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Abstract

A few types of errors produced by defects in coils are estimated for the magnetic field in
the accelerator magnets.

The circular, almost constant magnetic field B created by a toroidal magnet is affected by the
defective field due to small interruptions in the coil. The total field can be represented as

B(θ) = B +
M∑
i=1

b(θ − θi) , (1)

where M is the number of interruptions (and of regular coils) and b(θ − θi) is the defective
contribution of an interruption in the coil placed at θi. The mean square deviation of B(θ) is
given by

(∆B)2 = B1 −B2 , (2)

where

B1 =
1

2π

∫
dθ ·

〈[
M∑
i=1

b(θ − θi)

]2〉
(3)

and

B2 =

[
1

2π

∫
dθ ·

〈
M∑
i=1

b(θ − θi)

〉]2

, (4)

〈...〉 denoting the average over the distribution of θi. Making use of the Fourier representation

b(θ) =
1

2π

∑
n

bne
inθ (5)

the mean defective field is readily computed as

1
2π

∫
dθ ·

〈∑M
i=1 b(θ − θi)

〉
= 1

2π

∑
n bn · 1

2π

∫
dθeinθ ·∑M

i=1

〈
e−inθi

〉
=

= Mb0/2π = M
2π

∫
dθ · b(θ) .

(6)

Since the interruptions are small the integral in (6) can be approximated by b∆θ = b∆l/R, where
∆l is the length of the interruption and R is the torus radius. We obtain therefore

1

2π

∫
dθ ·

〈
M∑
i=1

b(θ − θi)

〉
= Mb

∆l

L
, (7)
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where L is the length of the torus. In addition, we can also use the estimation b/B = −∆l/L, so
that

B2 = B2 (∆l/L)4 M2 . (8)

In a similar way we have

B1 = 1
2π

∫
dθ · 1

(2π)2
∑

nm bnb
∗
mei(n−m)θ ·

〈∑M
ij=1 e−i(nθi−mθj)

〉
=

= 1
(2π)2

∑
n |bn|2 ·

∣∣∣∑M
i=1

〈
e−inθi

〉∣∣∣2 .

(9)

We shall assume that θi is normally distributed around the mean value θi with a small dispersion
δ, so that 〈

e−inθi

〉
=

1√
2πδ

∫
dθi · e−inθi · e−(θi−θi)

2
/2δ2

= e−inθi · e−n2δ2/2 ; (10)

we get therefore

B1 =
1

(2π)2

∑
n

|bn|2 · e−n2δ2 ·
∣∣∣∣∣

M∑
i=1

〈
e−inθi

〉∣∣∣∣∣
2

. (11)

The summation over i in (11) gives M and n = M × integer, as a consequence of a symmetrically
distributed interruptions, so that (11) becomes

B1 =
M2

(2π)2

∑
n

|bMn|2 · e−M2δ2n2

=
M2

(2π)2

∫
dθdθ

′
b(θ)b(θ

′
)
∑
n

e−M2δ2n2−iMn(θ−θ
′
) . (12)

The summation over n may be replaced by an integral and we obtain

B1 =
M2

(2π)2 ·
√

π

Mδ

∫
dθdθ

′
b(θ)b(θ

′
) · e

−
(

θ−θ
′
)2

/4δ2

; (13)

since δ is very small we may approximate the integral over the gaussian in (13) by

B1 =
M2

(2π)2 ·
√

π

Mδ
· 2
√

πδ
∫

dθ · b2(θ) =
M

2π

∫
dθ · b2(θ) , (14)

and we can see that the result does not depend on δ. Followed a similar estimation as that
employed in (7) and (8) we obtain

B1 =
M

2π
· b2 · ∆l

R
= Mb2 · ∆l

L
= B2

(
∆l

L

)3

M . (15)

From (8) and (15) we get the relative error

ε =

√
(∆B)2/B = (∆l/L)3/2 [M (1−M ·∆l/L)]1/2 , (16)

produced by the defective field, or
ε = (∆l/L)3/2

√
M (17)

since M ·∆l/L � 1.
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A similar estimation holds for the magnetic field produced by the cylindrical magnets distributed
regularly along the accelerator ring. In this case the defective field is due to the end coils of the
magnets, and the ratio b/B is of the order r/l, where r is the radius of the magnet and l is its
length, i.e. we may replace ∆l by r. On the other hand we have M = L/(l + ∆l) ≈ L/l, since
∆l ≈ r � l. From (7), (8) and (15) we obtain

B1
∼= B2(r/l)3 , B2

∼= B2(r/l)4 , (18)

so that we get the error
ε ∼= (r/l)3/2 . (19)

For typical values r ∼= 3cm and l ∼= 15m the error is ε ∼= 10−2%.

Another type of error can appear in the magnetic field near the central line of a cylindrical magnet
from defects in the winding of the longitudinal coil. The magnetic field near the centre of the
magnet, produced by a coil which extends from −∆θ to +∆θ, is given by

B =
I

2πr
· 1

∆θ0

·
∫ ∆θ

−∆θ
dθ · cos θ =

I

2πr
· 1

∆θ0

· 2 sin ∆θ , (20)

where I is the current through the coil and ∆θ0 is the angle of a wire in the coil. The defective
field due to a defect of extension δθ placed at θi is

bi =
I

2πr
· δθ

∆θ0

· cos θi = b0 cos θi , (21)

so that the mean square deviation of the field B(θ) = B +
∑

i b0 cos θi is

(∆B)2 = b2
0 ·M ·

[
cos2 θ −

(
cos θ

)2
]

, (22)

where M is the number of defects distributed independently. The averages in (24) are straight-
forwardly computed, and we obtain

cos2 θ −
(
cos θ

)2
=

1

2
+

sin 2∆θ

4∆θ
− sin2 ∆θ

(∆θ)2 ; (23)

on the other hand, from (20) and (21) we have b0/B = δθ/2 sin ∆θ, and we obtain the error

ε =
δθ

2 sin ∆θ
·M1/2 ·

[
cos2 θ −

(
cos θ

)2
]1/2

. (24)

For ∆θ = π/4 the error given by (24) is ε ∼= 0.1 · δθ · (M/2)1/2, and for typical values δθ ∼ 1/30
and M ∼ 10− 20 we get ε ∼ 1%.
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