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tNon-inertial ele
tromagneti
 e�e
ts in matter, i.e. ele
tromagneti
 �elds 
reated by a non-inertial motion of material bodies, are dis
ussed within the Drude-Lorentz (plasma) model ofmatter polarization. It is shown that an os
illatory motion of a point-like body, or wavelikemotion in an extended body give rise to ele
tromagneti
 �elds with the same frequen
y as thefrequen
y of the original motion, while sho
k-like movements of a point-like body generateele
tromagneti
 �elds with the 
hara
teristi
 (atomi
 s
ale) frequen
y of the bodies. Basedon these fa
ts, a possible, qualitative explanation is put forward for sonolumins
en
e. Thepolarization of a rigid body indu
ed by rotations is dis
ussed in various 
ir
umstan
es. Auniform rotation produ
es a stati
 ele
tri
 �eld in a diele
tri
 and a stationary 
urrent (anda stati
 magneti
 �eld) in a 
ondu
tor. The latter 
orresponds to the gyromagneti
 e�e
t(while the former may be 
alled the gyroele
tri
 e�e
t). Both �elds are 
omputed for asphere and the gyromagneti
 
oe�
ient is derived. A non-uniform rotation indu
es emissionof ele
tromagneti
 �elds. The equations of motion for the polarization are linearized forslight non-uniformites of the angular velo
ity and solved both for a diele
tri
 and a 
ondu
tingsphere. The ele
tromageti
 �eld emitted by a diele
tri
 spheri
ally-shaped body in (a slightly)non-uniform rotation has the 
hara
teristi
 (atomi
 s
ale) frequen
y of the body (slightlyshifted by the uniform part of the angular frequen
y). In the same 
onditions, a 
ondu
tingsphere emits an ele
tromagneti
 �eld whose frequen
y is double the uniform part of theangular fequen
y.PACS: 03.50.De; 41.20.-q; 41.20.JbKey words: ele
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elerating and rotating bodies; gyromag-neti
 e�e
tIntrodu
tionThe magnetization of a rotating body (Barnett e�e
t),[1℄ or the rotation of a magnetized body(Einstein-de Haas e�e
t)[2℄ are both known as the gyromagneti
 e�e
t(s). By extension, the ro-tation of a spin (magneti
 dipole) in a magneti
 �eld, or the rotation of an ele
tri
 dipole in anele
tri
 �eld are also 
alled gyromagneti
 (respe
tively gyroele
tri
) e�e
ts (phenomena). Su
h ef-fe
ts are attra
tive experimental tools, sin
e they provide a

ess to magneti
 sus
eptibility, orbitalmagneti
 e�e
ts, magneti
 properties of matter, in
luding powders and granular matter, et
.[3℄-[11℄ Although these e�e
ts are known for a long time, the gyromagneti
 
oe�
ient for ma
ros
opi
bodies remained a phenomenologi
al parameter. Here, we derive the gyromagneti
 
oe�
ient for



2 J. Theor. Phys.a sphere, by using the well-known Drude-Lorentz (plasma) model of matter polarization. His-tori
ally, the Drude-Lorentz model has proven useful in des
ribing the ele
tri
 
ondu
tion or theopti
al properties of matter.[12℄-[17℄ Re
ently, it was used for des
ribing the re�e
tion and re-fra
tion, as well as plasmons, polaritons and van der Waals-London and Casimir for
es in matterintera
ting with the ele
tromagneti
 �eld.[18, 19℄Here, we put the problem in more general terms. Sin
e the rotation asso
iated with the gyro-magneti
 e�e
t is a non-inertial motion, we 
an extend the resulting ele
tromagneti
 propertiesto other non-inertial motions, like translations, for instan
e. We show here that a point-like bodyin os
illatory motion, or a wave propagating in an extended body generate ele
tromagneti
 �eldswith the same frequen
y as the frequen
y of the os
illatory motion or the wave frequen
y. A sho
k-like movement of a point-like body generate ele
tromagneti
 �elds with the 
hara
teristi
 (atomi
s
ale) frequen
y of the body. A possible, qualitative explanation of the sonoluminis
en
e[20, 21℄ isadvan
ed on this basis. It is also shown that a uniformly rotating diele
tri
 sphere develops a stati
(quadrupolar) ele
tri
 �eld (whi
h may be 
alled the gyroele
tri
 e�e
t), while a uniformly rotat-ing 
ondu
ting sphere sustains stationary ele
tri
 
urrents whi
h generate a magneti
 �eld. Thisis the gyromagneti
 e�e
t, and the gyromagneti
 
oe�
ient is 
omputed here for a spheri
ally-shaped body. Slightly non-uniform rotations are also dis
ussed in the 
ontext of the linearizedequations of motion for the polarization. It is shown that a diele
tri
 spheri
ally-shaped bodyin a slightly non-uniform rotation generates ele
tromagneti
 �elds with the 
hara
teristi
 (atomi
s
ale) frequen
y of the body (slightly shifted by the uniform part of the angular frequen
y), whilea 
ondu
ting sphere in the same 
onditions emits ele
tromagneti
 �elds with the frequen
y equalto the double of the uniform part of the angular velo
ity.Non-inertial translationsWe assume a simple model of homogeneous matter 
onsisting of identi
al, mobile 
harges q mov-ing in a neutralizing ba
kground of 
harges −q. A lo
al relative displa
ement u generates apolarization 
harge density ρ and a polarization 
urrent density j given by
ρ = −nqdivu , j = nqu̇ , (1)where n is the 
harge density. The polarization (dipole momentum of the unit volume) is givenby P = qnu, so the 
harge and 
urrent densities 
an also be written in the usual form ρ = −divPand j = Ṗ. Let the ba
kground moves as a rigid body with velo
ity V and let mω2

cu be an elasti
for
e a
ting lo
ally upon the 
harges, where m is the (redu
ed) mass of the 
harges and ωc is a
hara
teristi
 frequen
y. The frequen
y ωc is an atomi
-s
ale frequen
y, 
orresponding to a modelof diele
tri
s. For 
ondu
tors, where the ele
trons are quasi-free, ωc = 0. The equation of motionfor the 
harge displa
ement reads
mü = −mV̇ −mω2

cu−mγu̇ , (2)where γ is a damping 
oe�
ient (γ ≪ ωc, for ωc 6= 0). Usually, we set γ = 0, as for an ideal body(plasma). Similarly, we negle
t the 
ollision pro
esses of the 
harges in the body. Making use ofthe Fourier transforms we get
u(ω) =

−iωV(ω)

ω2 − ω2
c + iωγ

(3)and
u(t) =

1

2π

∫

dω
−iωV(ω)

ω2 − ω2
c + iωγ

e−iωt (4)(where the integration must be performed in the lower half-plane).



J. Theor. Phys. 3For an os
illatory motion with amplitude B and frequen
y Ω the velo
ity is given by V (t) =
BΩ cos Ωt and

u(t) = −
BΩ2

Ω2 − ω2
c

sin Ωt (5)(where we dropped out the damping fa
tor γ). For a wave with a waveve
tor k, V (t) = BΩ cos(Ωt−
kx) and

u(t) = −
BΩ2

Ω2 − ω2
c

sin(Ωt− kx) . (6)For a sho
k of duration T (T ≪ t) and velo
ity V0, V (t) = TV0δ(t) and
u(t) = TV0 cos ωct . (7)The polarization 
harges and 
urrents 
orresponding to the polarization P = qnu give rise toele
tromagneti
 �elds des
ribed by the Kir
hho�'s retarded potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

,

(8)where the integration is performed over the volume of the body.For a point-like body lo
ated at the origin we take u = vu0(t)δ(R) , where v is the volume of thebody. The polarization 
harge and 
urrent are given by
ρ = −nqv(u0grad)δ(R) , j = nqv

∂u0

∂t
δ(R) . (9)The potentials 
an easily be 
omputed:

Φ(R, t) = nqv
[

R
cR2

∂u0(t−R/c)
∂t

+ Ru0(t−R/c)
R3

]

,

A(R, t) = nqv 1
cR

∂u0(t−R/c)
∂t

.

(10)(We 
an 
he
k the Lorenz gauge divA + (1/c)∂Φ/∂t = 0). Making use of equation (5) for anos
illatory motion we get the potentials
Φ(R, t) = −BnqvΩ2

Ω2−ω2
c

[

en
cR2 Ω cos Ω(t−R/c) + Re

R3 sin Ω(t− R/c)
]

,

A(R, t) = −BnqvΩ2

Ω2−ω2
c

e
cR

Ω cos Ω(t− R/c) ,

(11)where e is the unit ve
tor along the dire
tion of the motion. We 
an see that the body in os
illatorymotion radiates ele
tromagneti
 waves with the motion frequen
y Ω. Making use of equation (7)for a sho
k, we get
Φ(R, t) = nqvTV0

[

− Re
cR2 ωc sin ωc(t− R/c) + Re

R3 cos ωc(t− R/c)
]

,

A(R, t) = −nqvTV0
e

cR
ωc sin ωc(t− R/c)

(12)and the radiation emitted has the 
hara
teristi
 frequen
y ωc of the body.



4 J. Theor. Phys.Let us assume now that we have an in�nitely-extending body subje
ted to a wave-like motion, asgiven by equation (6). The potentials are given by
Φ(R, t) = −8πBknqΩ2

Ω2−ω2
c

cos(Ωt−kR)
k2−Ω2/c2

,

A(R, t) = − 8πBnqΩ3

c(Ω2−ω2
c )

cos(Ωt−kR)
k2−Ω2/c2

,

(13)where we 
an introdu
e the velo
ity v = Ω/k of the propagating wavelike motion of the ba
k-ground. We 
an see that the emitted radiation has the frequen
y Ω of the wave propagating inthe body. However, an ultrasound wave propagating in a liquid 
ontaining small gas bubbles 
ansqueeze these bubbles o� (a

ording to the 
urrent ideas in the �eld[20, 21℄), su
h as to 
reatesmall, lo
alized sho
ks, whi
h ionize the gas and the liquid. Then, the moving 
harges 
an give riseto an ele
tromagneti
 �eld with high frequen
ies (ωc), as des
ribed by equations (12) for sho
ks.This might be the origin of the sonoluminis
en
e.We 
an see from the above dis
ussion that a non-uniform translation of a body 
an generateele
tromagneti
 �elds. This is a non-inertial ele
tromagneti
 e�e
t.Rotations. Stati
 ele
tri
 �eldLet us assume that the rigid ba
kground is moving with an angular velo
ity −→Ω . The motion ofthe displa
ement u is des
ribed by
ü = r×

−̇→
Ω + 2u̇×

−→
Ω +

−→
Ω × (r×

−→
Ω)− ω2

cu− γu̇ , (14)where the �rst term in the rhs 
omes from the non-uniformity of the angular velo
ity, the se
ondrepresents the Coriolis for
e and the third is the 
entrifugal for
e. We 
hose −→Ω and −̇→Ω orientedalong the z-axis, i.e. −→Ω = Ωez and −̇→Ω = Ω̇ez, and see immediately that uz = 0. We get two
oupled equations
üx + ω2

cux + γu̇x − 2Ωu̇y = yΩ̇ + xΩ2 ,

üy + ω2
cuy + γu̇y + 2Ωu̇x = −xΩ̇ + yΩ2

(15)for the other two 
omponents of the displa
ement.We 
onsider �rst Ω = const (a uniform rotation). Usually, Ω ≪ ωc. Averaging out the high-frequen
y os
illations of the solution of the homogeneous system of equations (15), we are leftwith the (parti
ular) solution (γ = 0)
ux = x

Ω2

ω2
c

, uy = y
Ω2

ω2
c

. (16)We 
an see that the 
entrifugal for
e pushes the 
harges towards the surfa
e of the rotating body.Sin
e u does not depend on the time, the 
urrent, the ve
tor potential and the magneti
 �eld arevanishing. We are left with a stati
 s
alar potential as given by equation (8). We 
ompute thiss
alar potential for a spheri
ally-shaped body of radius a, for whi
h the displa
ement �eld u reads
u =

Ω2

ω2
c

(x, y, 0)θ(a− R) , (17)where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0 is the step fun
tion. The 
al
ulations arestraightforward. Making use of equation (1) we 
ompute the polarization 
harge density (payingattention to the derivatives of the step fun
tion), expand the Coulomb potential in equation (8)



J. Theor. Phys. 5in Legendre polynomials and use the well-known addition theorem for the two ve
tors R and R′.We get easily the potential
Φ(R) = −4πnq

Ω2

ω2
c















1
3
a2 − 1

5
(2R2 − z2) , R < a ,

a2

15R3

(

3z2

R2 − 1
)

, R > a .
(18)We 
an see that this is a quadrupole potential, with a 
harge 
ontribution inside the sphere. The
orresponding ele
tri
 �eld E = −gradΦ 
an be easily 
omputed from equation (18). We givehere the ele
tri
 �eld inside the sphere,

E(R) = −
16π

5
nq

Ω2

ω2
c

(

x, y,
1

2
z
)

. (19)We 
an see that the x, y-
omponents of the ele
tri
 �eld are proportional to the 
orresponding
omponents of the polarization (P = nqu, where u is given by equation (17)). In addition, thereappears also a z-
omponent of the ele
tri
 �eld, due to the non-uniform polarization along thisdire
tion. It is also worth noting that the average of the ele
tri
 �eld (and polarization) over thevolume of the sphere is vanishing. We 
an 
all this e�e
t the gyroele
tri
 e�e
t.Rotations. Gyromagneti
 e�e
tFor 
ondu
tors, the situation is di�erent. For ωc = 0 (and Ω̇ = 0, γ = 0), equations (15) be
ome
üx − 2Ωu̇y = xΩ2 , üy + 2Ωu̇x = yΩ2 . (20)Again, averaging out the os
illating terms, we are left with the solution

u̇x =
1

2
Ωy , u̇y = −

1

2
Ωx . (21)We 
an see that the 
ombined e�e
t of the Coriolis and the 
entrifugal for
es leads to the o

urren
eof 
ir
ular polarization 
urrents in the plane transverse to the rotation axis. These 
urrents (givenby j = nqu̇) are stationary and divergen
e-free (divj = 0). They generate a magneti
 �eld

H = curlA, where A is given by equations (8). Again, the 
al
ulations for a spheri
ally-shapedbody are straightforward. This time, the 
ontributions are dipolar (arising from the asso
iatedLegendre fun
tion P 1
1 ). We get the ve
tor potential

A(R) =
πnqΩ

3c
(y, −x, 0)











a2 − 3
5
R2 , R < a ,

2a5

5R2 , R > a .

(22)and the magneti
 �eld inside the sphere
H = −

2πnqΩ

5c

(

xz, yz,
5

3
a2 − (2R2 − z2)

)

. (23)We 
an see that, both inside and outside the sphere, the magneti
 �eld has the spe
i�
 two-polespattern of a magneti
 dipole.The average of the magneti
 �eld over the volume of the sphere gives the only non-vanishing
ontribution
Hz = −

16πnqa2

25c
Ω . (24)



6 J. Theor. Phys.The 
oe�
ient in front of the angular velo
ity Ω in equation (24) is the 
oe�
ient of the gyro-magneti
 e�e
t. For non-magneti
 matter Hz is the magnetization, and µ = V Hz is the magneti
moment, where V is the volume of the body. Equation (24) 
an then be written as
µ = −

8π

5

Q

Mc
L , (25)where Q is the total (mobile) 
harge of the body, M is the mass of the body and L is the angularmomentum (with respe
t to the rotation axis). From the equation of motion dL/dt = −→µ ×H0in an external magneti
 �eld H0, we get d−→µ /dt = γH0 ×

−→µ , where γ = (8π/5)(Q/Mc) is thegyromagneti
 ratio. By analogy with the quantum parti
les, the numeri
al fa
tor −16π/5 inequation (25) 
an be viewed as the g-fa
tor in the relationship between the magneti
 moment andthe angular momentum.Similar 
al
ulations 
an be done for other shapes of the bodies, however, with appre
iable te
hni
aldi�
ulties in many 
ases.Time dependen
e. Diele
tri
sIn order to in
lude the time dependen
e we linearize equations (15) by writing
Ω = Ω0 + Ω1(t) (26)and

ux,y = ux,y0 + ux,y1(t) , (27)where Ω0 = const, Ω1(t)≪ Ω0 and ux,y0 = const are given by equations (16) (where Ω is repla
edby Ω0). It is not ne
essary to have ux,y1(t)≪ ux,y0. Upon linearization equations (15) be
ome
üx1 + ω2

cux1 + γu̇x1 − 2Ω0u̇y1 = yΩ̇1 + 2xΩ0Ω1 ,

üy1 + ω2
cuy1 + γu̇y1 + 2Ω0u̇x1 = −xΩ̇1 + 2yΩ0Ω1 .

(28)We take the Fourier transform of these equations and omit for the moment the argument ω in
ux,y1(ω) and Ω1(ω). Equations (28) read

(ω2 − ω2
c + iωγ)ux1 − 2iΩ0ωuy1 = C ,

(ω2 − ω2
c + iωγ)uy1 + 2iΩ0ωux1 = D ,

(29)where
C = (iyω − 2xΩ0)Ω1 , D = −(ixω + 2yΩ0)Ω1 . (30)We note the symmetry of the system of equations (29) for x ←→ y and Ω0,1 ←→ −Ω0,1. Thesolutions of equations (29) 
an readily be obtained. For Ω0 ≪ ωc (whi
h is the realisti
 
ondition)they have four poles ±ωc±Ω0−iγ/2 in the lower half-plane. We take the inverse Fourier transform(the integration must be performed in the lower half-plane) and get
ux1(t) = Ω1(ωc) cosωct (y cos Ω0t− x sin Ω0t) ,

uy1(t) = −Ω1(ωc) cos ωct (y sin Ω0t + x cos Ω0t) .
(31)In the amplitudes of the os
illating fun
tions in equations (31) we used the approximationΩ0 ≪ ωc,and assumed also Ω1(ωc) = Ω∗

1(ωc) (and put γ = 0). As a 
onsequen
e of this approximation,the displa
ement 
omponents given by equations (31) are determined solely by the non-uniform



J. Theor. Phys. 7angular velo
ity (the Ω̇- term in equation (14)), the role of the Coriolis for
e being that of shiftingthe frequen
y ωc to ωc ±Ω0. Within this linear approximation the 
entrifugal for
e does not 
on-tribute (it determines the 
onstant displa
ements ux,y0). Comparing equations (16) with equations(31), we 
an see that, although Ω1 ≪ Ω0 ≪ ωc, it is possible to have uxy1 ≫ ux,y0, if the Fourier
omponent Ω1(ωc) is su�
iently large (as, for instan
e, for sho
ks). Further on, we leave aside thedispla
ements ux,y0 and fo
us ourselves on the e�e
t of the time-dependent 
omponents ux,y1. It iseasy to see from equations (31) that the displa
ement u performs a wobbling motion, in
luding arotation with frequen
y Ω0 and a radial os
illation with freuen
y ωc (u2
x1+u2

y1 = Ω2
1(ωc)r

2 cos2 ωct).We simplify further equations (31) by noti
ing that they imply os
illations with the frequen
ies
ωc ± Ω0 where we may negle
t Ω0 in 
omparison with ωc. We get

ux1(t) = Ω1y cos ωct , uy1(t) = −Ω1x cos ωct . (32)Making use of equations (1), we 
an see that the polarization 
harge density is vanishing for asphere (div [u1θ(a− R)] = 0, where a is the radius of the sphere); we are left with the polarization
urrent density
j1 = nqΩ1ωc(−y, x)θ(a−R) sin ωct , (33)whi
h we use to 
ompute the ve
tor potential from equations (8). The ve
tor potential A givenby equations (8) 
ontains the "retarded" Coulomb potential eiωc|R−R′|/c/ |R−R′|. This potentialhas an expansion in Legendre polynomials Pn, whose 
oe�
ients are given in Ref. [20℄. It reads

eiλ|R−R
′|

|R−R′|
=

= iπ
2
(RR′)−1/2 ∑

n=0(2n + 1)Jn+1/2(λR<)Hn+1/2(λR>)Pn(cos Θ) ,

(34)where Jn+1/2 and Hn+1/2 are the Bessel and, respe
tively, Hankel fun
tions of the �rst rank, Θis the angle between the two ve
tors R and R′, R< = min(R, R′), R> = max(R, R′) and λ isany real parameter (λ = ωc/c). We limit ourselves to the radiation zone R > a, λR ≫ 1 and ama
ros
opi
 body for whi
h λa≫ 1. We get the ve
tor potential
A(R) =

4πnqa2cΩ1

ωcR2
sin

ωca

c
(−y, x) sin ωc(t−R/c) . (35)This ve
tor potential has a dipolar 
hara
ter and satis�es divA = 0. We 
an see that a diele
tri
spheri
ally-shaped body whi
h rotates about an axis with a (slightly) non-uniform angular velo
ity(Ω = Ω0 + Ω1, Ω0 = const, Ω̇1 6= 0, Ω1 ≪ Ω0) emits radiation with the frequen
y ≃ ωc, where ωcis the 
hara
teristi
 (atomi
 s
ale) frequen
y of the body. The amplitude of the emitted �eld isgoverned by the Fourier transform Ω1(ωc) of the angular velo
ity.Time dependen
e. Condu
torsIn order to 
ary out the linearization pro
edure for 
ondu
tors (ωc = 0) we introdu
e the newvariables vx,y = u̇x,y and write equations (15) as (γ = 0)

v̇x − 2Ωvy = yΩ̇ + xΩ2 ,

v̇y + 2Ωvx = −xΩ̇ + yΩ2 .

(36)Here we set Ω = Ω0 + Ω1(t) and vx,y = vx,y0 + vx,y1, where Ω1 ≪ Ω0, Ω0 = const and vx0 =
Ω0y/2, vy0 = −Ω0x/2. The 
onstant 
omponents vx,y0 are given by eqaution (21) and 
auses thegyromagneti
 e�e
t. We fo
us here on the time dependent 
omponents. The Fourier transforms



8 J. Theor. Phys.of the solution of the linearized system of equations (36) have two poles in the lower half-plane at
±2Ω0. The 
orresponding displa
ement �eld is given by

ux1 = −1
2
Ω1(2Ω0)(x sin 2Ω0t− y cos 2Ω0t) ,

uy1 = −1
2
Ω1(2Ω0)(x cos 2Ω0t + y sin 2Ω0t) .

(37)In equations (37) Ω1(2Ω0) is the Fourier transform Ω1(ω) for ω = 2Ω0 (we have assumed Ω∗
1(ω) =

Ω1(ω)). In the subsequent 
al
ulations we omit the argument 2Ω0 and write simply Ω1 for Ω1(2Ω0).Now, it is easy to 
ompute the ele
tromagneti
 potentials given by equations (8). A
ording toequations (1) the polarization 
harge and 
urent densities for a sphere of radius a are given by
ρ = 1

2
nqΩ1

[

2θ(a− R)− a2−z2

a
δ(a− R)

]

sin 2Ω0t ,

j = −nqΩ0Ω1 [(x, y) cos 2Ω0t + (y, −x) sin 2Ω0t] θ(a−R) .

(38)The 
al
ulations are straightforward and go in the same manner as for a diele
tri
 sphere des
ribedabove. We give here the leading terms for the realisti
 
onditions Ω0a/c≪ 1 and Ω0R/c≪ 1, i.e.for wavelengths c/Ω0 mu
h longer than the radius of the sphere and the distan
es of interest (thisis the opposite to the approximation used for a diele
tri
 sphere, where the relevant frequen
y ωc
orresponds to very short wavelengths). Under these 
onditions we get the s
alar potential
Φ(R) =

4πnqa5Ω1

15R3
P2(cos θ) sin 2Ω0(t−R/c) (39)and the ve
tor potential

A(R) = −
4πnqa5Ω0Ω1

15cR3
[(x, y) cos 2Ω0(t− R/c) + (y, −x) sin 2Ω0(t− R/c)] (40)(where cos θ = z/R). We 
an 
he
k immediately the Lorentz gauge divA + (1/c)∂Φ/∂t = 0(within our approximation). The retarded 
ontribution to equations (39) and (40) (2Ω0R/c in theos
illatory fun
tions) 
an be omitted, and the �eld assumes, in fa
t, the aspe
t of a stationary �eld.We 
an see that a 
ondu
ting sphere whi
h rotates about an axis with a (slightly) non-uniformangular velo
ity emits (quadrupolar) radiation with the frequen
y 2Ω0, where Ω0 is the uniformpart of the angular velo
ity. The amplitude of this radiation is governed by the non-uniform part

Ω1 of the angular velo
ity.Con
luding remarksEle
tromagneti
 phenomena arising from the non-inertial motion of matter have been investigatedin this paper by using the well-known Drude-Lorentz (plasma) model of polarizable matter andthe 
orresponding equation of motion for the ele
tri
 polarization. It was shown that a point-likebody subje
ted to an os
illatory motion emits an ele
tromagneti
 �eld with the same frequen
y asthe frequen
y of the os
illatory motion; while the same body subje
ted to a sho
k-like movementemits an ele
tromagneti
 �eld with the 
hara
teristi
 (atomi
-s
ale) frequen
y of the body. Awave propagating in an in�nitely extended body generates an ele
tromagneti
 �eld with the samefrequen
y as the wave frequen
y. If there are inhomogeneities in the body whi
h 
an be squeezedo� by the wave (as, for instan
e, gas bubbles in a liquid subje
ted to an ultrasound wave), then thelo
ally ionized 
harges may undergo sho
k-like movements, and the emission has the frequen
y ofthe 
hara
teristi
 (atomi
 s
ale) frequen
y of the body. This may explain qualitatively the originof the sonoluminis
en
e.[20, 21℄



J. Theor. Phys. 9It was also shown that a diele
tri
 sphere in uniform rotation develops a stati
 polarization (andele
tri
 �eld), whi
h 
ontanis a quadrupolar term. This may be 
alled a gyroele
tri
 e�e
t. Theaverage of this ele
tri
 �eld over the volume of the sphere is vanishing. Similarly, a 
ondu
tingsphere in uniform rotation sustains 
ir
ular, stati
 polarization 
urrents, whi
h lead to an (average)axial magneti
 �eld (i.e., oriented along the rotation axis) proportional to the magnitude of theangular velo
ity. The 
orresponding ve
tor potential has a dipolar 
hara
ter. This is the well-known gyromagneti
 e�e
t, and the gyromagneti
 
oe�
ient was 
omputed here for a spheri
ally-shaped body.Slightly non-uniform rotations have also been investigated here by means of a linearized equationof motion for the ele
tri
 polarization. A diele
tri
 spheri
ally-shaped body rotating with a slightlynon-uniform angular velo
ity emits an ele
tromagneti
 �eld with the 
hara
teristi
 (atomi
 s
ale)frequen
y (slightly shifted by the uniform part of the angular velo
ity). A 
ondu
ting sphere insimilar 
onditions emits an ele
tromagneti
 �eld whose frequen
y is double the uniform part ofthe angular frequen
y.In 
on
lusion, we may say that a variety of ele
tromagneti
 phenomena appear as a result ofthe non-inertial motion of matter, in
luding stati
 ele
tri
 or magneti
 polarization, as well asemission of ele
tromagneti
 �eld.A
knowledgments. The author is indebted to the members of the Laboratory of Theoreti
alPhysi
s and Condensed Matter Physi
s in the Institute for Physi
s and Nu
lear Engineering,Magurele-Bu
harest, and the Seminar of the Institute for Atomi
 Physi
s, Magurele-Bu
harest,for many enlightening dis
ussions.Referen
es[1℄ S. J. Barnett, "Magnetizaton by rotation", Phys. Rev. 6 239-270 (1915).[2℄ A. Einstein and W. J. de Haas, "Experimenteller Na
hweiss der Amperes
hen Moleku-larstrome", Verhandl. Deut
he Physik. Ges. 17 152-170 (1915).[3℄ G. G. S
ott, "Review of gyromagneti
 ratio experiments", Revs. Mod. Phys. 34 102-109(1962).[4℄ S. P. Heims and E. T. Jaynes, "Thery of gyromagneti
 e�e
ts and some related magneti
phenomena", Revs. Mod. Phys. 34 143-165 (1962).[5℄ R. Huguenin nad D. Baldo
k, "Gyromagneti
 e�e
t in vanadium", Phys. Rev. Lett. 16 795-796 (1966).[6℄ A. Stephenson and I. F. Snowball, "A large gyromagneti
 e�e
t in greigite", Geophys. J. Int.145 570-575 (2001).[7℄ D. Censor and M. D. Fox, "First-order material e�e
ts in gyromagneti
 systems", J. Ele
trom.Waves and Appl. 16 93-94 (2002).[8℄ K. N. Masden, "A reversed gyromagneti
 e�e
t in 
hromium dioxide parti
les", J.Magn.&Mag. Mat. 260 131-140 (2003).[9℄ J. P. Geindre, P. Audebert and R. S. Marjoribanks, "Relativisti
 AC gyromagneti
 e�e
ts inultraintense laser-matter intera
tion", Phys. Rev. Lett. 97 085001 (2006) (1-4).



10 J. Theor. Phys.[10℄ Y. Hashimoto, S. Kobayashi and H. Munekata, "Photoindu
ed pre
ession of magnetizationin Ferromagneti
 (Ga, Mn)As", Phys. Rev. Lett. 100 067202 (2008) (1-4).[11℄ Q. S. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. M. Oh, Q. K. Ong, K. Rit
hie wnd A.Wei, "Gyromagneti
 imaging: Dynami
al opti
al 
ontrast using gold nanostars with magneti

ores", J. Amer. Chem. So
. 131 9728-9734 (2009).[12℄ P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566-613 (1900).[13℄ P. Drude, "Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetis
he und thermomag-netis
he E�e
te, 308 369-402 (1900).[14℄ H. A. Lorentz, The Theory of Ele
trons, Teubner, Leipzig (1916).[15℄ N. W. Ash
roft and N. D. Mermin, Solid State Physi
s, Saunders College,Philadelphia (1976).[16℄ G. D. Mahan, Many-Parti
le Physi
s, Plenum, NY (1980).[17℄ H. S
hubert and B. Wilhelmi, Nonlinear Opti
s and Quantum Ele
troni
s, Wiley, NY (1986).[18℄ M. Apostol and G. Vaman, "Ele
tromagneti
 �eld intera
ting with a semi-in�nite plasma",J. Opt. So
. Am. A26 1747-1753 (2009).[19℄ M. Apostol and G. Vaman, "Ele
tromagneti
 eigenmodes in matter. van der Waals-Londonand Casimir for
es", Progr. Ele
trom. Res. B19 115-131 (2010).[20℄ B. Barber and S. Puterman, "Observation of syn
hronous pi
ose
ond sonoluminis
en
e",Nature 352 318-320 (1991).[21℄ B. P. Barber, R. A. Hiller, R. Lofstedt, S. J. Putterman and K. Weniger, "De�ning theunknowns of the sonoluminis
en
e", Phys. Reps. 281 65-143 (1997).[22℄ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Produ
ts, eds. A. Je�reyand D. Zwillinger, 6th edition, A
ademi
 Press, San Diego (2000), p. 786, 7.248.1,2.
© J. Theor. Phys. 2011, apoma�theor1.theory.nipne.ro


