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2 J. Theor. Phys.a sphere, by using the well-known Drude-Lorentz (plasma) model of matter polarization. His-torially, the Drude-Lorentz model has proven useful in desribing the eletri ondution or theoptial properties of matter.[12℄-[17℄ Reently, it was used for desribing the re�etion and re-fration, as well as plasmons, polaritons and van der Waals-London and Casimir fores in matterinterating with the eletromagneti �eld.[18, 19℄Here, we put the problem in more general terms. Sine the rotation assoiated with the gyro-magneti e�et is a non-inertial motion, we an extend the resulting eletromagneti propertiesto other non-inertial motions, like translations, for instane. We show here that a point-like bodyin osillatory motion, or a wave propagating in an extended body generate eletromagneti �eldswith the same frequeny as the frequeny of the osillatory motion or the wave frequeny. A shok-like movement of a point-like body generate eletromagneti �elds with the harateristi (atomisale) frequeny of the body. A possible, qualitative explanation of the sonoluminisene[20, 21℄ isadvaned on this basis. It is also shown that a uniformly rotating dieletri sphere develops a stati(quadrupolar) eletri �eld (whih may be alled the gyroeletri e�et), while a uniformly rotat-ing onduting sphere sustains stationary eletri urrents whih generate a magneti �eld. Thisis the gyromagneti e�et, and the gyromagneti oe�ient is omputed here for a spherially-shaped body. Slightly non-uniform rotations are also disussed in the ontext of the linearizedequations of motion for the polarization. It is shown that a dieletri spherially-shaped bodyin a slightly non-uniform rotation generates eletromagneti �elds with the harateristi (atomisale) frequeny of the body (slightly shifted by the uniform part of the angular frequeny), whilea onduting sphere in the same onditions emits eletromagneti �elds with the frequeny equalto the double of the uniform part of the angular veloity.Non-inertial translationsWe assume a simple model of homogeneous matter onsisting of idential, mobile harges q mov-ing in a neutralizing bakground of harges −q. A loal relative displaement u generates apolarization harge density ρ and a polarization urrent density j given by
ρ = −nqdivu , j = nqu̇ , (1)where n is the harge density. The polarization (dipole momentum of the unit volume) is givenby P = qnu, so the harge and urrent densities an also be written in the usual form ρ = −divPand j = Ṗ. Let the bakground moves as a rigid body with veloity V and let mω2

cu be an elastifore ating loally upon the harges, where m is the (redued) mass of the harges and ωc is aharateristi frequeny. The frequeny ωc is an atomi-sale frequeny, orresponding to a modelof dieletris. For ondutors, where the eletrons are quasi-free, ωc = 0. The equation of motionfor the harge displaement reads
mü = −mV̇ −mω2

cu−mγu̇ , (2)where γ is a damping oe�ient (γ ≪ ωc, for ωc 6= 0). Usually, we set γ = 0, as for an ideal body(plasma). Similarly, we neglet the ollision proesses of the harges in the body. Making use ofthe Fourier transforms we get
u(ω) =

−iωV(ω)

ω2 − ω2
c + iωγ

(3)and
u(t) =

1

2π

∫

dω
−iωV(ω)

ω2 − ω2
c + iωγ

e−iωt (4)(where the integration must be performed in the lower half-plane).



J. Theor. Phys. 3For an osillatory motion with amplitude B and frequeny Ω the veloity is given by V (t) =
BΩ cos Ωt and

u(t) = −
BΩ2

Ω2 − ω2
c

sin Ωt (5)(where we dropped out the damping fator γ). For a wave with a wavevetor k, V (t) = BΩ cos(Ωt−
kx) and

u(t) = −
BΩ2

Ω2 − ω2
c

sin(Ωt− kx) . (6)For a shok of duration T (T ≪ t) and veloity V0, V (t) = TV0δ(t) and
u(t) = TV0 cos ωct . (7)The polarization harges and urrents orresponding to the polarization P = qnu give rise toeletromagneti �elds desribed by the Kirhho�'s retarded potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

,

(8)where the integration is performed over the volume of the body.For a point-like body loated at the origin we take u = vu0(t)δ(R) , where v is the volume of thebody. The polarization harge and urrent are given by
ρ = −nqv(u0grad)δ(R) , j = nqv

∂u0

∂t
δ(R) . (9)The potentials an easily be omputed:

Φ(R, t) = nqv
[

R
cR2

∂u0(t−R/c)
∂t

+ Ru0(t−R/c)
R3

]

,

A(R, t) = nqv 1
cR

∂u0(t−R/c)
∂t

.

(10)(We an hek the Lorenz gauge divA + (1/c)∂Φ/∂t = 0). Making use of equation (5) for anosillatory motion we get the potentials
Φ(R, t) = −BnqvΩ2

Ω2−ω2
c

[

en
cR2 Ω cos Ω(t−R/c) + Re

R3 sin Ω(t− R/c)
]

,

A(R, t) = −BnqvΩ2

Ω2−ω2
c

e
cR

Ω cos Ω(t− R/c) ,

(11)where e is the unit vetor along the diretion of the motion. We an see that the body in osillatorymotion radiates eletromagneti waves with the motion frequeny Ω. Making use of equation (7)for a shok, we get
Φ(R, t) = nqvTV0

[

− Re
cR2 ωc sin ωc(t− R/c) + Re

R3 cos ωc(t− R/c)
]

,

A(R, t) = −nqvTV0
e

cR
ωc sin ωc(t− R/c)

(12)and the radiation emitted has the harateristi frequeny ωc of the body.



4 J. Theor. Phys.Let us assume now that we have an in�nitely-extending body subjeted to a wave-like motion, asgiven by equation (6). The potentials are given by
Φ(R, t) = −8πBknqΩ2

Ω2−ω2
c

cos(Ωt−kR)
k2−Ω2/c2

,

A(R, t) = − 8πBnqΩ3

c(Ω2−ω2
c )

cos(Ωt−kR)
k2−Ω2/c2

,

(13)where we an introdue the veloity v = Ω/k of the propagating wavelike motion of the bak-ground. We an see that the emitted radiation has the frequeny Ω of the wave propagating inthe body. However, an ultrasound wave propagating in a liquid ontaining small gas bubbles ansqueeze these bubbles o� (aording to the urrent ideas in the �eld[20, 21℄), suh as to reatesmall, loalized shoks, whih ionize the gas and the liquid. Then, the moving harges an give riseto an eletromagneti �eld with high frequenies (ωc), as desribed by equations (12) for shoks.This might be the origin of the sonoluminisene.We an see from the above disussion that a non-uniform translation of a body an generateeletromagneti �elds. This is a non-inertial eletromagneti e�et.Rotations. Stati eletri �eldLet us assume that the rigid bakground is moving with an angular veloity −→Ω . The motion ofthe displaement u is desribed by
ü = r×

−̇→
Ω + 2u̇×

−→
Ω +

−→
Ω × (r×

−→
Ω)− ω2

cu− γu̇ , (14)where the �rst term in the rhs omes from the non-uniformity of the angular veloity, the seondrepresents the Coriolis fore and the third is the entrifugal fore. We hose −→Ω and −̇→Ω orientedalong the z-axis, i.e. −→Ω = Ωez and −̇→Ω = Ω̇ez, and see immediately that uz = 0. We get twooupled equations
üx + ω2

cux + γu̇x − 2Ωu̇y = yΩ̇ + xΩ2 ,

üy + ω2
cuy + γu̇y + 2Ωu̇x = −xΩ̇ + yΩ2

(15)for the other two omponents of the displaement.We onsider �rst Ω = const (a uniform rotation). Usually, Ω ≪ ωc. Averaging out the high-frequeny osillations of the solution of the homogeneous system of equations (15), we are leftwith the (partiular) solution (γ = 0)
ux = x

Ω2

ω2
c

, uy = y
Ω2

ω2
c

. (16)We an see that the entrifugal fore pushes the harges towards the surfae of the rotating body.Sine u does not depend on the time, the urrent, the vetor potential and the magneti �eld arevanishing. We are left with a stati salar potential as given by equation (8). We ompute thissalar potential for a spherially-shaped body of radius a, for whih the displaement �eld u reads
u =

Ω2

ω2
c

(x, y, 0)θ(a− R) , (17)where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0 is the step funtion. The alulations arestraightforward. Making use of equation (1) we ompute the polarization harge density (payingattention to the derivatives of the step funtion), expand the Coulomb potential in equation (8)



J. Theor. Phys. 5in Legendre polynomials and use the well-known addition theorem for the two vetors R and R′.We get easily the potential
Φ(R) = −4πnq

Ω2

ω2
c















1
3
a2 − 1

5
(2R2 − z2) , R < a ,

a2

15R3

(

3z2

R2 − 1
)

, R > a .
(18)We an see that this is a quadrupole potential, with a harge ontribution inside the sphere. Theorresponding eletri �eld E = −gradΦ an be easily omputed from equation (18). We givehere the eletri �eld inside the sphere,

E(R) = −
16π

5
nq

Ω2

ω2
c

(

x, y,
1

2
z
)

. (19)We an see that the x, y-omponents of the eletri �eld are proportional to the orrespondingomponents of the polarization (P = nqu, where u is given by equation (17)). In addition, thereappears also a z-omponent of the eletri �eld, due to the non-uniform polarization along thisdiretion. It is also worth noting that the average of the eletri �eld (and polarization) over thevolume of the sphere is vanishing. We an all this e�et the gyroeletri e�et.Rotations. Gyromagneti e�etFor ondutors, the situation is di�erent. For ωc = 0 (and Ω̇ = 0, γ = 0), equations (15) beome
üx − 2Ωu̇y = xΩ2 , üy + 2Ωu̇x = yΩ2 . (20)Again, averaging out the osillating terms, we are left with the solution

u̇x =
1

2
Ωy , u̇y = −

1

2
Ωx . (21)We an see that the ombined e�et of the Coriolis and the entrifugal fores leads to the ourreneof irular polarization urrents in the plane transverse to the rotation axis. These urrents (givenby j = nqu̇) are stationary and divergene-free (divj = 0). They generate a magneti �eld

H = curlA, where A is given by equations (8). Again, the alulations for a spherially-shapedbody are straightforward. This time, the ontributions are dipolar (arising from the assoiatedLegendre funtion P 1
1 ). We get the vetor potential

A(R) =
πnqΩ

3c
(y, −x, 0)











a2 − 3
5
R2 , R < a ,

2a5

5R2 , R > a .

(22)and the magneti �eld inside the sphere
H = −

2πnqΩ

5c

(

xz, yz,
5

3
a2 − (2R2 − z2)

)

. (23)We an see that, both inside and outside the sphere, the magneti �eld has the spei� two-polespattern of a magneti dipole.The average of the magneti �eld over the volume of the sphere gives the only non-vanishingontribution
Hz = −

16πnqa2

25c
Ω . (24)



6 J. Theor. Phys.The oe�ient in front of the angular veloity Ω in equation (24) is the oe�ient of the gyro-magneti e�et. For non-magneti matter Hz is the magnetization, and µ = V Hz is the magnetimoment, where V is the volume of the body. Equation (24) an then be written as
µ = −

8π

5

Q

Mc
L , (25)where Q is the total (mobile) harge of the body, M is the mass of the body and L is the angularmomentum (with respet to the rotation axis). From the equation of motion dL/dt = −→µ ×H0in an external magneti �eld H0, we get d−→µ /dt = γH0 ×

−→µ , where γ = (8π/5)(Q/Mc) is thegyromagneti ratio. By analogy with the quantum partiles, the numerial fator −16π/5 inequation (25) an be viewed as the g-fator in the relationship between the magneti moment andthe angular momentum.Similar alulations an be done for other shapes of the bodies, however, with appreiable tehnialdi�ulties in many ases.Time dependene. DieletrisIn order to inlude the time dependene we linearize equations (15) by writing
Ω = Ω0 + Ω1(t) (26)and

ux,y = ux,y0 + ux,y1(t) , (27)where Ω0 = const, Ω1(t)≪ Ω0 and ux,y0 = const are given by equations (16) (where Ω is replaedby Ω0). It is not neessary to have ux,y1(t)≪ ux,y0. Upon linearization equations (15) beome
üx1 + ω2

cux1 + γu̇x1 − 2Ω0u̇y1 = yΩ̇1 + 2xΩ0Ω1 ,

üy1 + ω2
cuy1 + γu̇y1 + 2Ω0u̇x1 = −xΩ̇1 + 2yΩ0Ω1 .

(28)We take the Fourier transform of these equations and omit for the moment the argument ω in
ux,y1(ω) and Ω1(ω). Equations (28) read

(ω2 − ω2
c + iωγ)ux1 − 2iΩ0ωuy1 = C ,

(ω2 − ω2
c + iωγ)uy1 + 2iΩ0ωux1 = D ,

(29)where
C = (iyω − 2xΩ0)Ω1 , D = −(ixω + 2yΩ0)Ω1 . (30)We note the symmetry of the system of equations (29) for x ←→ y and Ω0,1 ←→ −Ω0,1. Thesolutions of equations (29) an readily be obtained. For Ω0 ≪ ωc (whih is the realisti ondition)they have four poles ±ωc±Ω0−iγ/2 in the lower half-plane. We take the inverse Fourier transform(the integration must be performed in the lower half-plane) and get
ux1(t) = Ω1(ωc) cosωct (y cos Ω0t− x sin Ω0t) ,

uy1(t) = −Ω1(ωc) cos ωct (y sin Ω0t + x cos Ω0t) .
(31)In the amplitudes of the osillating funtions in equations (31) we used the approximationΩ0 ≪ ωc,and assumed also Ω1(ωc) = Ω∗

1(ωc) (and put γ = 0). As a onsequene of this approximation,the displaement omponents given by equations (31) are determined solely by the non-uniform



J. Theor. Phys. 7angular veloity (the Ω̇- term in equation (14)), the role of the Coriolis fore being that of shiftingthe frequeny ωc to ωc ±Ω0. Within this linear approximation the entrifugal fore does not on-tribute (it determines the onstant displaements ux,y0). Comparing equations (16) with equations(31), we an see that, although Ω1 ≪ Ω0 ≪ ωc, it is possible to have uxy1 ≫ ux,y0, if the Fourieromponent Ω1(ωc) is su�iently large (as, for instane, for shoks). Further on, we leave aside thedisplaements ux,y0 and fous ourselves on the e�et of the time-dependent omponents ux,y1. It iseasy to see from equations (31) that the displaement u performs a wobbling motion, inluding arotation with frequeny Ω0 and a radial osillation with freueny ωc (u2
x1+u2

y1 = Ω2
1(ωc)r

2 cos2 ωct).We simplify further equations (31) by notiing that they imply osillations with the frequenies
ωc ± Ω0 where we may neglet Ω0 in omparison with ωc. We get

ux1(t) = Ω1y cos ωct , uy1(t) = −Ω1x cos ωct . (32)Making use of equations (1), we an see that the polarization harge density is vanishing for asphere (div [u1θ(a− R)] = 0, where a is the radius of the sphere); we are left with the polarizationurrent density
j1 = nqΩ1ωc(−y, x)θ(a−R) sin ωct , (33)whih we use to ompute the vetor potential from equations (8). The vetor potential A givenby equations (8) ontains the "retarded" Coulomb potential eiωc|R−R′|/c/ |R−R′|. This potentialhas an expansion in Legendre polynomials Pn, whose oe�ients are given in Ref. [20℄. It reads

eiλ|R−R
′|

|R−R′|
=

= iπ
2
(RR′)−1/2 ∑

n=0(2n + 1)Jn+1/2(λR<)Hn+1/2(λR>)Pn(cos Θ) ,

(34)where Jn+1/2 and Hn+1/2 are the Bessel and, respetively, Hankel funtions of the �rst rank, Θis the angle between the two vetors R and R′, R< = min(R, R′), R> = max(R, R′) and λ isany real parameter (λ = ωc/c). We limit ourselves to the radiation zone R > a, λR ≫ 1 and amarosopi body for whih λa≫ 1. We get the vetor potential
A(R) =

4πnqa2cΩ1

ωcR2
sin

ωca

c
(−y, x) sin ωc(t−R/c) . (35)This vetor potential has a dipolar harater and satis�es divA = 0. We an see that a dieletrispherially-shaped body whih rotates about an axis with a (slightly) non-uniform angular veloity(Ω = Ω0 + Ω1, Ω0 = const, Ω̇1 6= 0, Ω1 ≪ Ω0) emits radiation with the frequeny ≃ ωc, where ωcis the harateristi (atomi sale) frequeny of the body. The amplitude of the emitted �eld isgoverned by the Fourier transform Ω1(ωc) of the angular veloity.Time dependene. CondutorsIn order to ary out the linearization proedure for ondutors (ωc = 0) we introdue the newvariables vx,y = u̇x,y and write equations (15) as (γ = 0)

v̇x − 2Ωvy = yΩ̇ + xΩ2 ,

v̇y + 2Ωvx = −xΩ̇ + yΩ2 .

(36)Here we set Ω = Ω0 + Ω1(t) and vx,y = vx,y0 + vx,y1, where Ω1 ≪ Ω0, Ω0 = const and vx0 =
Ω0y/2, vy0 = −Ω0x/2. The onstant omponents vx,y0 are given by eqaution (21) and auses thegyromagneti e�et. We fous here on the time dependent omponents. The Fourier transforms



8 J. Theor. Phys.of the solution of the linearized system of equations (36) have two poles in the lower half-plane at
±2Ω0. The orresponding displaement �eld is given by

ux1 = −1
2
Ω1(2Ω0)(x sin 2Ω0t− y cos 2Ω0t) ,

uy1 = −1
2
Ω1(2Ω0)(x cos 2Ω0t + y sin 2Ω0t) .

(37)In equations (37) Ω1(2Ω0) is the Fourier transform Ω1(ω) for ω = 2Ω0 (we have assumed Ω∗
1(ω) =

Ω1(ω)). In the subsequent alulations we omit the argument 2Ω0 and write simply Ω1 for Ω1(2Ω0).Now, it is easy to ompute the eletromagneti potentials given by equations (8). Aording toequations (1) the polarization harge and urent densities for a sphere of radius a are given by
ρ = 1

2
nqΩ1

[

2θ(a− R)− a2−z2

a
δ(a− R)

]

sin 2Ω0t ,

j = −nqΩ0Ω1 [(x, y) cos 2Ω0t + (y, −x) sin 2Ω0t] θ(a−R) .

(38)The alulations are straightforward and go in the same manner as for a dieletri sphere desribedabove. We give here the leading terms for the realisti onditions Ω0a/c≪ 1 and Ω0R/c≪ 1, i.e.for wavelengths c/Ω0 muh longer than the radius of the sphere and the distanes of interest (thisis the opposite to the approximation used for a dieletri sphere, where the relevant frequeny ωcorresponds to very short wavelengths). Under these onditions we get the salar potential
Φ(R) =

4πnqa5Ω1

15R3
P2(cos θ) sin 2Ω0(t−R/c) (39)and the vetor potential

A(R) = −
4πnqa5Ω0Ω1

15cR3
[(x, y) cos 2Ω0(t− R/c) + (y, −x) sin 2Ω0(t− R/c)] (40)(where cos θ = z/R). We an hek immediately the Lorentz gauge divA + (1/c)∂Φ/∂t = 0(within our approximation). The retarded ontribution to equations (39) and (40) (2Ω0R/c in theosillatory funtions) an be omitted, and the �eld assumes, in fat, the aspet of a stationary �eld.We an see that a onduting sphere whih rotates about an axis with a (slightly) non-uniformangular veloity emits (quadrupolar) radiation with the frequeny 2Ω0, where Ω0 is the uniformpart of the angular veloity. The amplitude of this radiation is governed by the non-uniform part

Ω1 of the angular veloity.Conluding remarksEletromagneti phenomena arising from the non-inertial motion of matter have been investigatedin this paper by using the well-known Drude-Lorentz (plasma) model of polarizable matter andthe orresponding equation of motion for the eletri polarization. It was shown that a point-likebody subjeted to an osillatory motion emits an eletromagneti �eld with the same frequeny asthe frequeny of the osillatory motion; while the same body subjeted to a shok-like movementemits an eletromagneti �eld with the harateristi (atomi-sale) frequeny of the body. Awave propagating in an in�nitely extended body generates an eletromagneti �eld with the samefrequeny as the wave frequeny. If there are inhomogeneities in the body whih an be squeezedo� by the wave (as, for instane, gas bubbles in a liquid subjeted to an ultrasound wave), then theloally ionized harges may undergo shok-like movements, and the emission has the frequeny ofthe harateristi (atomi sale) frequeny of the body. This may explain qualitatively the originof the sonoluminisene.[20, 21℄
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