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2 J. Theor. Phys.goes like d−n+4). As it is well known, the origin of these fores resides in the zero-point energy ofthe eletromagneti �eld (vauum �utuations).The need for similar eletromagneti fores ating between marosopi bodies has been pointedout long ago.[11℄-[15℄ The marosopi bodies bring their own harateristis with respet to theeletrial polarization (like plasmons, polaritons, surfae e�ets, et), in omparison with individ-ual quantum partiles. On the other hand, the experimental interest lies mainly in marosopibodies, espeially of �nite size (like spheres).[16℄-[35℄ A lassial ounterpart of the quantum vander Waals-London and Casimir fores is therefore expeted.A method for omputing the eletromagneti fores ating between marosopi, polarizable bodieshas been put forward reently.[36, 37℄ It is based on representing the polarization by a slightdisplaement �eld u(R, t) of the mobile harges (funtion of position R and the time t), subjetedto the lassial (Newton) equation of motion, within the Lorentz-Drude (plasma) model of matterpolarization. The eletromagneti �eld is omputed by using this polarization, and the equationof motion is solved for the displaement �eld u. For interating bodies we get oupled equations ofmotion, whih are solved for the eigenfrequenies. The energy is omputed as the orretion to thezero-point energy of the eletromagneti �eld, as brought about by the interation, and the fore isthereby derived. Making use of this method, the Casimir fore ating between two half-spaes hasbeen derived (∼ 1/d4), as well as the van der Waals-London fore for two half-spaes (∼ 1/d3)[36℄and the van der Waals fore ating between a point-like body and a half-spae (∼ 1/d4).[37℄ Itwas shown in Refs. [36, 37℄ that the Casimir fore is governed by the surfae plasmon-polaritonmodes, while the van der Waals�London fore arises from surfae plasmons.We present here a series of omputations for the van der Waals-London fore involving spherialbodies (like spheres, spherial shells and point-like bodies) and a half-spae. The van der Waals-London fore for a half-spae oupled to any body of the type onsidered here goes like 1/d4.The spherial shells and the point-like bodies behave very muh alike the spheres, exept for thelak of (internal) polarization. This rather unrealisti feature introdues some partiularities. Forinstane, whenever suh a "onduting" body appears, the fore is repulsive. An interesting aseours for a pair of "onduting" spherial shells, or the pair of "onduting" spherial shell-point-like body, or two "onduting" point-like bodies, where the fore is repulsive and goes like
1/d7/2.Lorentz-Drude modelThe well-known Lorentz-Drude model[38℄-[43℄ of (homogeneous) polarizable matter onsists ofidential harges q, with mass m and density n, moving in a rigid neutralizing bakground. Aslight displaement �eld u(R, t) is subjeted to the equation of motion

mü = q(E + E0) − mω2
cu − mγu̇ , (1)where E is the eletri �eld produed by the polarization harges and urrents, E0 is an externaleletri �eld, ωc is a harateristi frequeny of the body and γ is a damping fator. For dieletris

ωc 6= 0, for ondutors ωc = 0. Sine the polarization is given by P = nqu, it is easy to see thatequation (1) leads to the well-known eletri suseptibility
χ = −

ω2
p

4π
· 1

ω2 − ω2
c + iωγ

(2)and dieletri funtion ε = 1+4πχ, where ωp =
√

4πnq2/m is the plasma frequeny. We note theabsene of the Lorenz fore in equation (1), whose ontribution is quadrati in the displaement



J. Theor. Phys. 3�eld u and, onsequently, it may be negleted. However, we an inlude an external magneti�eld in equation of motion (1), if neessary.The displaement �eld u produes polarization harge and urrent densities given by
ρ = −divP = −nqdivu , j =

∂P

∂t
= nqu̇ , (3)whih an be used to ompute the eletromagneti potentials

Φ(R, t) =
∫

dR′ ρ(R′, t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′, t−|R−R′|/c)
|R−R′|

(4)(subjeted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the eletri�eld E in equation (1), whene we an get the displaement u. This way, we an ompute theoupled polarization modes for interating bodies, the external �elds in equation (1) being themutual �elds by whih the bodies at one upon another. The eigenfrequnies of these oupledequations of motion are the relevant frequenies for the zero-point energy of the eletromagneti�eld.We fous here on the non-retarded regime (van der Waals-London fores), where the �elds varyslowly over the size of the bodies, and the vetor potential A (as well as the urrent density j)may be negleted (ωl/c ≪ 1, where ω is the frequeny of the �elds and l is a sale of the bodiessize). As it is well known, this approximation is also alled the quasi-stati approximation.Half-spaeFor a half-spae extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step funtion, and get the polarizationharge density

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) . (6)We use the Fourier deomposition of the type

u(r, z; t) =
1

(2π)3

∫

dkdωu(k, z; ω)e−iωt+ikr , (7)and may omit oassionally the arguments k, ω, writing simply u(z), or even u. As a rule, weomit everywhere the argument ω. Likewise, we leave aside the fator nq, but restore it in the �nalformulae. The well-known deomposition[44℄
1

|R− R′| =
1

2π

∫

dk
1

k
eik(r−r′)e−k|z−z′| , (8)is used for the Coulomb potential. The alulations are straightforward and we get the Fouriertranforms of the salar potential

Φ(k, z) = −2πi
k

∫ ∞

d
dz′kue−k|z−z′| − 2π

k
∂
∂z

∫ ∞

d
dz′uze

−k|z−z′| . (9)In order to ompute the eletri �eld it is onvenient to refer the in-plane vetors (i.e., vetorsparallel with the surfae of the half-spae) to the vetors k and k⊥, where k⊥ is perpendiular to
k and of the same magnitude as k; for instane, we write

u = u1
k

k
+ u2

k⊥

k
(10)



4 J. Theor. Phys.and a similar representation for the eletri �eld parallel with the surfae of the half-spae. It isworth paying attention to the orret derivative of the modulus funtion, aording to the equation
∂2

∂z2
e−|z−z′| = k2e−k|z−z′| − 2kδ(z − z′) . (11)We get the eletri �eld

E1 = −ikΦ = −2πk
∫ ∞

d
dz′u1e

−k|z−z′| + 2πi ∂
∂z

∫ ∞

d
dz′uze

−k|z−z′| ,

Ez = −∂Φ
∂z

= 2πi ∂
∂z

∫ ∞

d
dz′u1e

−k|z−z′| + 2πk
∫ ∞

d
dz′uze

−k|z−z′| − 4π‘uzθ(z − d)
(12)(and E2 = 0). We an hek easily the equalities

ikE1 +
∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(d)δ(z − d) , (13)whih is the Gauss's law, and
∂E1

∂z
− ikEz = 0 , (14)whih re�ets the fat that the �eld E derives from the gradient of the potential (E = −gradΦ).From equation (13), we an hek the transversality ondition divE = 0 for the eletri �eldoutside the half-spae (z < d).Making use of these relations (equations (13) and (14)) in the equation of motion (1) (with γ = 0and for z > d), and taking into aount that divE0 = 0 and ∂E01/∂z− ikE0z = 0 in this equation,we get

∂2u1

∂z2 − k2u1 = 0 , (15)whose solution is u1 = A1e
−kz (and uz = iA1e

−kz), where A1 is a onstant. We use these solutionsfor u1 and uz in equations (12) in order to ompute the �eld. We get
E1 = −2πA1e

−kz , z > d ,

E1 = −2πA1e
k(z−2d) , z < d

(16)(and ikEz = ∂E1/∂z, E2 = 0 everywhere). The equation of motion (1) an now be written as
(ω2 − ω2

c −
1

2
ω2

p)A1e
−kz = − q

m
E01 , (ω2 − ω2

c )u2 = − q

m
E02 , (17)where we an reognize the frequeny ωp/

√
2 of the surfae plasmons.[45℄The sphereWe onsider a sphere of radius a, with harge density n0q, plaed at the origin. We leave aside forthe moment the fator n0q , whih will be restored in the �nal formulae. For small radii a, andaording to the symmetry of the problem, the displaement �eld of the sphere an be taken as

u = (βx, βy, αa)θ(a − R) , (18)where α and β are onstants. Indeed, the �eld generated by the half-spae in the region z < dis given by the (inverse) Fourier transform of the seond row in equations (16). For the in-plane�eld we get
E⊥(r, z) = −A1

2π

∫

dk
k

k
eikrek(z−2d) , (19)



J. Theor. Phys. 5and a similar equation for the omponent Ez(r, z). The integral in equation (19) implies the Besselfuntion of the �rst order J1(kr), and the remaining integral is given in Ref. [44℄, p. 686 (6.611.1).We get the �elds
Ex ≃ −i

A1

8d3
x , Ey ≃ −i

A1

8d3
y , Ez ≃ i

A1

4d2
, (20)generated by the half-spae in the region of the sphere (for a ≪ d). Therefore, the displaement�eld u hosen for the sphere in equation (18) is justi�ed. The harge density orresponding to thedisplaement �eld given by equation (18) (ρ = −divu) is

ρ = −divu =

= −2βθ(a − R) + 2
3
βaδ(a − R) + αaP1(cos θ)δ(a − R) − 2

3
βaP2(cos θ)δ(a − R) ,

(21)where Pn(cos θ) are the Legendre polynomials and cos θ = z/R (= z/a). Within the dipoleapproximation we may neglet the P2-term in the above equation, whih amounts to putting
β = 0. Consequently, the displaement �eld redues to u = αa(0, 0, 1)θ(a − R) and the hargedensity is ρ = αaP1(cos θ)δ(a − R). We ompute the (non-retarded) salar potential given byequations (4) for this harge density, by using the well-known deompositon of the Coulombpotential

1

|R − R′| =
∑

n=0

Rn
<

Rn+1
>

Pn(cos Θ) (22)and the addition formula (Ref. [44℄, p. 965, 8.814)
Pn(cos Θ) = Pn(cos θ)Pn(cos θ′) + 2

n
∑

m=1

(n − m)!

(n + m)!
P m

n (cos θ)P m
n (cos θ′) cos m(ϕ − ϕ′) , (23)where P m

n are the assoiated Legendre funtions, R< = min(R, R′), R> = max(R, R′), (θ, ϕ)de�ne the diretion of R, (θ′, ϕ′) de�ne the diretion of R′ and Θ (cos Θ = sin θ sin θ′ cos(ϕ −
ϕ′) + cos θ cos θ′ ) is the angle between R and R′. We get

Φ(R) = 4π
3

αaz , R < a ,

Φ(R) = 4π
3

αa4 z
R3 , R > a .

(24)The polarization �eld inside the sphere is Ez = −(4π/3)αa, and the equation of motion (1)beomes
(ω2 − ω2

c0 −
1

3
ω2

p0)αaθ(a − R) = − q

m
E0z , (25)where ωc0 denotes the harateristi frequeny of the sphere, ωp0 =

√

4πn0q2/m is the plasmafrequeny of the sphere and the external �eld E0z is the �eld generated by the half-spae in-side the sphere. The Fourier transform of this �eld, as given by equations (16), is E0z(k, z) =
2πiA1e

k(z−2d) ≃ 2πiA1e
−2kd (z ≪ d). The Fourier transform of the funtion θ(a − R) enteringequation (25) an be omputed easily. For ak ≪ 1 it is given by πa2, so that equation (25)beomes

(ω2 − ω2
c0 −

1

3
ω2

p0)αa3 = − i

2π
ω2

pA1e
−2kd . (26)We reognize in equation (26) the lowest (dipole) frequeny ωp0/
√

3 of the spherial plasmons.[46℄



6 J. Theor. Phys.The �eld produed by the sphere in the region of the half-spae (the external �eld for the half-spae) an be obtained from equations (24) (for R > a). We notie that z/R3 = −∂(1/R)/∂z,and the Fourier transform of the funtion f(R) = 1/R is[44℄
f(k, z) =

∫

dr
1

R
e−ikr = 2π

∫

z

dRJ0(k
√

R2 − z2) = 2π
e−k|z|

k
(27)(where J0 is the Bessel funtion of the zeroth order). Consequently, the �eld is given by

E01(k, z) = −8π2i

3
αa4ke−kz , E0z =

8π2

3
αa4ke−kz (28)(and E02 = 0) and equation (17) beomes

(ω2 − ω2
c −

1

2
ω2

p)A1 =
2πi

3
ω2

p0αa4k (29)(and u2 = 0).The two oupled equations (26) and (29) give the dispersion equation
(ω2 − ω2

c −
1

2
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
1

3
ω2

pω
2
p0ake−2kd . (30)Fore between a sphere and a half-spaeWithin the dipole aproximation the oupling strength ak is very weak (ak ≪ 1). We may onsiderthe rhs of equation (30) as a small perturbation. Introduing the notations

A2 = ω2
c +

1

2
ω2

p , B2
0 = ω2

c0 +
1

3
ω2

p0 (31)the solutions of equation (30) an be written as
ω1 ≃ A +

ω2
p
ω2

p0

6A(A2−B2

0
)
ake−2kd ,

ω2 ≃ B0 −
ω2

p
ω2

p0

6B(A2−B2

0
)
ake−2kd

(32)(we note that A 6= B0). In the non-retarded limit we should impose in fat the onditions
A, B0 ≪ ωc, ωc0, ωp, ωp0 (and Aa/c, B0a/c ≪ 1). However, bearing in mind that we are interestedonly in the hange in energy brought about by the interation, we may leave aside suh restritiveonditions, and view, indeed, the rhs of equation (30) as a small perturbation. This is a speialfeature of the lassial approah, in ontrast with quantum-mehanial alulations, where we havediret aess to the perturbation energy (see, for instane, Ref. [12℄). Making use of equations(32), we ompute the hange ∆E brought about by the interation in the zero-point energy of theeletromagneti �eld (per unit area). We get

∆E = − ~a

96π
·

ω2
pω

2
p0

AB0(A + B0)
· 1

d3
(33)and the fore (leading ontribution in powers of 1/d)

F = − ~a

32π
·

ω2
pω

2
p0

AB0(A + B0)
· 1

d4
(34)



J. Theor. Phys. 7(where ~ is Plank's onstant). We note that in suh lassial alulations the van der Waals-London fore arises from the deloalized energy of the stati eletromagneti �eld ating upon theross-setional area.Half-spae and a spherial shellWe onsider a spherial shell of radius a and small thikness ε, plaed at the origin. Aording toour disussion above for the sphere, we take the displaement �eld as
u = αεa(0, 0, 1)δ(R − a) (35)and, within the dipole approximation, the harge density is given by ρ = −αεaP1(cos θ)δ′(R− a).The potential is vanishing inside the sphere and it is given by Φ(R) = 4παεa3z/R3 outside thesphere (R > a); it is disontinuous at the shell, as expeted. Sine z/R3 = −∂f/∂z, where

f = 1/R and f(k, z) = 2πe−k|z|/k, we get easily the �eld produed by the shell in the region ofthe half-spae (the external �eld for the half-spae), E01 = −8π2iαεa3ke−kz, so that equation (17)beomes
(ω2 − ω2

c −
1

2
ω2

p)A1 = 2πiω2
p0αεa3k . (36)We assume that the shell has not an (internal) polarization (this may be a rather unrealistiondition, whih an be removed by spei� alulations for a shell of �nite thikness). Equation(1) beomes

(ω2 − ω2
c0)αεaδ(R − a) = − q

m
E0z , (37)where E0z is the �eld reated by the half-spae in the region of the shell. Its Fourier transform,aording to equations (16), is E0z(k, z) = 2πiA1e

k(z−2d) ≃ 2πiA1e
−2kd (z ≪ d). The Fouriertransform of the funtion δ(R − a) is ≃ 2πa, and we get, from equation (37),

(ω2 − ω2
c0)αεa2 = − i

4π
ω2

pA1e
−2kd . (38)By equations (36) and (38) we get the dispersion equation

(ω2 − ω2
c −

1

2
ω2

p)(ω
2 − ω2

c0) =
1

2
ω2

pω
2
p0ake−2kd (39)(whih, noteworthy, does not depend on the thikness ε). Up to a numerial fator, this equationis idential with equation (30) for a half-spae and a sphere. However, there appear here somepartiularities. For ωc0 6= 0 the fore is given by

F = −3~a

64π
·

ω2
pω

2
p0

ωc0A(A + ωc0)
· 1

d4
, (40)while for ωc0 = 0 ("onduting" shell), the fore is

F =
3~a

64π
·
ω2

pω
2
p0

A3
· 1

d4
; (41)it is a repulsive fore. This is due to the absene of the (internal) polarization of the shell.Half-spae and a point-like bodyThe displaement �eld of a point-like partile plaed at the origin an be written as

u = a3u0δ(R) , (42)



8 J. Theor. Phys.where u0 is a onstant vetor and a is a measure for the "radius" of the body. We assume that thebody has a harge density n0q (neutralized by the rigid bakground). This fator is left aside forthe moment, but it is restored in the �nal formulae. The potential an be omputed immediately,
Φ(R) = a3u0R

R3
, (43)and the �eld reated by the body is given by

E01(k, z) = −2πa3k(u01 + iu0z)e
−k|z| (44)(and E02(k, z) = 0). Equations (17) beome

(ω2 − ω2
c −

1

2
ω2

p)A1 =
1

2
ω2

p0a
3k(u01 + iu0z) . (45)There is no internal (polarization) �eld, and the equation of motion (1) an be written as

(ω2 − ω2
c0)a

3u0δ(R) = − q

m
E0 . (46)for the point-like body. The Fourier transform of the funtion δ(R) is δ(z), whih we approximateby 1/a for z "inside" the body. The Fourier transforms of the half-spae �eld are given by equations(16), so we get

(ω2 − ω2
c0)a

2u01 =
1

2
ω2

pA1e
−2kd , (ω2 − ω2

c0)a
2u0z = − i

2
ω2

pA1e
−2kd . (47)These equations, together with equation (45), lead to the dispersion equation

(ω2 − ω2
c −

1

2
ω2

p)(ω
2 − ω2

c0) =
1

2
ω2

pω
2
p0ake−2kd , (48)whih is idential with the equation for the ouple half-spae-spherial shell. Consequently, thefore between a half-spae and a point-like partile is the same as the fore between a half-spaeand a spherial shell.Two spheresWe onsider a sphere of radius a plaed at the origin, with the harge density n0q, and a seondsphere, of radius b, plaed at z = d, with the harge density nq. Within the same dipole ap-proximation (with oe�ients α and, respetively, α′), we use the results desribed above for thesphere. For instane, for the sphere plaed at the origin, equation (25) gives

(ω2 − ω2
c0 −

1

3
ω2

p0)παa3 = − q

m
E

(2)
0z , (49)where E

(2)
0z is the z-omponent of the Fourier transform of the �eld produed by the seond sphereat the origin. Similarly, for the seond sphere we have the equation

(ω2 − ω2
c −

1

3
ω2

p)πα′b3 = − q

m
E

(1)
0z , (50)where the �eld E

(1)
0z is given by

E
(1)
0z =

8π2

3
αa4ke−k|z| , (51)



J. Theor. Phys. 9aording to equation (28), and the �eld produed by the seond sphere (displaed by the distane
d) is

E
(2)
0z =

8π2

3
α′b4ke−k|z−d| . (52)Introduing these �elds in equations (49) and (50), we get the dispersion equation

(ω2 − ω2
c −

1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
4

9
ω2

pω
2
p0abk2e−2kd . (53)With the notations B2 = ω2

c + ω2
p/3, B2

0 = ω2
c0 + ω2

p0/3 we get the fore (per unit area)
F = −~ab

12π
·

ω2
pω

2
p0

BB0(B + B0)
· 1

d5
(54)for distint substanes (B 6= B0). For idential substane, the fore is given by

F = −~ab

24π
·

ω4
p

B3
· 1

d5
. (55)We an se that the fore goes like d−5 (leading ontribution in powers of 1/d).Sphere-spherial shell oupleWe onsider a sphere of radius a plaed at the origin, with the harge density n0q, and a spherialshell of radius b and thikness ε, with the harge density nq, plaed at z = d. The results obtainedabove an be transribed immediately for this situation. The dispersion equation is

(ω2 − ω2
c0 −

1

3
ω2

p0)(ω
2 − ω2

c ) =
4

3
ω2

pω
2
p0abk2e−2kd . (56)For ωc 6= 0 the fore is given by

F = −~ab

4π
·

ω2
pω

2
p0

ωcB0(B0 + ωc)
· 1

d5
, (57)with B0 de�ned above. For a "onduting" shell (ωc = 0) the fore is repulsive,

F =
~ab

4π
·
ω2

pω
2
p0

B3
0

· 1

d5
. (58)Two spherial shellsSimilarly, the results desribed above an be used for two spherial shells. With the same notationsand onventions as above, the dispersion equation for two spherial shells is given by

(ω2 − ω2
c0)(ω

2 − ω2
c ) = ω2

pω
2
p0abk2e−2kd . (59)For ωc, ωc0 6= 0 we get the fore

F = −3~ab

16π
·

ω2
pω

2
p0

ωcωc0(ωc + ωc0)
· 1

d5
. (60)If one shell is "onduting" (say ωc0 = 0), the fore is repulsive, given by

F =
3~ab

16π
·
ω2

pω
2
p0

ω3
c

· 1

d5
. (61)



10 J. Theor. Phys.An interesting situation ours if both shells are "onduting" (ωc = ωc0 = 0). In this ase thesolution of the dispersion equation is ω = (ab)1/4√ωpωp0k
1/2e−kd/2, and the (repulsive) fore isgiven by

F =
15~(ab)1/4√ωωp0

4
√

2π
· 1

d7/2
. (62)Combinations with a point-like body. For the ouple sphere-point-like body the dispersionequation is given by

(ω2 − ω2
c0 −

1

3
ω2

p0)(ω
2 − ω2

c ) =
2

3
ω2

pω
2
p0abk2e−2kd ; (63)it is the same as equation (56), exept for a fator 2/3 instead of 4/3 in the rhs of this equation.The fore an be dedued easily from the results for the ouple sphere-spherial shell. It goeslike 1/d5, and it is repulsive for a "onduting" point-like body. Similarly, the ouple spherialshell-point-like body is governed by the dispersion equation orresponding to a pair of spherialshells.Finally, we onsider two point-like bodies, one, with "radius" a and harge density n0q, plaed atthe origin, another, with "radius" b and harge density nq, plaed at z = d. We use displaementsas those given by equation (42), with two distint onstant vetors u0 and v0. The alulationsare similar with those desribed above for one point-like body plaed at the origin. The di�ereneomes from the seond body, displaed by the distane d. The �eld generated by this body issimilar with the �eld given by equation (44), where e−k|z| is replaed by e−k|z−d|. The dispersionequation is the same as equation (59) for two spherial shells.Conluding remarksWe have presented in this paper a series of omputations regarding the lassial interation of theeletromagneti �eld with marosopi, polarizable bodies, in the non-retarded regime (quasi-stati�eld), and derived the lassial ounterpart of the van der Waals-London fores. Spei�ally, thealulations were arried out for any ouple of the following bodies: one half-spae (a semi-in�nitesolid with a plane surfae) and spheres, spherial shells and point-like bodies. The polarization isrepresented by a displaement �eld subjeted to the lassial (Newton) equation of motion. Theoupled equations of motion for two interating bodies are solved for the eigenfrequenies, and theenergy is estimated as the orretion, due to the interation, to the zero-point energy of the �eld(vauum �utuations). The fore is derived from the variation of this energy with the separationdistane d. We have limited ourselves to the non-retarded regime, orresponding to the van derWaals-Lndon fores (small separation distanes), a situation whih is of interest experimentally.The dipole approximation has been used for the spherial bodies (whih implies small dimensionsof the bodies in omparison with the separation distane).The van der Waals-London fore for a half-spae and any other body onsidered here goes like

1/d4. The fore ating between two spheres goes like 1/d5. These fores are attrative. Thespherial shells and the point-like bodies behave very muh alike the spheres, exept for theabsene of an (internal) polarization. This, rather unrealisti, feature may give rise to somepartiularities, espeially where suh bodies are "onduting". For instane, a "onduting" shell,or a "onduting" point-like body oupled to any other body gives rise to a repulsive fore. If bothshells, or point-like bodies are "onduting", the fore is repulsive and goes like 1/d7/2. A greatvariety of interating, polarizable, ompat bodies an be investigated by the method presentedhere (for instane, polarizable spherial shells of �nite thikness), with a large variety of resultsregarding the lassial ounterpart of the van der Waals-London fore ating between marosopi
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