
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 183 (2009)ISSN 1453-4428Plasmons and di�ration for a irular aperture and a irular diskM. ApostolDepartment of Theoretial Physis, Institute of Atomi Physis,Magurele-Buharest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.ro1 IntrodutionIn a previous paper[1℄ we reported on some negative, unphysial results onerning plasmons,polaritons and di�ration in strutures with ylindrial geometries. In partiular, we enounteredultraviolet divergenies for a irular aperture and a irular disk, and plasmons depending on theboundary onditions imposed at in�nity for an in�nite ylindrial hole and an in�nite ylindrialrod. We show in this paper that a natural wavevetor uto� ours in these strutures, as given by
ka ≪ 1, where k is the in-plane wavevetor of the motion and a is the radius of the hole (disk). Wefous herein upon the irular aperture and the irular disk. We show that this wavevetor uto�allows an approximate method of omputation for plasmons and for the di�rated �eld. We allthis approximation the di�ration limit. The interest in plasmons and polaritons in strutures withspeial, restrited geometries stems from the role played by these motion modes of the polarizationin the di�ration problem. There were several attempts to approah this problem in the past forstrutures with ylindrial geometry.[2℄-[9℄ In partiular, we note the approximate treatment ofthe di�ration of a salar �eld by a irular aperture and a irular disk,[10, 11℄ where, however,the polarization motion has been left aside.The method employed here is based on the equation of motion of the eletri polarizability andthe radiation formulae of the Kirhho� eletromagneti potentials. This method, whih leadstypially to oupled integral equations, was applied to a semi-in�nite spae,[12℄-[14℄ a slab of �nitethikness,[15℄ a sphere (where Mie's theory has been re-derived)[16℄ and to the eletromagnetieigenmodes of matter whih led to the alulation of van der Waals-London and Casimir fores.[17℄Usually, we are doing the alulations for an ideal model of jellium-like plasma, but the method isreadily appliable to more realisti strutures, like dieletris, loss inluded. The method ombinesthe elementary theory of dispersion[18℄ with the eletromagneti radiation formulae, and it waslong sought in onnetion with the so-alled Ewald-Osen extintion theorem.[19℄2 Plasmons in a irular aperture and a irular diskWe onsider an in�nite, two-dimensional, plane metalli sreen (a sheet) with a riular apertureof radius a. We assume a simple jellium-like model onsisting of mobile harges −e, mass M and(super�ial) density ns moving in a rigid, neutralizing bakground of positive harges. For reasonsof dimensionality we introdue a length d, muh longer than the inter-atomi distanes but muhshorter than the relevant eletromagneti wavelengths, and write the harge density as ns = nd,



2 J. Theor. Phys.where n is the bulk density. We represent the density disturbanes by δn = −ndivu, where u isa displaement �eld in the positions of the harges. This representation is valid for ku(k) ≪ 1,where k is the in-plane wavevetor and u(k) is the Fourier transform of the displaement �eld.Under these irumstanes, in the non-retarded (Coulomb) limit, the �eld u obeys the equationof motion
M ü = e2nsgrad

∫

dr′
1

|r − r′|divu(r′) − eE0 , (1)where E0 is an external eletri �eld.For the irular aperture we write the displaement �eld as
u → uθ(r − a) , (2)where θ(z) = 1 for z > 1 and θ(z) = 0 for z < 0 is the step funtion. We use the Fourier transform

u(r, t) =
∑

k

∫

dωu(kω)eikre−iωt (3)for the funtion u in the rhs of equation (1). Usually, we leave aside the argument ω in the Fouriertransforms, for simpliity. Similarly, we use the well-known Fourier deomposition
1

|r − r′| =
∑

k

2π

k
eik(r−r′) (4)for the Coulomb potential.Making use of equation (2) the divergene entering equation (1) beomes

divu → divu · θ(r − a) +
ua

a
δ(r − a) , (5)where a is the vetor od magnitue a and the same orientation as the position vetor r. We ansee in equation (5) the ourrene of spei� ontribution arising from the rim of the aperture.Let us introdue the notation

Φ(r) =
∫

dr′
1

|r − r′|divu(r′) . (6)Making use of equation (5) and the Fourier transforms we an write
Φ(r) =

∑

kk′
2π
k

[ik′u(k′)] eikr
∫

dr′ei(k′−k)r′θ(r′ − a)+

+
∑

kk′
2π
k

eikr
∫

dr′ u(k′)a′

a
ei(k′−k)r′δ(r′ − a) ,

(7)where the vetor a′ of magnitude a has the same orientation as the position vetor r′. The �rstintegral in equation (7) an suessively be transformed as
∫

dr′eiqr′θ(r′ − a) =
∫∞
a dr′r′

∫

dϕeiqr cos ϕ = 2π
∫∞
a dr′r′J0(qr

′) =

= 2π
∫∞
0 dr′r′J0(qr

′) − πa2 = δkk′ − πa2 ,
(8)where q = k′−k and J0 is the Bessel funtion of the �rst kind and zeroth order. In equation (8) wehave used a series expansion in powers of a (atually aq) and restrited to the �rst non-vanishing



J. Theor. Phys. 3term (seond-order), as a onsequene of our general assumption ak ≪ 1. A similar expansion isused for the exponential
ei(k′−k)r′ = 1 + i(k′ − k)r′ = ... (9)in the seond integral entering equation (7), and we an see easily that the �rst-order term (1)gives a vanishing ontribution to the angular integration in equation (7). Consequently, we areleft with

Φ(r) =
∑

k
2π
k

[iku(k)] eikr − πa2∑

kk′
2π
k

[ik′u(k′)] eikr+

+
∑

kk′
2π
k

eikr
∫

dϕ′ [u(k′)a′] [i(k′ − k)a′] .
(10)Now, it is easy to see, by taking the gradient of Φ(r) and using the Fourier transform of theequation of motion (1), that u(k) is direted along the wavevetor k, as for longitudinal waves.We take therefore the projetion of the equation of motion along the wavevetor k and denotethis omponent of u by u. The equation of motion beomes

(

2ω2

ω2
p
d
− k

)

u(k) = −πa2∑

k′ k′u(k′)+

+
∑

k′

∫

dϕ′u(k′)k′a′

k′ [(k′ − k)a′] + 1
2πned

E0(k) ,

(11)where ωp =
√

4πne2/M is the (bulk) plasma frequeny and E0(k) is the Fourier omponent ofthe external �eld direted along the wavevetor k. In equation (11) we may take ϕ′ as the anglebetween a′ and k. We introdue also the angle θ between k′ and k, so that the angle between k′and a′ is θ − ϕ′. Under these irumstanes, the angular integration over ϕ′ an be performed inequation (11), so we get
(

2ω2

ω2
pd

− k

)

u(k) = −πa2k
∑

k′

cos θu(k′) +
1

2πned
E0(k) . (12)Here we perform a Fourier transform of the form

u(k) =
∑

m

eimθ1um(k) , (13)and a similar one for u(k′) with the angle θ2. With these notations θ2 = θ1 + θ. We use a similarFourier transform for the external �eld E0(k), and get
(

2ω2

ω2
pd

− k

)

u±1(k) = −πa2k

2

∫

dk′k′u±1(k
′) +

1

2πned
E0±1(k) (14)and

(

2ω2

ω2
pd

− k

)

um(k) =
1

2πned
E0m(k) , m 6= ±1 . (15)We an see that only the omponents m = ±1 are a�eted by the aperture within this approxi-mation. For the other omponents, the plasma frequeny

ω = ωp

√

dk

2
, (16)as obtained from equation (15), is the same as for an in�nite, ontinuous sheet without anyaperture.



4 J. Theor. Phys.Equations (14) and (15) allow to ompute the dieletri response to an external �eld E0. We limitourselves here to give the eigenmodes orresponding to the dispersion equation
1 = −πa2

2

∫

dk
k2

2ω2

ω2
p
d
− k

, (17)where the integration is performed up to a ertain uto� k0. Sine the plasmons should remainunhanged in the limit k → 0 irrespetive of the presene of the aperture, and their dispersionrelation should be analytial in k, we look for a solution 2ω2

ω2
p
d
− k = bk2 of equation (17). We getimmediately b = −πa2k0/2 and the dispersion relation given by

ω2 = ω2
p

dk

2

(

1 − πa2k0

2
k

)

; (18)for ak0 = 1 it reads
ω2 = ω2

p

dk

2

(

1 − π

2
ak
)

. (19)Similar alulations for a irular disk leads to
ω2 = ω2

p

πdak2

4
. (20)3 Di�ration by a irular aperture and a irular diskIn the retarded regime the displaement �eld u obeys the equation of motion

M ü = −e (E + E0) , (21)where E is the polarization �eld reated by the moving harges. Equation (21) is restrited tothe sreen with the irular aperture, or to the irular disk. We assume an inident plane waveof the form E0e
ikreiκze−iωt, propagating with the wavevetor K = (k, κ) and frequeny ω = cK,where ω is the veloity of light. It is onvenient to introdue the vetor k⊥ perpendiular to k,

k⊥k = 0, and of the same magnitude k. We use notations E01 = kE0/k and E02 = k⊥E0/k forthe projetions of the external �eld onto these vetors, and impose the transversality ondition
KE0 = kE01 +κE03 = 0, where E03is the omponent of the external �eld along the z-axis. We usesimilar notations u1 = ku/k and u2 = k⊥u/k for the displaement �eld u and the polarization�eld E.The polarization �eld E is given by E = −1

c
∂A
∂t

− gradΦ , where
A =

1

c

∫

dR′ j (R′, t − |R − R′| /c)
|R −R′| , Φ =

∫

dR′ρ (R′, t − |R− R′| /c)
|R −R′| (22)are the retarded Kirhho� potentials, R = (r, z) and R′ = (r′, 0). The urent and harge densitiesare given by j = −enu̇ and, respetively, ρ = endivu, where the displaement �eld is given byequation (2). We use also the Fourier representation[20℄

ei ω

c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z| (23)for the "retarded" Coulomb potential. We perform the Fourier transform given by equation (3)and apply the same approximation ka ≪ 1 as desribed above for plasmons. After performing



J. Theor. Phys. 5the angular integral with respet to ϕ′ as in equation (10) and rearanging the terms we get twooupled integral equations
(

ω2 + 1
2
iω2

pdκ
)

u1(k) = 1
2
iπa2ω2

pdκ
∑

k′ [cos θu1(k
′) − sin θu2(k

′)] + e
M

E01 ,

ω2

(

1 +
iω2

p
d

2c2κ

)

u2(k) =
iπa2ω2ω2

p
d

2c2κ

∑

k′ [cos θu2(k
′) + sin θu1(k

′)] + e
M

E02 ,
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