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Abstract

We report on some rigourous investigations regarding plasmons, polaritons and diffracted
electromagnetic fields in cylindrical geometries. Some of the results are negative, or unphys-
ical, implying ultraviolet divergencies. We examine this problem for a circular aperture in a
two-dimensional sheet (a screen), an infinite cylindrical hole (a tunnel) and a finite cylindrical
hole bored into a slab of finite thickness, and for their complementary structures, i.e. a disk
and an infinite (finite) cylindrical rod. For some cases we get exact solutions, for others we
are not able to get exact solutions. The method employed is based on solving coupled integral
equations which follow from the equation of motion of matter polarization in an ideal model
of jellium-like plasma and the Kirchhoff radiation formulae for the electromagnetic potentials.
This method has been used by us recently for a semi-infinite plasma, a plasma slab and a
sphere (Mie theory), where we get exact, physical solutions. First, we (re-)derive the plas-
mons for a two-dimensional plasma sheet and compute the reflected and transmitted field for
a plane wave incident on the sheet. Next, we treat the circular aperture and the disk, where
we encounter unphysical divergencies. For an infinite cylindrical hole and an infinite rod we
get exact solutions for plasmons, which can be called "cylindrical" plasmons, and compute
the dielectric response. For a finite cylindrical hole and a finite rod, as well as for other cases,
we are not able to solve the coupled integral equations.
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1 Introduction

The interest for the electromagnetic field interacting with matter in structures with special, re-
stricted geometries|[1]-[9] is motivated by the role played by plasmons and polaritons (including
surface plasmons and surface plasmon-polariton modes) in the reflected, refracted, transmitted or
diffracted field[10]-|32|. On the other hand, there has always been an interest in the status of the
so-called "effective medium permittivity" theory in structures with special geometries. Recently,
we have introduced a method for treating such problems, based on the equation of motion for
matter polarization and the Kirchhoff radiation formulae for electromagnetic potentials|33]. Typi-
cally, this approach leads to coupled integral equations. By using this method we have derived the
surface plasmons and the surface plasmon-polaritons in a semi-infinite (half-space) plasma and a
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plasma slab|34|, together with the reflected, refracted and transmitted field, and obtained gener-
alized Fresnel equations. Making use of the same method we re-derived Mie theory of diffraction
by a metallic sphere|35|, where we have stressed upon the role played by the "spherical" plas-
mons, and calculated van der Waals-London and Casimir forces acting between two semi-infinite
bodies|36], as arising from the electromagnetic eigenmodes of matter interacting with the electro-
magnetic field. Interface plasmons have also been derived in rectangular geometries for various
pairs of bodies (metals and dielectrics)|34].

We attempt herein to extend this method to bodies with cylindrical geometries, focusing in par-
ticular on the plasmon and polariton modes and the diffracted field. This problem has been
tackled extensively in the past[37]-[44], within various approximations. In particular, diffraction
of scalar fields by small holes or circular apertures in a metallic screen have been investigated by
approximate methods|45, 46|, under certain boundary conditions. First, we derive the plasmon
modes for a two-dimensional plasma sheet (a screen), and compute the reflected and transmitted
electromagnetic field for a plane wave incident on the sheet. Next, we show that unphysical ultra-
violet divergencies occur for plasmons in a two-dimensional plasma sheet with a circular aperture,
as well as for a disk. We were not able to solve the coupled integral equations for diffraction by
a circular aperture (or a disk). We get exact solutions for "cylindrical" plasmons in an infinite
cylindrical hole and an infinite cylindrical rod. For a circular cylindrical hole bored into a plasma
slab of finite thickness, as well as for a finite cylindrical rod we were not able to solve the coupled
integral equations. The calculations are performed for an ideal plasma, but they can be extended
straightforwardly to a dielectric, loss included.

We adopt a simple model of an ideal jellium-like plasma consisting of mobile charges —e with mass
M and concentration n moving in a uniform, rigid, neutralizing background of positive charges.
This model is a convenient representation for an ideal metal in the range of optical frequencies. We
introduce a disturbance dn in the charge density given by on = —ndivu, where u is a displacement
field in the positions of the mobile charges. This representation is valid as long as Ku(K) < 1,
where u(K) is the Fourier transform of the displacement field u and K is the wavevector. The
disturbance of the charge density is given by p = endivu and the current density is given by
j = —enu. The displacement field is subjected to the equation of motion

Mi = —eE — eEy , (1)

where E is the internal electric field and Eg is an external electric field. In the non-retarded limit
(where the body size is much smaller than the relevant electromagnetic wavelengths) the field E
is the Coulomb field, so equation (1) can be written as

Mﬂ:nwm/dﬂmu—ﬂmwmm—a%, 2)
where U(r) = €*/r is the Coulomb energy. In the retarded regime the field E is given by E =
—%%—? —grad®, where A and ® are the vector and, respectively, scalar electromagnetic potentials.

They are by the well-known Kirchhoff radiation formulae

it /o) ot = |r = fo)
A== [ard o= [ , 3
e lr — 1| ' |r — 1| (3)

where c is the velocity of light.

Making use of a temporal Fourier transform, equation (1) becomes

wiu = % (E+E) . (4)
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It is easy to see, by making use of the Maxwell equation divE = 4mp, that equation (4) gives the

well-known dielectric function ¢ = 1 — w?/w? for a bulk plasma, where w, = y/4wne?/M is the
plasma frequency. The internal (polarizing) field is given by E = 47neu (equal to —47P, where
P is the polarization). Similarly, the equation of motion (4) and the Maxwell equation given
above lead to the well-known conductivity o = ine?/Mw. In this treatment we leave aside the
magnetization, relativistic effects and dissipation.

Our general approach is to solve the integral equation (2) in the non-retarded limit in order to get
the plasmon modes. Similarly, we introduce the displacement field u in equation (3) (via charge
and current density) and use equation of motion (1) for expressing the electric field in terms of
the displacement field. This way, we get integral equations (in general coupled with respect to the
components of the displacement field), which we solve in order to get the electric field inside the
body (i.e., the refracted field). The eigenmodes of these equations give the polaritons. Having
known the displacement field u, we use again eqation (3) in order to calculate the field outside the
body (i.e., reflected, transmitted or diffracted field). We note that the use of integral equations in
treating the electromagnetic field interacting with matter was previously indicated in connection
with the so-called Ewald-Oseen extinction theorem[47].

We can add to equation (1) terms like —Mw2u — M~1u, where wy is a characteristic frequency
and v is a dissipation parameter. This amounts to replacing w? in equation (4) by w? — w2 + iyw.
We can view w,, wy and v as free parameters, thus being able to simulate various models of
matter. For wyg = v = 0 we get the well-known dielectric function of an ideal plasma; if wy = 0 we
have the dielectric function of the optical properties of simple metals for w > 7 (Drude model),
and the dielectric function corresponding to the static (or quasi-static) currents in metals for
w K 7; for wy > w, we have a dielectric function of usual dielectrics with loss; and so on. The
dielectric function obtained by such an equation of motion is well known in the elementary theory
of dispersion[48], and it provides support for the theory of the "effective medium permittivity".
Herein, we limit ourselves to the equation of motion (1) for an ideal plasma, and apply it to
cylindrical geometries.

2 Two-dimensional plasma sheet

We consider an infinite two-dimensional plasma sheet in the (x,y)-plane (z = 0) with a surface
charge concentration ns. For reasons of dimensionality we introduce a small distance d and express
the surface concentration as n, = nd, where n is the bulk charge concentration. The displacement
field u lies in the (z,y)-plane, and we denote the position vector by r = (x,y). We use Fourier

transforms of the form
u(r,t) =3 / deoa(kw)ekre it (5)
Kk

and the well-known Fourier decomposition
1 2T 4
i < ikr 6
=X (6)

for the Coulomb potential. We use a similar Fourier transform Egy(kw) for the external field
Eo(r,t). For simplicity we often leave aside the arguments k, w of the Fourier transforms.

The Fourier transform of equation (2) gives

2 2
Mw*u = 7”;6  w)k + By | (7)
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whence 2
w,e kE, e
= . k E 8
T EMw? 2P —wkd - MeE O ®)

where w, = y/4mne?/M is the plasma frequency. We can see the well-known longitudinal (u ~ k)
plasmon mode w = w,\/kd/2. A plasma slab of thickness d has two surface-plasmon branches

given[34] by w? = w2(14e7*%)/2; one of them reduces to wyy/kd/2 in the limit kd < 1. The other
branch, which reduces to w,, has no correspondent for the plasma sheet.

In the retarded regime we consider an incident plane wave Ege’®e?*?e~! with frequency w = cK
and wavevector K = (k, ) (satisfying the transversality condition KEq = 0). For the "retarded"

Coulomb potential we use the well-known decomposition|49]
ez—\/r2+z

2mi zkr m\z\
B DL )

where kK = /w?/c? — k2. From equation of motion (1) and the retarded potentials given by
equation (3) we get

Motu — 2mn62d(ku)k B 27Tzn262dw2

K 2K

It is convenient to introduce longitudinal and transverse components through u; = ku/k and,
respectively, us = ku/k, where k| is a vector perpendicular to the vector k, kk; = 0, and of the
same magnitude k. Similarly, we use notations Fy = kEq/k and Egs = k) Eg/k. Then, equation
(10) gives

u+ eE . (10)

_ 2e Eo1
Uy = M 2w?+tiw2kd
(11)
Uo = 2¢8 . Eoo
2= M 2rw2Hiw2 K2d

We use these components of the displacement field in equation (3) for calculating the reflected
field E, (region z < 0) and the transmitted field E; (region z > 0). The results of this calculation

are
iwgnd

En3= —WEOL;),@_“Z ;
o (12)
By = —#%Eoze_m
and ) .
Ey3= #WEOL:’&’W ;
(13)
Ly = mee :

where we have preserved explicitly only the e***-dependence. The component denoted by label
3 is directed along the z-axis. These fields cannot be obtained as the limiting case d — 0 of a
plasma slab of thickness d[34].

The (total) field inside the sheet is given by equation (4) as E;,; = Mw?u/e. It is worth noting that
this field is equal to the transmitted field E; (components 1 and 2). We can check the continuity
of the fields at z = 0 in the form Ey + E, = E;. All the fields given above are propagating fields
(k is real), there is no damped regime, or a total reflection, etc, as expected. The denominators
in equations (11)-(13) do not vanish, so we have no polaritonic modes. The reflection coefficient

= |E,|? /E? decreases monotonically with increasing w (R(w = 0) = 1) and the transmission
coefficient T' = |E,;|* /E2 has a monotonical increase to unity for w — co.
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3 Circular aperture and disk

We consider a two-dimensional plasma sheet with a circular aperture of radius a. In cilindrical
coordinates the displacement field can be written as

u—ul(p—a), (14)

where (z) = 1 for z > 0 and 0(z) = 0 for z < 0 is the step function. We use the Fourier transform
u(p, ) =Y e™u(p,m) (15)

where the summation extends over all integers m, as well as the decomposition|50]

1

r—r]

S e [ kg (ko) ) (16)
0

m

for the Coulomb potential. We compute the divergence and the gradient occuring in equation
(2) and notice that the resulting coupled integral equations for the components u, and u, imply
imu, = a% (puy). This relation arises from (curlu), = 0. We use this relation to get only one
integral equation for the component wu,(p, m). We leave aside the label ¢ and argument m and
denote this component simply by u(p). In the equation obeyed by function u(p) we perform a few
convenient integrations by parts and use the Bessel equation

2d2Jm 0J,,

5 Tig (= m) =0 (17)

to get
22 pu(p) = I3 K2k [ pdgf T (k) T ) V)~
(18)
—a?u(a) [§° kdk T (kp) T, (ka) — 5250

2mned

where ® = ®(p, m) is the corresponding Bessel-Fourier component of the external potential (Ey =
—grad®). Here it is convenient to introduce pu(p) = v(p) and get

av(p) = 57 R2dk [ p'dp! T (kp) T (ke Yo (')~
(19)
—av(a) [° kdkJy, (kp)J, (ka) — 522 .

2mned

We show below that this equation has no solution, because of the ultraviolet divergencies occurring
for k — oco. Indeed, we use a Bessel-Fourier decomposition of the form

vip) = [ kdk (k) (k) s v(k) = [ pdpn(kp)o(p) (20)

(and a similar one for the external potential). Equation (19) becomes

(~25+ %) (k) = .

J5e MAvo(X) [ka? [3 wdx T (kaz) Jm(Naz) + ay, (ka) Jm(Aa)] + 52 ®(k)

2mned

where we have used the change of variable p’ = ax. Here we use the inversion formulae[51]

(k) = / Cdedy (kaz)o(z) , v(z) = o /0 " kdkJy(kaz)o(k) (22)

0
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and get

2w? 1 1 m

=3 xdxJy, (kax)v(x) = %Jm(k:a)v(l) + o (k) ; (23)

we multiply both sides of this equation by kJ,,(kazx) and integrate with respect to k; equation
(23) leads to

2mned

2w?

_wgda2v(x) - Q_aU(

1) /Oookdwm(kaa;)J,;(ka) / kdkJy(kax)O(k) . (24)

27med
Making use of a well-known recurrence formula for the Bessel functions|[52], the integral involving
Jin equation (24) can be reduced to two integrals involving products J,,(kax)Jyx1 (ka). Such
integrals are computed in Refs. |53, 54|, with the aid of hypergeometric functions of argument 2.
For solving equation (24) we are interested in the limit z — 1. We get

im [ kdkJ,,(kaz)J., (ka) = —— Tim —" (25)

z—1.Jo ra?z—11— g2’

which is divergent. We conclude that equation (24) has no solution.

There exists another decomposition of the Coulomb potential ([50], p. 126),

=5 [ ke ) Konp) (26)

|r—r

where I, and K,, are the modified Bessel functions of order m, and p. = min(p, '), p» =
max(p, p'). Doing the same calculations as above, by using equation (26), we reach the same con-
clusion: there exist ultraviolet divergencies, which prevent any finite solution. A similar situation
holds for a circular disk.

For diffraction by the aperture we need a convenient decomposition of the "retarded" Coulomb
potential. Making use of equation (9) we get easily

o2/ +22
NaE
where k = (/w?/c? — k2. Using the well-known addition formula

em\z\

=i / kdkJo(kp) — (27)

k\/p + p/2 . 2pp cos (p (p Z J kp kp) zm(so_go’) , (28)
we get
ei% [r—r/| —+00 ) , 0o ein|z\
o S gimles) / kdkJy (kp) T (k) (29)
r—r = 0

We are not aware of a similar decomposition in terms of modified Bessel functions. We use the
decomposition given by equation (29) for computing the electromagnetic potentials A and ® given
by equation (3) and the electric field E which appears into equation (1). Introducing the notation

Floopt) = [ Kb ko) ) (30)

the equation of motion (1) can be written as

W 00 2 w? . 00 i
iﬂd = Jo Pldp'u, ( aia];/ + c_2f) +im [, dplusog_ﬁ + Frmea Eop
(31)

w? 00
nfw%dpuso = - fa Pldp upé)f/ + f dp Uy (Zm - mcz PP) f + QﬂmnedE(]ap ,
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where we have left aside the arguments of the functions in the integrals. We were not able to solve
these equations. The same situations holds for another decomposition|55]

+oo

TS il =) e =) / kT (kp) Hu (k') 9/ > p . (32)
0

W .
ezc\r r'| i

r—r/| 2

m=—0oQ

4 Infinite cylindrical hole and rod

We consider first an infinite circular cylindrical hole of radius a extending from z = —oo to
2z = 400. We use cylindrical coordinates p, ¢, z. We write the displacement field u as in equation
(14), and use the same Fourier transform given by equation (15). We proceed in the same way
as we did for the circular aperture above, compute the divergence of the displacement field (in
cylindrical coordinates) and the gradient occurring in equation (2), and note the occurence of
specific contributions arising from the boundary p = a. First, we use the decomposition|50|

1

r—r

= S [ ke 1, ) () (33)

m

where J,, is the Bessel function of the first kind and order m, z. = min(z, 2’), 2> = max(z, 2’).
Equation (2) gives three coupled integral equations for the components w, , u, , u,, and we can see
easily that they imply the relations

Ou,

= PE ; (34)

U
mMmu, = Uy + pa—p , TMU,

these relations arises from (curlu), = 0 and (curlu), = 0. We use these relations to get only one
integral equation for u,(p, m, 2); we denote this function simply by u(p, 2). After a few convenient
integrations by parts and using the Bessel equation (17), we get the following integral equation
for function u(p, z):

2 (w2~ wPpulp,2) = ? [§ kdk T, (kp) (k) [ 12 d=ua, )e -
(35)
_TpneEosﬁ(p> Z) '
Here, it is convenient to make a Fourier transform with respect to coordinate z. We get easily

(W — w)ulp, k) = & Eog(p, #) — & Eopla, k) g (36)
p) UL K) = 3pE0p\Ps ) = 37 E0p\&s K) =503 2aT(a) o

where 2
16) = || dhzs Jn(lip) 1, (ka) (37)

Making use of the well-known recurrence relations for the Bessel functions,|52| this integral can
be brought to a known integral[56]. We get

I(p) = gKm(Hp) Ln-1(ka) + L1 (ka)] = KK (kp) 1, (Ka) (38)

where [,,, and K, are the modified Bessel functions of degree m.

It folows that the bulk plasmons are given by w? = wf, and the surface plasmons are given by

w? = W) [1 — /{aKm(/@a)I;m(/@a)} . (39)
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This relation is symmetric under the transformation m — —m. In the limit ka < 1 we get

wi[l—l—@lnﬂ} , m=20

12

w? %wﬁ {1 — (”5)2 In %} ,m=1 . (40)

1 2 (fm)2
§wp[1+m} , m>1

Having known the displacement field u given by equations (34) and (36), and using equation (14),
we can compute the polarization potential

1
v — |

divu (41)

P,(r) = ne/dr'

and the total potential ® = @, + @y, in terms of the external potential @, (via the external field
Ey), getting thus the dielectric response. The result of this calculation is

Qi(p,p,2) = Po(p, p, 2)—

: (42)
_aw?’ Zm e’ f dKeZHZIm(Kp) wLS;::J(;:a);%Z;g’ZEL (ka)
for p < a (inside the hole) and
w2
ée(pa ¥, Z) = m[¢0(p’ ¥, Z)_
(43)

!
2 ime iKz kI, (ka)®Po(a,m,K)
awp Zm € f dl‘f;@ Km(/{p) wz—wg—kwgnaKm(na)I;n(na)]

for p > a (outside the hole). We can check that this potential and its derivatives 0®/0z and
0®/0p are continuous at the hole surface p = a, which means the continuity of the tangential
components of the electric field, but the normal component 9®/9dp is discontinuous, as expected.
For an external field along the axis of the hole, as well as for an external field along the radius, we
can check the continuity of the normal component of the electric displacement E; = ¢(w)E, |,=q
where e =1 — wf,/uﬂ is the dielectric function of a bulk ideal plasma. In this respect, we may say
that the so-called theory of "effective medium permittivity" holds. In addition, we may note the
occurrence of specific surface contributions to the dielectric response (the integrals in equations
(42) and (43)), which precludes in fact a proper definition for a conventional dielectric function.

Similar calculations can be performed for an infinite plasma rod. In this case, we get the surface
plasmons

w? = wf, [1 + ma[m(na)K;l(/{a)} , (44)
which in the limit ka < 1 reads
—sw? (ka)"In%  m =0 ?
2
et 14 mEe]  m =1 (45)
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The dielectric response reads

(I)z(pv 2 Z) = “;Zw—_zwg[q)(](pv 2 Z)_'_

/ (46)
W] T 7 [ A T () g )
p p m
for p < a and
Pe(p, :2) = Po(p, ¢, 2)+
(47)

!
2 imep ikz kI, (ka)®Po(a,m,K)
_I—awp Zm € f dre Km("{p) wz—wg—wgnaKm(ﬁa)I:n(ﬁa)

for p > a.

These plasmon modes given above can be called "cylindrical" plasmons. It is worth noting that
we cannot get the bulk plasma frequency w, in the limit a — 0, because of the surface charge
which is not vanishing in this limit. The results given in equations (39) and (44) coincide with
those given in Refs. [42, 44].

We can use the other decomposition ([50], p. 126)
12
r—r| =

$ / T k™o cos k(z — ) (kp<) Km(kps) (48)
— Jo

for the Coulomb potential and get the same results as those given by equations (39) and (44).

The diffraction of an electromagnetic field by an infinite cylindrical hole or rod can be treated in
the same manner as for a circular aperture (or disk), following the general procedure described in
Introduction. Unfortunately, we were not able to solve the resulting integral equations.

5 Finite cylindrical hole

We consider a circular cylindrical hole of radius a bored into a plasma slab of thickness d. The
slab extends over the region 0 < z < d. We use cylindrical coordinates p, ¢, 2. The displacement
field u can be written as

u— uff(z) - 6(z — )] 6(p — a) (49)

and use the same Fourier tranform given by equation (15). We compute the divergence of the
displacement field u and the gradient occurring in equation (2), and note again the occurence
of specific contributions arising from the boundaries z = 0, d and p = a. Now, we use first the
decomposition given by equation (48) ([50], p. 126)

Equation (2) gives three coupled integral equations for the components w, , u, , u,, and we can see
easily that they imply the relations

dug

= PE ; (50)

. ou, .
MU, = Uy, + pa—p , MU,
these relations arises from (curlu), = 0 and (curiu), = 0. We use these relations to get only one
integral equation for u,(p, m, 2); we denote this function simply by u(p, z). After a few convenient
integrations by parts and using the equation
Zyd*w  Ow

2 2
Z—2+Z——(Z —|—y)w—0 (5])
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for the modified Bessel functions w, we get the following integral equation for the function u(p, z):

i—g(wf, —w)pulp, 2) = a? [$° kdk [ d2'u(a, 2') cos k(z — 2) K (kp) I, (ka)+

+ [5° kdk [P dp' p? [u(p',0) sinkz — u(p,d) sin k(z — d)] Ky, (kp) L, (kp')+
(52)
+ Jo7 kdk [3° dp' " [u(p', 0) sinkz — u(p', d) sin k(z — d)] L (kp) K (kp')—

_ﬁEosﬁ(pa Z) )

where I (ka) is the derivative of the modified Bessel function with respect to its argument. This
equation relates the function u(p, z) to its values u(a, 2) ,u(p,0), u(p,d) on the boundaries. We
should particularize equation (52) to p = a,z = 0 and z = d. This way, we obtain a set of three
coupled integral eqautions, which, unfortunately, we were not able to solve. A similar situation
occurs for the decomposition given by equation (33), as well as for the diffracted field.

6 Discussion and conclusions

We used the equation of motion for matter polarization (elementary theory of classical dispersion)
and Kirchhoff radiation potentials to investigate plasmons, polaritons and diffracted electromag-
netic field in matter, especially in an ideal model of electronic jellium-like plasma. Typically,
this method leads to coupled integral equations for the components of the displacement (polariza-
tion) field. This integral-equation method was sought for long in studying the interaction of the
electromagnetic field with matter|47|. It is particularly interesting for structures with restricted
geometries and for giving support to the theory of the "effective medium permittivity".

We have applied herein this method to structures with cylindrical geometries. First, we have
computed the plasmon modes and the diffracted field for a two-dimensional plasma sheet. Next,
we have shown that unphysical ultraviolet divergencies occur for plasmons in an infinite plasma
sheet with a circular aperture (or a circular disk). We were not able to decouple the integral
equations for diffraction by an aperture (or a disk). Further on, we have computed the "cylindrical"
plasmons occurring in an infinite cylindrical hole and an infinite cylindrical rod. Unfortunately, we
were not able to solve the coupled integral equations for plasmons or for the diffraction problem
for a finite cylindrical hole, or the difracted field by an infinite cylindrical hole (or rod).

Acknowledgments. The authors are indebted to the members of the Laboratory of Theroretical
Physics at Magurele-Bucharest for many useful discussions.
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