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Abstract

Non-inertial electromagnetic effects in matter, i.e. electromagnetic fields created by a non-
inertial motion of material bodies, are discussed within the Drude-Lorentz (plasma) model of
matter polarization. It is shown that an oscillatory motion of a point-like body, or wavelike
motion in an extended body give rise to electromagnetic fields with the same frequency as the
frequency of the original motion, while shock-like movements of a point-like body generate
electromagnetic fields with the characteristic (atomic scale) frequency of the bodies. Based
on these facts, a possible, qualitative explanation is put forward for sonoluminscence. The
polarization of a rigid body induced by rotations is discussed in various circumstances. A
uniform rotation produces a static electric field in a dielectric and a stationary current (and
a static magnetic field) in a conductor. The latter corresponds to the gyromagnetic effect
(while the former may be called the gyroelectric effect). Both fields are computed for a
sphere and the gyromagnetic coefficient is derived. A non-uniform rotation induces emission
of electromagnetic fields. The equations of motion for the polarization are linearized for
slight non-uniformites of the angular velocity and solved both for a dielectric and a conducting
sphere. The electromagetic field emitted by a dielectric spherically-shaped body in (a slightly)
non-uniform rotation has the characteristic (atomic scale) frequency of the body (slightly
shifted by the uniform part of the angular frequency). In the same conditions, a conducting
sphere emits an electromagnetic field whose frequency is double the uniform part of the
angular fequency.
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Introduction

The magnetization of a rotating body (Barnett effect),[1] or the rotation of a magnetized body
(Einstein-de Haas effect)[2] are both known as the gyromagnetic effect(s). By extension, the ro-
tation of a spin (magnetic dipole) in a magnetic field, or the rotation of an electric dipole in an
electric field are also called gyromagnetic (respectively gyroelectric) effects (phenomena). Such ef-
fects are attractive experimental tools, since they provide access to magnetic susceptibility, orbital
magnetic effects, magnetic properties of matter, including powders and granular matter, etc.[3|-
[11] Although these effects are known for a long time, the gyromagnetic coefficient for macroscopic
bodies remained a phenomenological parameter. Here, we derive the gyromagnetic coefficient for
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a sphere, by using the well-known Drude-Lorentz (plasma) model of matter polarization. His-
torically, the Drude-Lorentz model has proven useful in describing the electric conduction or the
optical properties of matter.[12|-[17] Recently, it was used for describing the reflection and re-
fraction, as well as plasmons, polaritons and van der Waals-London and Casimir forces in matter
interacting with the electromagnetic field.[18, 19]

Here, we put the problem in more general terms. Since the rotation associated with the gyro-
magnetic effect is a non-inertial motion, we can extend the resulting electromagnetic properties
to other non-inertial motions, like translations, for instance. We show here that a point-like body
in oscillatory motion, or a wave propagating in an extended body generate electromagnetic fields
with the same frequency as the frequency of the oscillatory motion or the wave frequency. A shock-
like movement of a point-like body generate electromagnetic fields with the characteristic (atomic
scale) frequency of the body. A possible, qualitative explanation of the sonoluminiscence[20, 21] is
advanced on this basis. It is also shown that a uniformly rotating dielectric sphere develops a static
(quadrupolar) electric field (which may be called the gyroelectric effect), while a uniformly rotat-
ing conducting sphere sustains stationary electric currents which generate a magnetic field. This
is the gyromagnetic effect, and the gyromagnetic coefficient is computed here for a spherically-
shaped body. Slightly non-uniform rotations are also discussed in the context of the linearized
equations of motion for the polarization. It is shown that a dielectric spherically-shaped body
in a slightly non-uniform rotation generates electromagnetic fields with the characteristic (atomic
scale) frequency of the body (slightly shifted by the uniform part of the angular frequency), while
a conducting sphere in the same conditions emits electromagnetic fields with the frequency equal
to the double of the uniform part of the angular velocity.

Non-inertial translations

We assume a simple model of homogeneous matter consisting of identical, mobile charges ¢ mov-
ing in a neutralizing background of charges —g. A local relative displacement u generates a
polarization charge density p and a polarization current density j given by

p= —nqdz’vu ) .] = nqu ) (1)

where n is the charge density. The polarization (dipole momentum of the unit volume) is given
by P = gnu, so the charge and current densities can also be written in the usual form p = —divP
and j = P. Let the background moves as a rigid body with velocity V and let mw?u be an elastic
force acting locally upon the charges, where m is the (reduced) mass of the charges and w, is a
characteristic frequency. The frequency w, is an atomic-scale frequency, corresponding to a model
of dielectrics. For conductors, where the electrons are quasi-free, w. = 0. The equation of motion
for the charge displacement reads

mii = —mV — mw?u — mya | (2)

where 7 is a damping coefficient (v < w,, for w. # 0). Usually, we set v = 0, as for an ideal body
(plasma). Similarly, we neglect the collision processes of the charges in the body. Making use of
the Fourier transforms we get

—iwV (w)
= 3
u(w) w? —w? 4wy )
and . V()
WV —iwt
— 4
u(t) 27 /dwa —w?+ z'uwe (4)

(where the integration must be performed in the lower half-plane).
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For an oscillatory motion with amplitude B and frequency € the velocity is given by V(t) =
BQ cos Qt and

BO?
U(t) = —m sin ¢t (5)
(where we dropped out the damping factor 7). For a wave with a wavevector k, V(t) = BQ cos(Q2t—
kx) and
BQ?
02 — 2

[

For a shock of duration T' (T' < t) and velocity Vo, V(t) = TVyd(t) and

u(t) = — sin(Qt — kx) . (6)

u(t) = TVhcosw,t . (7)

The polarization charges and currents corresponding to the polarization P = gnu give rise to
electromagnetic fields described by the Kirchhoft’s retarded potentials

O(R, 1) = [ dRAELES

(8)
j(R/,t—|R—R/|/c
AR, 1) =1 [ qRABIRRS
where the integration is performed over the volume of the body.
For a point-like body located at the origin we take u = vuy(¢)6(R) , where v is the volume of the
body. The polarization charge and current are given by

) 0
p = —nquv(wgrad)s(R) , j = nqv%cﬂR) : (9)

The potentials can easily be computed:

q)<]R,7 t) = nqu [% Buo(ta—tR/c) 4 Ruo(;%;R/c)} :

(10)

_ 1 Oug(t—R/c)

(We can check the Lorenz gauge divA + (1/¢)0®/0t = 0). Making use of equation (5) for an
oscillatory motion we get the potentials

B(R, 1) = — 209 [0 0 cos Ot — R/c) + ResinQ(t — R/c)|

O2—w2 [cR?

(11)

AR, 1) = —Brv e 0 cosQ(t — R/c)

T 02—w? R

where e is the unit vector along the direction of the motion. We can see that the body in oscillatory
motion radiates electromagnetic waves with the motion frequency 2. Making use of equation (7)
for a shock, we get

(R, t) = nquTVg [—CRT%wc sinwe(t — R/c) + B¢ coswe(t — R/C)} ,
(12)
AR, t) = —nquTVyFwesinw.(t — R/c)

and the radiation emitted has the characteristic frequency w,. of the body.
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Let us assume now that we have an infinitely-extending body subjected to a wave-like motion, as
given by equation (6). The potentials are given by

_ 8wBkngQ? cos(Qt—kR)
(I)(Rv t) - 02 —w?2 2—Q2%/c2

(13)

AR, 1) = - TR B

where we can introduce the velocity v = Q/k of the propagating wavelike motion of the back-
ground. We can see that the emitted radiation has the frequency 2 of the wave propagating in
the body. However, an ultrasound wave propagating in a liquid containing small gas bubbles can
squeeze these bubbles off (according to the current ideas in the field[20, 21]), such as to create
small, localized shocks, which ionize the gas and the liquid. Then, the moving charges can give rise
to an electromagnetic field with high frequencies (w.), as described by equations (12) for shocks.
This might be the origin of the sonoluminiscence.

We can see from the above discussion that a non-uniform translation of a body can generate
electromagnetic fields. This is a non-inertial electromagnetic effect.

Rotations. Static electric field

Let us assume that the rigid background is moving with an angular velocity Q. The motion of
the displacement u is described by

ﬁ:rx_§2>+2uxﬁ+ﬁx(rxﬁ)—w?u—vu, (14)

where the first term in the rhs comes from the non-uniformity of the angular velocity, the second
represents the Coriolis force and the third is the centrifugal force. We chose Q and @ oriented

along the z-axis, i.e. q = Qe, and q = Qe., and see immediately that u, = 0. We get two
coupled equations
iy + WAy + il — 2, = yQ + 202
(15)
iy + w2y, + iy, 4+ 2Q0, = —2Q + y0?

for the other two components of the displacement.

We consider first @ = const (a uniform rotation). Usually, Q < w.. Averaging out the high-
frequency oscillations of the solution of the homogeneous system of equations (15), we are left
with the (particular) solution (y = 0)

02 02
uzzxw—g,uy: el (16)

We can see that the centrifugal force pushes the charges towards the surface of the rotating body.
Since u does not depend on the time, the current, the vector potential and the magnetic field are
vanishing. We are left with a static scalar potential as given by equation (8). We compute this
scalar potential for a spherically-shaped body of radius a, for which the displacement field u reads

2

u= w_g<x7 Y, 0)9(& - R) ) (17)
where f(x) = 1 for z > 0 and 0(x) = 0 for z < 0 is the step function. The calculations are
straightforward. Making use of equation (1) we compute the polarization charge density (paying
attention to the derivatives of the step function), expand the Coulomb potential in equation (8)
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in Legendre polynomials and use the well-known addition theorem for the two vectors R and R/.
We get easily the potential

02 sa>—t(2R*—-2*), R<a,
d(R) = —47rnq§ (18)

c a? (3z2—1),R>a.

15R3 \ R2

We can see that this is a quadrupole potential, with a charge contribution inside the sphere. The
corresponding electric field E = —grad® can be easily computed from equation (18). We give
here the electric field inside the sphere,

1 0? 1
ER) = —%n o (:p, Y, 52) : (19)
We can see that the z, y-components of the electric field are proportional to the corresponding
components of the polarization (P = nqu, where u is given by equation (17)). In addition, there
appears also a z-component of the electric field, due to the non-uniform polarization along this
direction. It is also worth noting that the average of the electric field (and polarization) over the
volume of the sphere is vanishing. We can call this effect the gyroelectric effect.

Rotations. Gyromagnetic effect

For conductors, the situation is different. For w. = 0 (and Q = 0, v = 0), equations (15) become

iy — 2Qu, = 2Q? | i, + 2Qu, = yQ? . (20)
Again, averaging out the oscillating terms, we are left with the solution
1 1

We can see that the combined effect of the Coriolis and the centrifugal forces leads to the occurrence
of circular polarization currents in the plane transverse to the rotation axis. These currents (given
by j = nqgu) are stationary and divergence-free (divj = 0). They generate a magnetic field
H = curlA, where A is given by equations (8). Again, the calculations for a spherically-shaped
body are straightforward. This time, the contributions are dipolar (arising from the associated
Legendre function P). We get the vector potential

a*—3R? R<a,

mngs§2 5
c 245
BRZ R>a.
and the magnetic field inside the sphere
2mngs 5
H- (:cz, Yz, gaQ — (2R? — z2)) : (23)

We can see that, both inside and outside the sphere, the magnetic field has the specific two-poles
pattern of a magnetic dipole.

The average of the magnetic field over the volume of the sphere gives the only non-vanishing

contribution 16 )
H, — 21 g (24)
25¢
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The coefficient in front of the angular velocity €2 in equation (24) is the coeficient of the gyro-
magnetic effect. For non-magnetic matter H, is the magnetization, and = V H, is the magnetic
moment, where V' is the volume of the body. Equation (24) can then be written as

81 Q)

H= S e (25)
where () is the total (mobile) charge of the body, M is the mass of the body and L is the angular
momentum (with respect to the rotation axis). From the equation of motion dL/dt = & x Hy
in an external magnetic field Hy, we get dw/dt = yHy x 7, where v = (87/5)(Q/Mec) is the
gyromagnetic ratio. By analogy with the quantum particles, the numerical factor —167/5 in
equation (25) can be viewed as the g-factor in the relationship between the magnetic moment and
the angular momentum.

Similar calculations can be done for other shapes of the bodies, however, with appreciable technical
dificulties in many cases.

Time dependence. Dielectrics

In order to include the time dependence we linearize equations (15) by writing
Q= Qo+ (1) (26)

and
Uz y = Uz o + Uz 1 (t) (27)

where 0y = const, O (t) < Qp and u, 40 = const are given by equations (16) (where € is replaced
by ). It is not necessary to have u, 41 (t) < uy 0. Upon linearization equations (15) become

uxl + w?“xl + ’Yuxl - QQoﬂyl - yﬁl + 21‘9091 s
(28)
ﬂyl + W?“yl + fyuyl + 2Qty1 = =€l + 2y €2 .

We take the Fourier transform of these equations and omit for the moment the argument w in
Uz (w) and ©Q(w). Equations (28) read

(w? — W2 + iwy)ug — 2iQwu,y = C
(29)

2

(w? — W2 + iwy)uy + 2iQwuy = D |

where

C = (iyw — 2200) , D = —(izw + 2y$)2; . (30)

We note the symmetry of the system of equations (29) for z «— y and Qy; «— —1. The
solutions of equations (29) can readily be obtained. For y < w, (which is the realistic condition)
they have four poles +w. 4 —iv/2 in the lower half-plane. We take the inverse Fourier transform
(the integration must be performed in the lower half-plane) and get

U1 () = Q1 (we) coswet (y cos Qpt — xsin Qot)
(31)
U1 (1) = = (we) coswet (ysin Qot + z cos Qot) .

In the amplitudes of the oscillating functions in equations (31) we used the approximation y < w,,
and assumed also Q;(w.) = Qj(w.) (and put v = 0). As a consequence of this approximation,
the displacement components given by equations (31) are determined solely by the non-uniform
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angular velocity (the Q- term in equation (14)), the role of the Coriolis force being that of shifting
the frequency w, to w. £ €)y. Within this linear approximation the centrifugal force does not con-
tribute (it determines the constant displacements u, ). Comparing equations (16) with equations
(31), we can see that, although ; < Qy < w,, it is possible to have g, > u, 4, if the Fourier
component 4 (w,) is sufficiently large (as, for instance, for shocks). Further on, we leave aside the
displacements u, .o and focus ourselves on the effect of the time-dependent components ug ,1. It is
easy to see from equations (31) that the displacement u performs a wobbling motion, including a
rotation with frequency € and a radial oscillation with freuency w. (u2; +uz, = QF (we)r? cos® wet).

We simplify further equations (31) by noticing that they imply oscillations with the frequencies
w. £ €y where we may neglect {2y in comparison with w.. We get

Uz (t) = Qycoswet , uy(t) = =z coswet . (32)

Making use of equations (1), we can see that the polarization charge density is vanishing for a
sphere (div [u;6(a — R)] = 0, where a is the radius of the sphere); we are left with the polarization
current density

J1 = n¢w(—y, )0(a — R) sinw,t , (33)

which we use to compute the vector potential from equations (8). The vector potential A given
by equations (8) contains the "retarded" Coulomb potential e*<B~Rl/¢/|R, — R/|. This potential
has an expansion in Legendre polynomials P,, whose coefficients are given in Ref. [20]. It reads
SAR-R/|
“R-R']
(34)
= %T(RR’)—U? Yon—0(2n 4+ 1) Jpi1/2(AR<)Hpy1/2(ARS ) Py (cos ©)

where J,, 11,2 and H,/, are the Bessel and, respectively, Hankel functions of the first rank, ©
is the angle between the two vectors R and R’, R. = min(R, R'), R~ = max(R, R’) and A is
any real parameter (A = w./c). We limit ourselves to the radiation zone R > a, AR > 1 and a
macroscopic body for which Aa > 1. We get the vector potential

_dmnga’ey | wea

AR) o sin — (—y,x)sinw.(t — R/c) . (35)

This vector potential has a dipolar character and satisfies div A = 0. We can see that a dielectric
spherically-shaped body which rotates about an axis with a (slightly) non-uniform angular velocity
(Q = Qo+ D, Qo = const, 0 £0, 0 < ) emits radiation with the frequency ~ w,., where w,
is the characteristic (atomic scale) frequency of the body. The amplitude of the emitted field is
governed by the Fourier transform €;(w,.) of the angular velocity.

Time dependence. Conductors

In order to cary out the linearization procedure for conductors (w. = 0) we introduce the new
variables v, , = 1., and write equations (15) as (y = 0)

Uy — 20, = yQ + 20?2,
(36)
Uy + 200, = —2Q + yQ* .

Here we set Q = Qo + Qy(¢t) and v,y = vy 40 + Upy1, Where Q) < Qp, Qy = const and vy =
Q0y/2, vyo = —Qox /2. The constant components v, ,o are given by eqaution (21) and causes the
gyromagnetic effect. We focus here on the time dependent components. The Fourier transforms
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of the solution of the linearized system of equations (36) have two poles in the lower half-plane at
+2€). The corresponding displacement field is given by

Uyl = _%Ql (290)({17 sin QQot — Yy Ccos QQot) s
(37)

w1 = —30(2Q0) (z cos 2Qot + y sin 2Q0t)

In equations (37) ©;(2€) is the Fourier transform Q;(w) for w = 2§ (we have assumed Q7 (w) =
Q1(w)). In the subsequent calculations we omit the argument 2Qq and write simply € for O (2€).

Now, it is easy to compute the electromagnetic potentials given by equations (8). Acording to
equations (1) the polarization charge and curent densities for a sphere of radius a are given by

p = 3ngth [29((1 — R) — %5((1 — R)} sin 2Qt ,
(38)
Jj =192 [(z, y) cos 2Qt + (y, —x) sin 2Qt] O(a — R) .

The calculations are straightforward and go in the same manner as for a dielectric sphere described
above. We give here the leading terms for the realistic conditions Qpa/c < 1 and QoR/c < 1, i.e.
for wavelengths ¢/€y much longer than the radius of the sphere and the distances of interest (this
is the opposite to the approximation used for a dielectric sphere, where the relevant frequency w,
corresponds to very short wavelengths). Under these conditions we get the scalar potential

4mnga®l .
dR) = WPQ(COS 0) sin 2Qy(t — R/c) (39)
and the vector potential
4 e
AR) = —% [(z, y) cos 2 (t — R/c) + (y, —) sin 2Q(t — R/c)] (40)

(where cos = z/R). We can check immediately the Lorentz gauge divA + (1/¢)0®/0t = 0
(within our approximation). The retarded contribution to equations (39) and (40) (2QyR/c in the
oscillatory functions) can be omitted, and the field assumes, in fact, the aspect of a stationary field.
We can see that a conducting sphere which rotates about an axis with a (slightly) non-uniform
angular velocity emits (quadrupolar) radiation with the frequency 2€, where €2 is the uniform
part of the angular velocity. The amplitude of this radiation is governed by the non-uniform part
2, of the angular velocity.

Concluding remarks

Electromagnetic phenomena arising from the non-inertial motion of matter have been investigated
in this paper by using the well-known Drude-Lorentz (plasma) model of polarizable matter and
the corresponding equation of motion for the electric polarization. It was shown that a point-like
body subjected to an oscillatory motion emits an electromagnetic field with the same frequency as
the frequency of the oscillatory motion; while the same body subjected to a shock-like movement
emits an electromagnetic field with the characteristic (atomic-scale) frequency of the body. A
wave propagating in an infinitely extended body generates an electromagnetic field with the same
frequency as the wave frequency. If there are inhomogeneities in the body which can be squeezed
off by the wave (as, for instance, gas bubbles in a liquid subjected to an ultrasound wave), then the
locally ionized charges may undergo shock-like movements, and the emission has the frequency of
the characteristic (atomic scale) frequency of the body. This may explain qualitatively the origin
of the sonoluminiscence.[20, 21]
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It was also shown that a dielectric sphere in uniform rotation develops a static polarization (and
electric field), which contanis a quadrupolar term. This may be called a gyroelectric effect. The
average of this electric field over the volume of the sphere is vanishing. Similarly, a conducting
sphere in uniform rotation sustains circular, static polarization currents, which lead to an (average)
axial magnetic field (i.e., oriented along the rotation axis) proportional to the magnitude of the
angular velocity. The corresponding vector potential has a dipolar character. This is the well-
known gyromagnetic effect, and the gyromagnetic coefficient was computed here for a spherically-
shaped body.

Slightly non-uniform rotations have also been investigated here by means of a linearized equation
of motion for the electric polarization. A dielectric spherically-shaped body rotating with a slightly
non-uniform angular velocity emits an electromagnetic field with the characteristic (atomic scale)
frequency (slightly shifted by the uniform part of the angular velocity). A conducting sphere in
similar conditions emits an electromagnetic field whose frequency is double the uniform part of
the angular frequency.

In conclusion, we may say that a variety of electromagnetic phenomena appear as a result of
the non-inertial motion of matter, including static electric or magnetic polarization, as well as
emission of electromagnetic field.
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