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2 J. Theor. Phys.plasma slab[34℄, together with the re�eted, refrated and transmitted �eld, and obtained gener-alized Fresnel equations. Making use of the same method we re-derived Mie theory of di�rationby a metalli sphere[35℄, where we have stressed upon the role played by the "spherial" plas-mons, and alulated van der Waals-London and Casimir fores ating between two semi-in�nitebodies[36℄, as arising from the eletromagneti eigenmodes of matter interating with the eletro-magneti �eld. Interfae plasmons have also been derived in retangular geometries for variouspairs of bodies (metals and dieletris)[34℄.We attempt herein to extend this method to bodies with ylindrial geometries, fousing in par-tiular on the plasmon and polariton modes and the di�rated �eld. This problem has beentakled extensively in the past[37℄-[44℄, within various approximations. In partiular, di�rationof salar �elds by small holes or irular apertures in a metalli sreen have been investigated byapproximate methods[45, 46℄, under ertain boundary onditions. First, we derive the plasmonmodes for a two-dimensional plasma sheet (a sreen), and ompute the re�eted and transmittedeletromagneti �eld for a plane wave inident on the sheet. Next, we show that unphysial ultra-violet divergenies our for plasmons in a two-dimensional plasma sheet with a irular aperture,as well as for a disk. We were not able to solve the oupled integral equations for di�ration bya irular aperture (or a disk). We get exat solutions for "ylindrial" plasmons in an in�niteylindrial hole and an in�nite ylindrial rod. For a irular ylindrial hole bored into a plasmaslab of �nite thikness, as well as for a �nite ylindrial rod we were not able to solve the oupledintegral equations. The alulations are performed for an ideal plasma, but they an be extendedstraightforwardly to a dieletri, loss inluded.We adopt a simple model of an ideal jellium-like plasma onsisting of mobile harges −e with mass
M and onentration n moving in a uniform, rigid, neutralizing bakground of positive harges.This model is a onvenient representation for an ideal metal in the range of optial frequenies. Weintrodue a disturbane δn in the harge density given by δn = −ndivu, where u is a displaement�eld in the positions of the mobile harges. This representation is valid as long as Ku(K) ≪ 1,where u(K) is the Fourier transform of the displaement �eld u and K is the wavevetor. Thedisturbane of the harge density is given by ρ = endivu and the urrent density is given by
j = −enu̇. The displaement �eld is subjeted to the equation of motion

M ü = −eE − eE0 , (1)where E is the internal eletri �eld and E0 is an external eletri �eld. In the non-retarded limit(where the body size is muh smaller than the relevant eletromagneti wavelengths) the �eld Eis the Coulomb �eld, so equation (1) an be written as
M ü = ngrad

∫

dr′U(|r − r′|)divu(r′) − eE0 , (2)where U(r) = e2/r is the Coulomb energy. In the retarded regime the �eld E is given by E =
−1

c
∂A

∂t
−gradΦ, where A and Φ are the vetor and, respetively, salar eletromagneti potentials.They are by the well-known Kirhho� radiation formulae

A =
1

c

∫

dr′
j (r′, t − |r − r′| /c)

|r − r′| , Φ =
∫

dr′
ρ (r′, t − |r− r′| /c)

|r − r′| , (3)where c is the veloity of light.Making use of a temporal Fourier transform, equation (1) beomes
ω2u =

e

M
(E + E0) . (4)



J. Theor. Phys. 3It is easy to see, by making use of the Maxwell equation divE = 4πρ, that equation (4) gives thewell-known dieletri funtion ε = 1 − ω2
p/ω

2 for a bulk plasma, where ωp =
√

4πne2/M is theplasma frequeny. The internal (polarizing) �eld is given by E = 4πneu (equal to −4πP, where
P is the polarization). Similarly, the equation of motion (4) and the Maxwell equation givenabove lead to the well-known ondutivity σ = ine2/Mω. In this treatment we leave aside themagnetization, relativisti e�ets and dissipation.Our general approah is to solve the integral equation (2) in the non-retarded limit in order to getthe plasmon modes. Similarly, we introdue the displaement �eld u in equation (3) (via hargeand urrent density) and use equation of motion (1) for expressing the eletri �eld in terms ofthe displaement �eld. This way, we get integral equations (in general oupled with respet to theomponents of the displaement �eld), whih we solve in order to get the eletri �eld inside thebody (i.e., the refrated �eld). The eigenmodes of these equations give the polaritons. Havingknown the displaement �eld u, we use again eqation (3) in order to alulate the �eld outside thebody (i.e., re�eted, transmitted or di�rated �eld). We note that the use of integral equations intreating the eletromagneti �eld interating with matter was previously indiated in onnetionwith the so-alled Ewald-Oseen extintion theorem[47℄.We an add to equation (1) terms like −Mω2

0u − Mγu̇, where ω0 is a harateristi frequenyand γ is a dissipation parameter. This amounts to replaing ω2 in equation (4) by ω2 − ω2
0 + iγω.We an view ωp, ω0 and γ as free parameters, thus being able to simulate various models ofmatter. For ω0 = γ = 0 we get the well-known dieletri funtion of an ideal plasma; if ω0 = 0 wehave the dieletri funtion of the optial properties of simple metals for ω ≫ γ (Drude model),and the dieletri funtion orresponding to the stati (or quasi-stati) urrents in metals for

ω ≪ γ; for ω0 ≫ ωp we have a dieletri funtion of usual dieletris with loss; and so on. Thedieletri funtion obtained by suh an equation of motion is well known in the elementary theoryof dispersion[48℄, and it provides support for the theory of the "e�etive medium permittivity".Herein, we limit ourselves to the equation of motion (1) for an ideal plasma, and apply it toylindrial geometries.2 Two-dimensional plasma sheetWe onsider an in�nite two-dimensional plasma sheet in the (x, y)-plane (z = 0) with a surfaeharge onentration ns. For reasons of dimensionality we introdue a small distane d and expressthe surfae onentration as ns = nd, where n is the bulk harge onentration. The displaement�eld u lies in the (x, y)-plane, and we denote the position vetor by r = (x, y). We use Fouriertransforms of the form
u(r, t) =

∑

k

∫

dωu(kω)eikre−iωt (5)and the well-known Fourier deomposition
1

r
=

∑

k

2π

k
eikr (6)for the Coulomb potential. We use a similar Fourier transform E0(kω) for the external �eld

E0(r, t). For simpliity we often leave aside the arguments k, ω of the Fourier transforms.The Fourier transform of equation (2) gives
Mω2u =

2πne2d

k
(ku)k + eE0 , (7)
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u =

ω2
ped

kMω2
· kE0

2ω2 − ω2
pkd

k +
e

Mω2
E0 , (8)where ωp =

√

4πne2/M is the plasma frequeny. We an see the well-known longitudinal (u ∼ k)plasmon mode ω = ωp

√

kd/2. A plasma slab of thikness d has two surfae-plasmon branhesgiven[34℄ by ω2 = ω2
p(1±e−kd)/2; one of them redues to ωp

√

kd/2 in the limit kd ≪ 1. The otherbranh, whih redues to ωp, has no orrespondent for the plasma sheet.In the retarded regime we onsider an inident plane wave E0e
ikreiκze−iωt, with frequeny ω = cKand wavevetor K = (k, κ) (satisfying the transversality ondition KE0 = 0). For the "retarded"Coulomb potential we use the well-known deomposition[49℄

ei ω

c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z| , (9)where κ =

√

ω2/c2 − k2. From equation of motion (1) and the retarded potentials given byequation (3) we get
Mω2u =

2πine2d

κ
(ku)k − 2πine2dω2

c2κ
u + eE0 . (10)It is onvenient to introdue longitudinal and transverse omponents through u1 = ku/k and,respetively, u2 = k⊥u/k, where k⊥ is a vetor perpendiular to the vetor k, kk⊥ = 0, and of thesame magnitude k. Similarly, we use notations E01 = kE0/k and E02 = k⊥E0/k. Then, equation(10) gives

u1 = 2e
M

· E01

2ω2+iω2
pκd

,

u2 = 2eκ
M

· E02

2κω2+iω2
pK2d

.
(11)We use these omponents of the displaement �eld in equation (3) for alulating the re�eted�eld Er (region z < 0) and the transmitted �eld Et (region z > 0). The results of this alulationare

Er1,3 = − iω2
pκd

2ω2+iω2
pκd

E01,3e
−iκz ,

Er2 = − iω2
pK2d

2κω2+iω2
pK2d

E02e
−iκz

(12)and
Et1,3 = 2ω2

2ω2+iω2
pκd

E01,3e
iκz ,

Et2 = 2ω2κ
2κω2+iω2

pK2d
E02e

iκz ,

(13)where we have preserved expliitly only the e±iκz-dependene. The omponent denoted by label
3 is direted along the z-axis. These �elds annot be obtained as the limiting ase d → 0 of aplasma slab of thikness d[34℄.The (total) �eld inside the sheet is given by equation (4) as Etot = Mω2u/e. It is worth noting thatthis �eld is equal to the transmitted �eld Et (omponents 1 and 2). We an hek the ontinuityof the �elds at z = 0 in the form E0 + Er = Et. All the �elds given above are propagating �elds(κ is real), there is no damped regime, or a total re�etion, et, as expeted. The denominatorsin equations (11)-(13) do not vanish, so we have no polaritoni modes. The re�etion oe�ient
R = |Er|2 /E2

0 dereases monotonially with inreasing ω (R(ω = 0) = 1) and the transmissionoe�ient T = |Et|2 /E2
0 has a monotonial inrease to unity for ω → ∞.



J. Theor. Phys. 53 Cirular aperture and diskWe onsider a two-dimensional plasma sheet with a irular aperture of radius a. In ilindrialoordinates the displaement �eld an be written as
u → uθ(ρ − a) , (14)where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtion. We use the Fourier transform

u(ρ, ϕ) =
∑

m

eimϕu(ρ, m) , (15)where the summation extends over all integers m, as well as the deomposition[50℄
1

|r− r′| =
∑

m

eim(ϕ−ϕ′)
∫ ∞

0
dkJm(kρ)Jm(kρ′) (16)for the Coulomb potential. We ompute the divergene and the gradient ouring in equation(2) and notie that the resulting oupled integral equations for the omponents uρ and uϕ imply

imuρ = ∂
∂ρ

(ρuϕ). This relation arises from (curlu)ρ = 0. We use this relation to get only oneintegral equation for the omponent uϕ(ρ, m). We leave aside the label ϕ and argument m anddenote this omponent simply by u(ρ). In the equation obeyed by funtion u(ρ) we perform a fewonvenient integrations by parts and use the Bessel equation
z2 d2Jm

dz2
+ z

∂Jm

∂z
+ (z2 − m2)Jm = 0 (17)to get

2ω2

ω2
pd

ρu(ρ) =
∫ ∞
0 k2dk

∫ ∞
a ρ′2dρ′Jm(kρ)Jm(kρ′)u(ρ′)−

−a2u(a)
∫∞
0 kdkJm(kρ)J

′

m(ka) − im
2πned

Φ ,

(18)where Φ = Φ(ρ, m) is the orresponding Bessel-Fourier omponent of the external potential (E0 =
−gradΦ). Here it is onvenient to introdue ρu(ρ) = v(ρ) and get

2ω2

ω2
pd

v(ρ) =
∫ ∞
0 k2dk

∫ ∞
a ρ′dρ′Jm(kρ)Jm(kρ′)v(ρ′)−

−av(a)
∫ ∞
0 kdkJm(kρ)J

′

m(ka) − im
2πned

Φ .

(19)We show below that this equation has no solution, beause of the ultraviolet divergenies ourringfor k → ∞. Indeed, we use a Bessel-Fourier deomposition of the form
v(ρ) =

∫ ∞

0
kdkJm(kρ)v(k) , v(k) =

∫ ∞

0
ρdρJm(kρ)v(ρ) (20)(and a similar one for the external potential). Equation (19) beomes

(

−2ω2

ω2
pd

+ k
)

v(k) =

∫ ∞
0 λdλv(λ)

[

ka2
∫ 1
0 xdxJm(kax)Jm(λax) + aJ

′

m(ka)Jm(λa)
]

+ im
2πned

Φ(k) ,

(21)where we have used the hange of variable ρ′ = ax. Here we use the inversion formulae[51℄
v(k) =

∫ 1

0
xdxJm(kax)v(x) , v(x) = a2

∫ ∞

0
kdkJm(kax)v(k) (22)
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−2ω2

ω2
pd

∫ 1

0
xdxJm(kax)v(x) =

1

2a
J

′

m(ka)v(1) +
im

2πned
Φ(k) ; (23)we multiply both sides of this equation by kJm(kax) and integrate with respet to k; equation(23) leads to

− 2ω2

ω2
pda2

v(x) =
1

2a
v(1)

∫ ∞

0
kdkJm(kax)J

′

m(ka) +
im

2πned

∫ ∞

0
kdkJm(kax)Φ(k) . (24)Making use of a well-known reurrene formula for the Bessel funtions[52℄, the integral involving

J
′

m in equation (24) an be redued to two integrals involving produts Jm(kax)Jm±1(ka). Suhintegrals are omputed in Refs. [53, 54℄, with the aid of hypergeometri funtions of argument x2.For solving equation (24) we are interested in the limit x → 1. We get
lim
x→1

∫ ∞

0
kdkJm(kax)J

′

m(ka) = − 2

πa2
lim
x→1

x

1 − x2
, (25)whih is divergent. We onlude that equation (24) has no solution.There exists another deomposition of the Coulomb potential ([50℄, p. 126),

1

|r − r′| =
2

π

∑

m

∫ ∞

0
dkeim(ϕ−ϕ′)Im(kρ<)Km(kρ>) , (26)where Im and Km are the modi�ed Bessel funtions of order m, and ρ< = min(ρ, ρ′), ρ> =

max(ρ, ρ′). Doing the same alulations as above, by using equation (26), we reah the same on-lusion: there exist ultraviolet divergenies, whih prevent any �nite solution. A similar situationholds for a irular disk.For di�ration by the aperture we need a onvenient deomposition of the "retarded" Coulombpotential. Making use of equation (9) we get easily
ei ω

c

√
ρ2+z2

√
ρ2 + z2

= i
∫ ∞

0
kdkJ0(kρ)

eiκ|z|

κ
, (27)where κ =

√

ω2/c2 − k2. Using the well-known addition formula
J0(k

√

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′)) =
+∞
∑

m=−∞
Jm(kρ)Jm(kρ′)eim(ϕ−ϕ′) , (28)we get

ei ω

c
|r−r

′|

|r − r′| = i
+∞
∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0
kdkJm(kρ)Jm(kρ′)

eiκ|z|

κ
. (29)We are not aware of a similar deomposition in terms of modi�ed Bessel funtions. We use thedeomposition given by equation (29) for omputing the eletromagneti potentials A and Φ givenby equation (3) and the eletri �eld E whih appears into equation (1). Introduing the notation

f(ρ, ρ′) =
∫ ∞

0
kdkJm(kρ)Jm(kρ′)

1

κ
, (30)the equation of motion (1) an be written as

2iω2

ω2
pd

uρ =
∫ ∞
a ρ′dρ′uρ

(

− ∂2f
∂ρ∂ρ′

+ ω2

c2
f

)

+ im
∫ ∞
a dρ′uϕ

∂f
∂ρ

+ i
2πned

E0ρ ,

2ω2

mω2
pd

ρuϕ = − ∫ ∞
a ρ′dρ′uρ

∂f
∂ρ′

+
∫ ∞
a dρ′uϕ

(

im − iω2

mc2
ρρ′

)

f + ρ
2πmned

E0ϕ ,

(31)



J. Theor. Phys. 7where we have left aside the arguments of the funtions in the integrals. We were not able to solvethese equations. The same situations holds for another deomposition[55℄
ei ω

c
|r−r

′|

|r − r′| =
i

2

+∞
∑

m=−∞
eim(ϕ′−ϕ)eiκ(z′−z)

∫ ∞

0
κdκJm(kρ)Hm(kρ′) , ρ′ > ρ . (32)4 In�nite ylindrial hole and rodWe onsider �rst an in�nite irular ylindrial hole of radius a extending from z = −∞ to

z = +∞. We use ylindrial oordinates ρ , ϕ , z. We write the displaement �eld u as in equation(14), and use the same Fourier transform given by equation (15). We proeed in the same wayas we did for the irular aperture above, ompute the divergene of the displaement �eld (inylindrial oordinates) and the gradient ourring in equation (2), and note the ourene ofspei� ontributions arising from the boundary ρ = a. First, we use the deomposition[50℄
1

|r − r′| =
∑

m

eim(ϕ−ϕ′)
∫ ∞

0
dke−k(z>−z<)Jm(kρ)Jm(kρ′) , (33)where Jm is the Bessel funtion of the �rst kind and order m, z< = min(z, z′), z> = max(z, z′).Equation (2) gives three oupled integral equations for the omponents uρ , uϕ , uz, and we an seeeasily that they imply the relations

imuρ = uϕ + ρ
∂uϕ

∂ρ
, imuz = ρ

∂uϕ

∂z
; (34)these relations arises from (curlu)ρ = 0 and (curlu)z = 0. We use these relations to get only oneintegral equation for uϕ(ρ, m, z); we denote this funtion simply by u(ρ, z). After a few onvenientintegrations by parts and using the Bessel equation (17), we get the following integral equationfor funtion u(ρ, z):

2
ω2

p

(ω2
p − ω2)ρu(ρ, z) = a2

∫ ∞
0 kdkJm(kρ)J

′

m(ka)
∫ +∞
−∞ dz′u(a, z′)e−k|z−z′|−

− ρ
2πne

E0ϕ(ρ, z) .

(35)Here, it is onvenient to make a Fourier transform with respet to oordinate z. We get easily
(ω2 − ω2

p)u(ρ, κ) = e
M

E0ϕ(ρ, κ) − e
M

E0ϕ(a, κ)
ω2

paI(ρ)

ω2−ω2
p+ω2

paI(a)
, (36)where

I(ρ) =
∫ ∞

0
dk

k2

k2 + κ2
Jm(kρ)J

′

m(ka) . (37)Making use of the well-known reurrene relations for the Bessel funtions,[52℄ this integral anbe brought to a known integral[56℄. We get
I(ρ) =

κ

2
Km(κρ) [Im−1(κa) + Im+1(κa)] = κKm(κρ)I

′

m(κa) , (38)where Im and Km are the modi�ed Bessel funtions of degree m.It folows that the bulk plasmons are given by ω2 = ω2
p and the surfae plasmons are given by

ω2 = ω2
p

[

1 − κaKm(κa)I
′

m(κa)
]

. (39)



8 J. Theor. Phys.This relation is symmetri under the transformation m → −m. In the limit κa ≪ 1 we get
ω2 ≃







































ω2
p

[

1 + (κa)2

2
ln κa

2

]

, m = 0

1
2
ω2

p

[

1 − (κa)2

2
ln κa

2

]

, m = 1

1
2
ω2

p

[

1 + (κa)2

2m(m2−1)

]

, m > 1

. (40)
Having known the displaement �eld u given by equations (34) and (36), and using equation (14),we an ompute the polarization potential

Φp(r) = ne
∫

dr′
1

|r − r′|divu (41)and the total potential Φ = Φp + Φ0, in terms of the external potential Φ0 (via the external �eld
E0), getting thus the dieletri response. The result of this alulation is

Φi(ρ, ϕ, z) = Φ0(ρ, ϕ, z)−

−aω2
p

∑

m eimϕ
∫

dκeiκzIm(κρ) κK
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p+ω2

pκaKm(κa)I′m(κa)

(42)for ρ < a (inside the hole) and
Φe(ρ, ϕ, z) = ω2

ω2−ω2
p

[Φ0(ρ, ϕ, z)−

−aω2
p

∑

m eimϕ
∫

dκeiκzKm(κρ) κI
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p+ω2

pκaKm(κa)I′m(κa)
]

(43)for ρ > a (outside the hole). We an hek that this potential and its derivatives ∂Φ/∂z and
∂Φ/∂ρ are ontinuous at the hole surfae ρ = a, whih means the ontinuity of the tangentialomponents of the eletri �eld, but the normal omponent ∂Φ/∂ρ is disontinuous, as expeted.For an external �eld along the axis of the hole, as well as for an external �eld along the radius, wean hek the ontinuity of the normal omponent of the eletri displaement Ei = ε(ω)Ee |ρ=awhere ε = 1− ω2

p/ω
2 is the dieletri funtion of a bulk ideal plasma. In this respet, we may saythat the so-alled theory of "e�etive medium permittivity" holds. In addition, we may note theourrene of spei� surfae ontributions to the dieletri response (the integrals in equations(42) and (43)), whih preludes in fat a proper de�nition for a onventional dieletri funtion.Similar alulations an be performed for an in�nite plasma rod. In this ase, we get the surfaeplasmons

ω2 = ω2
p

[

1 + κaIm(κa)K
′

m(κa)
]

, (44)whih in the limit κa ≪ 1 reads
ω2 ≃







































−1
2
ω2

p (κa)2 ln κa
2

, m = 0

1
2
ω2

p

[

1 + (κa)2

2
ln κa

2

]

, m = 1

1
2
ω2

p

[

1 − (κa)2

2m(m2−1)

]

, m > 1

2

. (45)
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Φi(ρ, ϕ, z) = ω2

ω2−ω2
p

[Φ0(ρ, ϕ, z)+

+aω2
p

∑

m eimϕ
∫

dκeiκzIm(κρ) κK
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p−ω2

pκaIm(κa)K ′
m(κa)

]

(46)for ρ < a and
Φe(ρ, ϕ, z) = Φ0(ρ, ϕ, z)+

+aω2
p

∑

m eimϕ
∫

dκeiκzKm(κρ) κI
′

m(κa)Φ0(a,m,κ)

ω2−ω2
p−ω2

pκaKm(κa)I′m(κa)

(47)for ρ > a.These plasmon modes given above an be alled "ylindrial" plasmons. It is worth noting thatwe annot get the bulk plasma frequeny ωp in the limit a → 0, beause of the surfae hargewhih is not vanishing in this limit. The results given in equations (39) and (44) oinide withthose given in Refs. [42, 44℄.We an use the other deomposition ([50℄, p. 126)
1

|r − r′| =
2

π

∑

m

∫ ∞

0
dkeim(ϕ−ϕ′) cos k(z − z′)Im(kρ<)Km(kρ>) (48)for the Coulomb potential and get the same results as those given by equations (39) and (44).The di�ration of an eletromagneti �eld by an in�nite ylindrial hole or rod an be treated inthe same manner as for a irular aperture (or disk), following the general proedure desribed inIntrodution. Unfortunately, we were not able to solve the resulting integral equations.5 Finite ylindrial holeWe onsider a irular ylindrial hole of radius a bored into a plasma slab of thikness d. Theslab extends over the region 0 < z < d. We use ylindrial oordinates ρ , ϕ , z. The displaement�eld u an be written as

u → u [θ(z) − θ(z − d)] θ(ρ − a) (49)and use the same Fourier tranform given by equation (15). We ompute the divergene of thedisplaement �eld u and the gradient ourring in equation (2), and note again the oureneof spei� ontributions arising from the boundaries z = 0, d and ρ = a. Now, we use �rst thedeomposition given by equation (48) ([50℄, p. 126)Equation (2) gives three oupled integral equations for the omponents uρ , uϕ , uz, and we an seeeasily that they imply the relations
imuρ = uϕ + ρ

∂uϕ

∂ρ
, imuz = ρ

∂uϕ

∂z
; (50)these relations arises from (curlu)ρ = 0 and (curlu)z = 0. We use these relations to get only oneintegral equation for uϕ(ρ, m, z); we denote this funtion simply by u(ρ, z). After a few onvenientintegrations by parts and using the equation

z2 d2w

dz2
+ z

∂w

∂z
− (z2 + ν2)w = 0 (51)
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2π
ω2

p

(ω2
p − ω2)ρu(ρ, z) = a2

∫ ∞
0 kdk

∫ d
0 dz′u(a, z′) cos k(z − z′)Km(kρ)I

′

m(ka)+

+
∫∞
0 kdk

∫ ρ
a dρ′ρ′2 [u(ρ′, 0) sin kz − u(ρ′, d) sin k(z − d)] Km(kρ)Im(kρ′)+

+
∫ ∞
0 kdk

∫ ∞
ρ dρ′ρ′2 [u(ρ′, 0) sin kz − u(ρ′, d) sin k(z − d)] Im(kρ)Km(kρ′)−

− 1
2ne

E0ϕ(ρ, z) ,

(52)
where I

′

m(ka) is the derivative of the modi�ed Bessel funtion with respet to its argument. Thisequation relates the funtion u(ρ, z) to its values u(a, z) , u(ρ, 0), u(ρ, d) on the boundaries. Weshould partiularize equation (52) to ρ = a , z = 0 and z = d. This way, we obtain a set of threeoupled integral eqautions, whih, unfortunately, we were not able to solve. A similar situationours for the deomposition given by equation (33), as well as for the di�rated �eld.6 Disussion and onlusionsWe used the equation of motion for matter polarization (elementary theory of lassial dispersion)and Kirhho� radiation potentials to investigate plasmons, polaritons and di�rated eletromag-neti �eld in matter, espeially in an ideal model of eletroni jellium-like plasma. Typially,this method leads to oupled integral equations for the omponents of the displaement (polariza-tion) �eld. This integral-equation method was sought for long in studying the interation of theeletromagneti �eld with matter[47℄. It is partiularly interesting for strutures with restritedgeometries and for giving support to the theory of the "e�etive medium permittivity".We have applied herein this method to strutures with ylindrial geometries. First, we haveomputed the plasmon modes and the di�rated �eld for a two-dimensional plasma sheet. Next,we have shown that unphysial ultraviolet divergenies our for plasmons in an in�nite plasmasheet with a irular aperture (or a irular disk). We were not able to deouple the integralequations for di�ration by an aperture (or a disk). Further on, we have omputed the "ylindrial"plasmons ourring in an in�nite ylindrial hole and an in�nite ylindrial rod. Unfortunately, wewere not able to solve the oupled integral equations for plasmons or for the di�ration problemfor a �nite ylindrial hole, or the difrated �eld by an in�nite ylindrial hole (or rod).Aknowledgments. The authors are indebted to the members of the Laboratory of TheroretialPhysis at Magurele-Buharest for many useful disussions.Referenes[1℄ H. Raether, Surfae Plasmons on Smooth and Rough Surfaes and on Gratings (Springer,Berlin, 1988).[2℄ S. A. Maier, Plasmonis: Fundamentals and Appliations (Springer, NY, 2007).[3℄ M. L. Brongersma and P. G. Kik, Surfae Plasmons Nanophotonis (Springer, Dordreht,2007).[4℄ S. Raimes, "The theory of plasma osillations in metals," Rep. Progr. Phys. 20 1-37 (1957).
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