei ω

c

√
ρ2+z2

√
ρ2 + z2

= i
∫ ∞

0
kdkJ0(kρ)

eiκ|z|

κ
, (27)where κ =

√

ω2/c2 − k2. Using the well-known addition formula
J0(k

√

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′)) =
+∞
∑

m=−∞
Jm(kρ)Jm(kρ′)eim(ϕ−ϕ′) , (28)we get

ei ω

c
|r−r

′|

|r − r′| = i
+∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0
kdkJm(kρ)Jm(kρ′)

eiκ|z|

κ
. (29)We are not aware of a similar de
omposition in terms of modi�ed Bessel fun
tions. We use thede
omposition given by equation (29) for 
omputing the ele
tromagneti
 potentials A and Φ givenby equation (3) and the ele
tri
 �eld E whi
h appears into equation (1). Introdu
ing the notation

f(ρ, ρ′) =
∫ ∞

0
kdkJm(kρ)Jm(kρ′)

1

κ
, (30)the equation of motion (1) 
an be written as

2iω2

ω2
pd

uρ =
∫ ∞
a ρ′dρ′uρ

(

− ∂2f
∂ρ∂ρ′

+ ω2

c2
f

)

+ im
∫ ∞
a dρ′uϕ

∂f
∂ρ

+ i
2πned

E0ρ ,

2ω2

mω2
pd

ρuϕ = − ∫ ∞
a ρ′dρ′uρ

∂f
∂ρ′

+
∫ ∞
a dρ′uϕ

(

im − iω2

mc2
ρρ′

)

f + ρ
2πmned

E0ϕ ,

(31)



J. Theor. Phys. 7where we have left aside the arguments of the fun
tions in the integrals. We were not able to solvethese equations. The same situations holds for another de
omposition[55℄
ei ω

c
|r−r

′|

|r − r′| =
i

2

+∞
∑

m=−∞
eim(ϕ′−ϕ)eiκ(z′−z)

∫ ∞

0
κdκJm(kρ)Hm(kρ′) , ρ′ > ρ . (32)4 In�nite 
ylindri
al hole and rodWe 
onsider �rst an in�nite 
ir
ular 
ylindri
al hole of radius a extending from z = −∞ to

z = +∞. We use 
ylindri
al 
oordinates ρ , ϕ , z. We write the displa
ement �eld u as in equation(14), and use the same Fourier transform given by equation (15). We pro
eed in the same wayas we did for the 
ir
ular aperture above, 
ompute the divergen
e of the displa
ement �eld (in
ylindri
al 
oordinates) and the gradient o

urring in equation (2), and note the o

uren
e ofspe
i�
 
ontributions arising from the boundary ρ = a. First, we use the de
omposition[50℄
1

|r − r′| =
∑

m

eim(ϕ−ϕ′)
∫ ∞

0
dke−k(z>−z<)Jm(kρ)Jm(kρ′) , (33)where Jm is the Bessel fun
tion of the �rst kind and order m, z< = min(z, z′), z> = max(z, z′).Equation (2) gives three 
oupled integral equations for the 
omponents uρ , uϕ , uz, and we 
an seeeasily that they imply the relations

imuρ = uϕ + ρ
∂uϕ

∂ρ
, imuz = ρ

∂uϕ

∂z
; (34)these relations arises from (curlu)ρ = 0 and (curlu)z = 0. We use these relations to get only oneintegral equation for uϕ(ρ, m, z); we denote this fun
tion simply by u(ρ, z). After a few 
onvenientintegrations by parts and using the Bessel equation (17), we get the following integral equationfor fun
tion u(ρ, z):

2
ω2

p

(ω2
p − ω2)ρu(ρ, z) = a2

∫ ∞
0 kdkJm(kρ)J

′

m(ka)
∫ +∞
−∞ dz′u(a, z′)e−k|z−z′|−

− ρ
2πne

E0ϕ(ρ, z) .

(35)Here, it is 
onvenient to make a Fourier transform with respe
t to 
oordinate z. We get easily
(ω2 − ω2

p)u(ρ, κ) = e
M

E0ϕ(ρ, κ) − e
M

E0ϕ(a, κ)
ω2

paI(ρ)

ω2−ω2
p+ω2

paI(a)
, (36)where

I(ρ) =
∫ ∞

0
dk

k2

k2 + κ2
Jm(kρ)J

′

m(ka) . (37)Making use of the well-known re
urren
e relations for the Bessel fun
tions,[52℄ this integral 
anbe brought to a known integral[56℄. We get
I(ρ) =

κ

2
Km(κρ) [Im−1(κa) + Im+1(κa)] = κKm(κρ)I

′

m(κa) , (38)where Im and Km are the modi�ed Bessel fun
tions of degree m.It folows that the bulk plasmons are given by ω2 = ω2
p and the surfa
e plasmons are given by

ω2 = ω2
p

[

1 − κaKm(κa)I
′

m(κa)
]

. (39)



8 J. Theor. Phys.This relation is symmetri
 under the transformation m → −m. In the limit κa ≪ 1 we get
ω2 ≃







































ω2
p

[

1 + (κa)2

2
ln κa

2

]

, m = 0

1
2
ω2

p

[

1 − (κa)2

2
ln κa

2

]

, m = 1

1
2
ω2

p

[

1 + (κa)2

2m(m2−1)

]

, m > 1

. (40)
Having known the displa
ement �eld u given by equations (34) and (36), and using equation (14),we 
an 
ompute the polarization potential

Φp(r) = ne
∫

dr′
1

|r − r′|divu (41)and the total potential Φ = Φp + Φ0, in terms of the external potential Φ0 (via the external �eld
E0), getting thus the diele
tri
 response. The result of this 
al
ulation is

Φi(ρ, ϕ, z) = Φ0(ρ, ϕ, z)−

−aω2
p

∑

m eimϕ
∫

dκeiκzIm(κρ) κK
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p+ω2

pκaKm(κa)I′m(κa)

(42)for ρ < a (inside the hole) and
Φe(ρ, ϕ, z) = ω2

ω2−ω2
p

[Φ0(ρ, ϕ, z)−

−aω2
p

∑

m eimϕ
∫

dκeiκzKm(κρ) κI
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p+ω2

pκaKm(κa)I′m(κa)
]

(43)for ρ > a (outside the hole). We 
an 
he
k that this potential and its derivatives ∂Φ/∂z and
∂Φ/∂ρ are 
ontinuous at the hole surfa
e ρ = a, whi
h means the 
ontinuity of the tangential
omponents of the ele
tri
 �eld, but the normal 
omponent ∂Φ/∂ρ is dis
ontinuous, as expe
ted.For an external �eld along the axis of the hole, as well as for an external �eld along the radius, we
an 
he
k the 
ontinuity of the normal 
omponent of the ele
tri
 displa
ement Ei = ε(ω)Ee |ρ=awhere ε = 1− ω2

p/ω
2 is the diele
tri
 fun
tion of a bulk ideal plasma. In this respe
t, we may saythat the so-
alled theory of "e�e
tive medium permittivity" holds. In addition, we may note theo

urren
e of spe
i�
 surfa
e 
ontributions to the diele
tri
 response (the integrals in equations(42) and (43)), whi
h pre
ludes in fa
t a proper de�nition for a 
onventional diele
tri
 fun
tion.Similar 
al
ulations 
an be performed for an in�nite plasma rod. In this 
ase, we get the surfa
eplasmons

ω2 = ω2
p

[

1 + κaIm(κa)K
′

m(κa)
]

, (44)whi
h in the limit κa ≪ 1 reads
ω2 ≃







































−1
2
ω2

p (κa)2 ln κa
2

, m = 0

1
2
ω2

p

[

1 + (κa)2

2
ln κa

2

]

, m = 1

1
2
ω2

p

[

1 − (κa)2

2m(m2−1)

]

, m > 1

2

. (45)
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tri
 response reads
Φi(ρ, ϕ, z) = ω2

ω2−ω2
p

[Φ0(ρ, ϕ, z)+

+aω2
p

∑

m eimϕ
∫

dκeiκzIm(κρ) κK
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p−ω2

pκaIm(κa)K ′
m(κa)

]

(46)for ρ < a and
Φe(ρ, ϕ, z) = Φ0(ρ, ϕ, z)+

+aω2
p

∑

m eimϕ
∫

dκeiκzKm(κρ) κI
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p−ω2

pκaKm(κa)I′m(κa)

(47)for ρ > a.These plasmon modes given above 
an be 
alled "
ylindri
al" plasmons. It is worth noting thatwe 
annot get the bulk plasma frequen
y ωp in the limit a → 0, be
ause of the surfa
e 
hargewhi
h is not vanishing in this limit. The results given in equations (39) and (44) 
oin
ide withthose given in Refs. [42, 44℄.We 
an use the other de
omposition ([50℄, p. 126)
1

|r − r′| =
2

π

∑

m

∫ ∞

0
dkeim(ϕ−ϕ′) cos k(z − z′)Im(kρ<)Km(kρ>) (48)for the Coulomb potential and get the same results as those given by equations (39) and (44).The di�ra
tion of an ele
tromagneti
 �eld by an in�nite 
ylindri
al hole or rod 
an be treated inthe same manner as for a 
ir
ular aperture (or disk), following the general pro
edure des
ribed inIntrodu
tion. Unfortunately, we were not able to solve the resulting integral equations.5 Finite 
ylindri
al holeWe 
onsider a 
ir
ular 
ylindri
al hole of radius a bored into a plasma slab of thi
kness d. Theslab extends over the region 0 < z < d. We use 
ylindri
al 
oordinates ρ , ϕ , z. The displa
ement�eld u 
an be written as

u → u [θ(z) − θ(z − d)] θ(ρ − a) (49)and use the same Fourier tranform given by equation (15). We 
ompute the divergen
e of thedispla
ement �eld u and the gradient o

urring in equation (2), and note again the o

uren
eof spe
i�
 
ontributions arising from the boundaries z = 0, d and ρ = a. Now, we use �rst thede
omposition given by equation (48) ([50℄, p. 126)Equation (2) gives three 
oupled integral equations for the 
omponents uρ , uϕ , uz, and we 
an seeeasily that they imply the relations
imuρ = uϕ + ρ

∂uϕ

∂ρ
, imuz = ρ

∂uϕ

∂z
; (50)these relations arises from (curlu)ρ = 0 and (curlu)z = 0. We use these relations to get only oneintegral equation for uϕ(ρ, m, z); we denote this fun
tion simply by u(ρ, z). After a few 
onvenientintegrations by parts and using the equation

z2 d2w

dz2
+ z

∂w

∂z
− (z2 + ν2)w = 0 (51)
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tions wν we get the following integral equation for the fun
tion u(ρ, z):
2π
ω2

p

(ω2
p − ω2)ρu(ρ, z) = a2

∫ ∞
0 kdk

∫ d
0 dz′u(a, z′) cos k(z − z′)Km(kρ)I

′

m(ka)+

+
∫∞
0 kdk

∫ ρ
a dρ′ρ′2 [u(ρ′, 0) sin kz − u(ρ′, d) sin k(z − d)] Km(kρ)Im(kρ′)+

+
∫ ∞
0 kdk

∫ ∞
ρ dρ′ρ′2 [u(ρ′, 0) sin kz − u(ρ′, d) sin k(z − d)] Im(kρ)Km(kρ′)−

− 1
2ne

E0ϕ(ρ, z) ,

(52)
where I

′

m(ka) is the derivative of the modi�ed Bessel fun
tion with respe
t to its argument. Thisequation relates the fun
tion u(ρ, z) to its values u(a, z) , u(ρ, 0), u(ρ, d) on the boundaries. Weshould parti
ularize equation (52) to ρ = a , z = 0 and z = d. This way, we obtain a set of three
oupled integral eqautions, whi
h, unfortunately, we were not able to solve. A similar situationo

urs for the de
omposition given by equation (33), as well as for the di�ra
ted �eld.6 Dis
ussion and 
on
lusionsWe used the equation of motion for matter polarization (elementary theory of 
lassi
al dispersion)and Kir
hho� radiation potentials to investigate plasmons, polaritons and di�ra
ted ele
tromag-neti
 �eld in matter, espe
ially in an ideal model of ele
troni
 jellium-like plasma. Typi
ally,this method leads to 
oupled integral equations for the 
omponents of the displa
ement (polariza-tion) �eld. This integral-equation method was sought for long in studying the intera
tion of theele
tromagneti
 �eld with matter[47℄. It is parti
ularly interesting for stru
tures with restri
tedgeometries and for giving support to the theory of the "e�e
tive medium permittivity".We have applied herein this method to stru
tures with 
ylindri
al geometries. First, we have
omputed the plasmon modes and the di�ra
ted �eld for a two-dimensional plasma sheet. Next,we have shown that unphysi
al ultraviolet divergen
ies o

ur for plasmons in an in�nite plasmasheet with a 
ir
ular aperture (or a 
ir
ular disk). We were not able to de
ouple the integralequations for di�ra
tion by an aperture (or a disk). Further on, we have 
omputed the "
ylindri
al"plasmons o

urring in an in�nite 
ylindri
al hole and an in�nite 
ylindri
al rod. Unfortunately, wewere not able to solve the 
oupled integral equations for plasmons or for the di�ra
tion problemfor a �nite 
ylindri
al hole, or the difra
ted �eld by an in�nite 
ylindri
al hole (or rod).A
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