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Abstract

Electromagnetic forces are computed in the non-retarded regime (van der Wals-London
forces) for any pair of the following bodies: one half-space (a semi-infinite solid with a plane
surface), spheres, spherical shells and point-like particles. The force acting beween a half-
space and any other body considered here goes like d=* (for two half-spaces it goes like
1/d®), where d is the separation distance between the bodies. The force acting between two
spheres goes like 1/d°. These forces are attractive. The spherical shells and the point-like
bodies behave very much alike the spheres, except for the lack of (internal) polarization. This
latter (rather unrealistic) feature introduces some particularities. Whenever a "conducting"
particle of this type appears (like "conducting" spherical shells or point-like bodies), the
force is repulsive. For instance, a "conducting" spherical shell, or a "conducting" point-
like body, gives always a repulsive force. Two "conducting" spherical shells, or the pair of
"conducting" spherical shell-point-like body, or two "conducting" point-like bodies interact
with a repulsive force which goes like d=7/2. The calculations are performed within the
Lorentz-Drude (plasma) model of polarizable matter, by using the dipole approximation for
the spherical particles. The coupled equations of motion of the polarization are obtained for
each pair of bodies and solved for the electromagnetic eigenfrequencies. The force is derived
from the variation of the zero-point energy of the electromagnetic field with the separation
distance.

PACS: 03.50.De; 41.20.-q; 34.35.-+a; 42.50.Wk
Keywords: FElectromagnetic forces; van der Waals-London force; vacuum fluctuations
Introduction

As it is well-known,[1, 2| the van der Waals-London and Casimir forces have been derived origi-
nally by quantum-mechanical calculations in the non-retarded (small distances) and, respectively,
retarded (longer distances) regime (following the original quantum-mechanical derivation of the
van der Waals-London forces[3]-[5]). We focus in this paper on the non-retarded regime (van der
Waals-London force), which is more accessible experimentally. The van der Waals-London force
acting between a quantum particle (neutral atom) and a half-space (a semi-infinite solid with a
plane surface) goes like 1/d*, where d is the separation distance between the two bodies. For a
pair of neutral atoms the force goes like 1/d”. Subsequently, such results have been re-derived
by using the quantum-statistical theory of the electromagnetic fluctuations|6]-[8] and the source
theory.[9, 10] In particular, the force acting between two half-spaces have been obtained, which
goes like 1/d®. In general, if the force acting between two particles goes like d~", then the force
between a particle and a half-space goes like d~"™ (and the force acting between two half-spaces
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goes like ™). As it is well known, the origin of these forces resides in the zero-point energy of
the electromagnetic field (vacuum fluctuations).

The need for similar electromagnetic forces acting between macroscopic bodies has been pointed
out long ago.[11]-[15] The macroscopic bodies bring their own characteristics with respect to the
electrical polarization (like plasmons, polaritons, surface effects, etc), in comparison with individ-
ual quantum particles. On the other hand, the experimental interest lies mainly in macroscopic
bodies, especially of finite size (like spheres).[16]-[35] A classical counterpart of the quantum van
der Waals-London and Casimir forces is therefore expected.

A method for computing the electromagnetic forces acting between macroscopic, polarizable bodies
has been put forward recently.[36, 37| It is based on representing the polarization by a slight
displacement field u(R, t) of the mobile charges (function of position R and the time t), subjected
to the classical (Newton) equation of motion, within the Lorentz-Drude (plasma) model of matter
polarization. The electromagnetic field is computed by using this polarization, and the equation
of motion is solved for the displacement field u. For interacting bodies we get coupled equations of
motion, which are solved for the eigenfrequencies. The energy is computed as the correction to the
zero-point energy of the electromagnetic field, as brought about by the interaction, and the force is
thereby derived. Making use of this method, the Casimir force acting between two half-spaces has
been derived (~ 1/d*), as well as the van der Waals-London force for two half-spaces (~ 1/d*)[36]
and the van der Waals force acting between a point-like body and a half-space (~ 1/d*).[37] Tt
was shown in Refs. [36, 37| that the Casimir force is governed by the surface plasmon-polariton
modes, while the van der Waals-London force arises from surface plasmons.

We present here a series of computations for the van der Waals-London force involving spherical
bodies (like spheres, spherical shells and point-like bodies) and a half-space. The van der Waals-
London force for a half-space coupled to any body of the type considered here goes like 1/d%.
The spherical shells and the point-like bodies behave very much alike the spheres, except for the
lack of (internal) polarization. This rather unrealistic feature introduces some particularities. For
instance, whenever such a "conducting" body appears, the force is repulsive. An interesting case
occurs for a pair of "conducting" spherical shells, or the pair of "conducting" spherical shell-

point-like body, or two "conducting" point-like bodies, where the force is repulsive and goes like
1/d7/2.

Lorentz-Drude model

The well-known Lorentz-Drude model[38]-[43] of (homogeneous) polarizable matter consists of
identical charges ¢, with mass m and density n, moving in a rigid neutralizing background. A
slight displacement field u(R,t) is subjected to the equation of motion

mii = q(E + Eg) — mw’u — myu | (1)

where E is the electric field produced by the polarization charges and currents, Eg is an external
electric field, w, is a characteristic frequency of the body and v is a damping factor. For dielectrics
we # 0, for conductors w. = 0. Since the polarization is given by P = nqu, it is easy to see that
equation (1) leads to the well-known electric susceptibility

w? 1
P
—_ 2
X A w? — w? + iwy 2)

and dielectric function € = 1+ 4y, where w, = /4mng?/m is the plasma frequency. We note the
absence of the Lorenz force in equation (1), whose contribution is quadratic in the displacement
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field u and, consequently, it may be neglected. However, we can include an external magnetic
field in equation of motion (1), if necessary.

The displacement field u produces polarization charge and current densities given by

OP
p = —divP = —nqgdivu , j = Fr ngu , (3)

which can be used to compute the electromagnetic potentials

O(R, 1) = [dRABBRUO

(4)

AR, t) =L [dRARCCIR-RO

(subjected to the Lorenz gauge divA + (1/c¢)0®/0t = 0). These potentials give rise to the electric
field E in equation (1), whence we can get the displacement u. This way, we can compute the
coupled polarization modes for interacting bodies, the external fields in equation (1) being the
mutual fields by which the bodies act one upon another. The eigenfrequncies of these coupled

equations of motion are the relevant frequencies for the zero-point energy of the electromagnetic
field.

We focus here on the non-retarded regime (van der Waals-London forces), where the fields vary
slowly over the size of the bodies, and the vector potential A (as well as the current density j)
may be neglected (wl/c < 1, where w is the frequency of the fields and [ is a scale of the bodies
size). As it is well known, this approximation is also called the quasi-static approximation.

Half-space

For a half-space extending over the region z > d we take the polarization as
P= nq(u, UZ)Q(Z - d) ) (5)

where 6(z) = 0 for z < 0 and 6(z) = 1 for z > 0 is the step function, and get the polarization
charge density

p = —ng(diva + 22)0(z — d) — nqu.(d)s(z — d) . (6)
We use the Fourier decomposition of the type
u(r, z;t) = 2 /dkdwu(k;, 2 w)e Witk (7)

and may omit ocassionally the arguments k, w, writing simply u(z), or even u. As a rule, we
omit everywhere the argument w. Likewise, we leave aside the factor ng, but restore it in the final
formulae. The well-known decomposition[44]

1 1 1, / ,
- dk= tk(r—r') —k|z—2/| 8

R—R/| %/‘ke ‘ ’ (8)
is used for the Coulomb potential. The calculations are straightforward and we get the Fourier
tranforms of the scalar potential

D(k,z) = =2 [* dz’kue M=l — 2D [ gaty emklz= (9)

In order to compute the electric field it is convenient to refer the in-plane vectors (i.e., vectors
parallel with the surface of the half-space) to the vectors k and k, where k, is perpendicular to
k and of the same magnitude as k; for instance, we write

k|

k
UZU1E+UQ? (10)
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and a similar representation for the electric field parallel with the surface of the half-space. It is
worth paying attention to the correct derivative of the modulus function, according to the equation

2
%e_z_z/ = K2 M=l — k(2 — 2) | (11)
2

We get the electric field

Ey = —ik® = 27k fdoo dz’ule_’”z_z" + 27‘(@’% fdoo dz’uze—k\z—z’\ ’

(12)
E, = —%—f = 27ri% [ dz'uie ==l L onk [ dz'u,e M= — 4ru,0(z — d)
(and Ey = 0). We can check easily the equalities
O0E, Ou,
ikEy + 5 —4r (ikul + 8—2) 0(z — d) — dru.(d)o(z — d) , (13)
which is the Gauss’s law, and
0E,
—— —ikE, =0, 14
5, (14)

which reflects the fact that the field E derives from the gradient of the potential (E = —grad®).
From equation (13), we can check the transversality condition divE = 0 for the electric field
outside the half-space (z < d).

Making use of these relations (equations (13) and (14)) in the equation of motion (1) (with v =0
and for z > d), and taking into account that divEq = 0 and 0Ey;/0z —ikEy, = 0 in this equation,
we get

T — kP =0, (15)
whose solution is u; = Aje™* (and u, = iA;e**), where A, is a constant. We use these solutions

for u; and w, in equations (12) in order to compute the field. We get

E, = —2rAe™  2>d,
(16)
B, = —21AefE2d) 5 < 4

(and ikE, = OF,/0z, Fy = 0 everywhere). The equation of motion (1) can now be written as

1
(w? — w? - iwi)Ale_kZ = —%Eol , (w? — wf)uz = —%Eoz ) (17)

where we can recognize the frequency w,/+/2 of the surface plasmons.[45]

The sphere

We consider a sphere of radius a, with charge density ngq, placed at the origin. We leave aside for
the moment the factor ngg , which will be restored in the final formulae. For small radii a, and
according to the symmetry of the problem, the displacement field of the sphere can be taken as

u= (ﬁﬂ?, ﬁy7 (Xa)e(a o R) ) (18)

where o and 3 are constants. Indeed, the field generated by the half-space in the region z < d
is given by the (inverse) Fourier transform of the second row in equations (16). For the in-plane

field we get
Al dkkeikrek(z_Zd)

EJ_(I',Z) = —g Lk )

(19)
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and a similar equation for the component F,(r, z). The integral in equation (19) implies the Bessel
function of the first order .J; (kr), and the remaining integral is given in Ref. [44], p. 686 (6.611.1).
We get the fields

A
~ig T

generated by the half-space in the region of the sphere (for a < d). Therefore, the displacement
field u chosen for the sphere in equation (18) is justified. The charge density corresponding to the
displacement field given by equation (18) (p = —divu) is

A
B, ~ -

A
E, ~ y_—z@y,Ez:Z@,

(20)

p = —diva =
(21)
= —200(a — R) + 2ad(a — R) + aaP;(cos0)d(a — R) — 2BaPs(cos0)é(a — R)

where P,(cosf) are the Legendre polynomials and cos = z/R (= z/a). Within the dipole
approximation we may neglect the P,-term in the above equation, which amounts to putting
B = 0. Consequently, the displacement field reduces to u = aa(0, 0, 1)0(a — R) and the charge
density is p = aaP;(cos@)d(a — R). We compute the (non-retarded) scalar potential given by
equations (4) for this charge density, by using the well-known decompositon of the Coulomb
potential

1 R
m — nz:% @Pn(cos O) (22)
and the addition formula (Ref. [44], p. 965, 8.814)

P,(cos©) = P,(cos0)P,(cos ') + 2 Z %Pff(cos O)P"(cos ') cosm(p —¢') ,  (23)

where P are the associated Legendre functions, R. = min(R, R'), R~ = max(R, R'), (6,¢)
define the direction of R, (¢, ¢') define the direction of R’ and © (cos©® = sinfsin @’ cos(p —
¢') + cosfcosf' ) is the angle between R and R’. We get

®R)=+Faaz, R<a,

(24)
®(R) =Taa'% , R>a.
The polarization field inside the sphere is E, = —(47/3)aa, and the equation of motion (1)
becomes .
q
(w? —w? — gwio)aaé’(a —R)= _EEOZ , (25)

where w, denotes the characteristic frequency of the sphere, w,y = \/47mnoq¢?/m is the plasma
frequency of the sphere and the external field Fjy, is the field generated by the half-space in-
side the sphere. The Fourier transform of this field, as given by equations (16), is Ey.(k, 2) =
2miA1eFE=2) ~ 271iA1e 2% (z < d). The Fourier transform of the function 6(a — R) entering
equation (25) can be computed easily. For ak < 1 it is given by ma?, so that equation (25)
becomes

1 i _
(W? — w? — gwf,o)aa?’ = —%wf)Ale 2kd. (26)

We recognize in equation (26) the lowest (dipole) frequency w,o/+v/3 of the spherical plasmons.|46]
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The field produced by the sphere in the region of the half-space (the external field for the half-
space) can be obtained from equations (24) (for R > a). We notice that z/R* = —9(1/R)/0z,
and the Fourier transform of the function f(R) = 1/R is[44]

1 . —k|z|
flk,z) = /drﬁelkr = 27T/dRJ0(k‘\/ R? —22) = o< ’ (27)
(where Jy is the Bessel function of the zeroth order). Consequently, the field is given by
874 4 e 87 4 ks
Eoi(k, z) = ——3-aa ke ™™ | Eo, = —-aa ke (28)
(and Ep = 0) and equation (17) becomes
1 2mi
(w? — w? — iwf,)Al = g oaa'k (29)
(and up = 0).
The two coupled equations (26) and (29) give the dispersion equation
o o Lo o 1o, Lo o ok
(W —w; — éwp)(w — Wy — gpr) = gwpwpoake : (30)

Force between a sphere and a half-space

Within the dipole aproximation the coupling strength ak is very weak (ak < 1). We may consider
the rhs of equation (30) as a small perturbation. Introducing the notations

1 1
A? = w? + 5”}3 , Bg = wfo + gwf,o (31)
the solutions of equation (30) can be written as
wWpwho 2hd
~ P -
W = A+ W_B%)ake s
. (32)
~ Wy ~2kd
Wy = Bo — Wﬁ“Bg)ake

(we note that A # By). In the non-retarded limit we should impose in fact the conditions
A, By € We, weo, Wy, wpo (and Aa/c, Bpa/c < 1). However, bearing in mind that we are interested
only in the change in energy brought about by the interaction, we may leave aside such restrictive
conditions, and view, indeed, the rhs of equation (30) as a small perturbation. This is a special
feature of the classical approach, in contrast with quantum-mechanical calculations, where we have
direct access to the perturbation energy (see, for instance, Ref. [12]). Making use of equations
(32), we compute the change AE brought about by the interaction in the zero-point energy of the
electromagnetic field (per unit area). We get
ha wiw? 1

AE=——. Tt LU 33
967 AB()(A*FBQ) d3 ( )

and the force (leading contribution in powers of 1/d)

2,,2
ha Wy 1

F=— . L 4
327 ABo(A+ By) & (34)
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(where A is Planck’s constant). We note that in such classical calculations the van der Waals-
London force arises from the delocalized energy of the static electromagnetic field acting upon the
cross-sectional area.

Half-space and a spherical shell

We consider a spherical shell of radius a and small thickness ¢, placed at the origin. According to
our discussion above for the sphere, we take the displacement field as

u = aea(0, 0, 1)6(R — a) (35)

and, within the dipole approximation, the charge density is given by p = —azaP;(cos0)d' (R — a).
The potential is vanishing inside the sphere and it is given by ®(R) = 4raca’z/R? outside the
sphere (R > a); it is discontinuous at the shell, as expected. Since z/R3> = —df/dz, where
f=1/Rand f(k,z) = 2re 1l /k, we get easily the field produced by the shell in the region of
the half-space (the external field for the half-space), Ey, = —8m%iaca®ke ", so that equation (17)

becomes 1

(w? — w? — 5%3)141 = 2miwiyoea’k . (36)
We assume that the shell has not an (internal) polarization (this may be a rather unrealistic
condition, which can be removed by specific calculations for a shell of finite thickness). Equation

(1) becomes
(w? — wk)acad(R —a) = —%EOZ : (37)

where FEj, is the field created by the half-space in the region of the shell. Its Fourier transform,
according to equations (16), is Ey.(k, z) = 2miA,e**2) ~ 271iAe 2% (2 <« d). The Fourier
transform of the function §(R — a) is ~ 2wa, and we get, from equation (37),

(w? — wk)aeca® = —ﬁwﬁflle_%d : (38)

By equations (36) and (38) we get the dispersion equation

1 1
2 2 2v(, 2 2 2 2 —2kd
(W —w; — 5%;)(00 —wy) = §wpwp0ake (39)
(which, noteworthy, does not depend on the thickness ). Up to a numerical factor, this equation
is identical with equation (30) for a half-space and a sphere. However, there appear here some
particularities. For w.y # 0 the force is given by

3ha w2w20 1
F=— . pp R 40
64 wcoA(A + u)co) d* ( )

while for w. = 0 ("conducting" shell), the force is

_ 3ha wiwp 1
o A @ (41)

it is a repulsive force. This is due to the absence of the (internal) polarization of the shell.
Half-space and a point-like body

The displacement field of a point-like particle placed at the origin can be written as

u = da’ued(R) , (42)
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where ug is a constant vector and a is a measure for the "radius" of the body. We assume that the
body has a charge density noq (neutralized by the rigid background). This factor is left aside for
the moment, but it is restored in the final formulae. The potential can be computed immediately,

®(R) = a3“]%—? : (43)
and the field created by the body is given by
Eoi(k, 2) = —2ma’k(ugy + iug,)e ™! (44)
(and Epa(k, z) = 0). Equations (17) become
(w? — w? — %wf,)Al = %wﬁoa%(uol + dug,) - (45)

There is no internal (polarization) field, and the equation of motion (1) can be written as
(w? —wk)a*ugd(R) = —%EO : (46)

for the point-like body. The Fourier transform of the function 6(R) is 6(z), which we approximate
by 1/a for z "inside" the body. The Fourier transforms of the half-space field are given by equations
(16), so we get

2

1
2 2 _ L9 okd
(W —wiy)a“ug = 5%,1416

(w2 — w?)aug, = _%W;Ale%d . (47)

These equations, together with equation (45), lead to the dispersion equation

1 1
2 2 2v(, 2 2 2 2 —2kd
(W —w? — iwp)(w —wy) = iwpwpoake : (48)
which is identical with the equation for the couple half-space-spherical shell. Consequently, the
force between a half-space and a point-like particle is the same as the force between a half-space

and a spherical shell.
Two spheres

We consider a sphere of radius a placed at the origin, with the charge density ngq, and a second
sphere, of radius b, placed at z = d, with the charge density ng. Within the same dipole ap-
proximation (with coefficients « and, respectively, /), we use the results described above for the
sphere. For instance, for the sphere placed at the origin, equation (25) gives

5 1

<w2 — W T §w2

smad® = — LB (49)

where Eéz) is the z-component of the Fourier transform of the field produced by the second sphere
at the origin. Similarly, for the second sphere we have the equation

1
(@ —w? = guma’tt = — LB (50)

where the field Eéi,) is given by

2
EY = 8%(1&4]<:e_1”| : (51)



J. Theor. Phys 9

according to equation (28), and the field produced by the second sphere (displaced by the distance
d) is

8 2
EY) = —a'b'ke (52)
Introducing these fields in equations (49) and (50), we get the dispersion equation
o o Lo o 1o 4 5 9 119 okd
(W —w; — gwp)(w — Wi — gwpo) = §wpwp0abk: e : (53)

With the notations B* = w? + w?/3, Bf = w}, + wyy/3 we get the force (per unit area)

hab wiw? 1
F=_222.__p0 (54)
127 BBQ(B -+ Bo) d®
for distinct substances (B # By). For identical substance, the force is given by
hab w, 1
po_ab @ 1o 55
24r B3 & (55)

We can se that the force goes like d~° (leading contribution in powers of 1/d).
Sphere-spherical shell couple

We consider a sphere of radius a placed at the origin, with the charge density ngq, and a spherical
shell of radius b and thickness ¢, with the charge density nq, placed at z = d. The results obtained
above can be transcribed immediately for this situation. The dispersion equation is

1 4
(wW? — w2 — gwio)(wQ —w) = gwiwioabk%’%d : (56)
For w. # 0 the force is given by
hab wiwy 1
F=—"—. Tt LU 57
47 w.Bo(By +w.) d®’ (57)
with By defined above. For a "conducting" shell (w. = 0) the force is repulsive,
hab wiwl, 1
_ Mav Epto L (58)

C4r B dP

Two spherical shells

Similarly, the results described above can be used for two spherical shells. With the same notations
and conventions as above, the dispersion equation for two spherical shells is given by

(W* — W) (W? — wl) = wiwljabke . (59)

For w,, wq # 0 we get the force

3hab wiw2y 1
p=_2 Pp L 60
16T weweo(we + weg)  d? (60)
If one shell is "conducting" (say w.o = 0), the force is repulsive, given by
hab wiw?y 1
po dhab @ 1 (61)

16r  w? A
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An interesting situation occurs if both shells are "conducting" (w. = we = 0). In this case the
solution of the dispersion equation is w = (ab)'/*,/Wywok'/?e™¥/2, and the (repulsive) force is
given by
15k (ab)/* /ooy 1
F= N el

Combinations with a point-like body. For the couple sphere-point-like body the dispersion
equation is given by

(62)

1 2 _
(W? —w? — g%%o)(wz —whH = gwiwioabkze 2kd (63)
it is the same as equation (56), except for a factor 2/3 instead of 4/3 in the rhs of this equation.
The force can be deduced easily from the results for the couple sphere-spherical shell. It goes
like 1/d°, and it is repulsive for a "conducting" point-like body. Similarly, the couple spherical

shell-point-like body is governed by the dispersion equation corresponding to a pair of spherical
shells.

Finally, we consider two point-like bodies, one, with "radius" a and charge density ngyq, placed at
the origin, another, with "radius" b and charge density ng, placed at z = d. We use displacements
as those given by equation (42), with two distinct constant vectors ug and vg. The calculations
are similar with those described above for one point-like body placed at the origin. The difference
comes from the second body, displaced by the distance d. The field generated by this body is
similar with the field given by equation (44), where e **l is replaced by e *1*=4. The dispersion
equation is the same as equation (59) for two spherical shells.

Concluding remarks

We have presented in this paper a series of computations regarding the classical interaction of the
electromagnetic field with macroscopic, polarizable bodies, in the non-retarded regime (quasi-static
field), and derived the classical counterpart of the van der Waals-London forces. Specifically, the
calculations were carried out for any couple of the following bodies: one half-space (a semi-infinite
solid with a plane surface) and spheres, spherical shells and point-like bodies. The polarization is
represented by a displacement field subjected to the classical (Newton) equation of motion. The
coupled equations of motion for two interacting bodies are solved for the eigenfrequencies, and the
energy is estimated as the correction, due to the interaction, to the zero-point energy of the field
(vacuum fluctuations). The force is derived from the variation of this energy with the separation
distance d. We have limited ourselves to the non-retarded regime, corresponding to the van der
Waals-Lindon forces (small separation distances), a situation which is of interest experimentally.
The dipole approximation has been used for the spherical bodies (which implies small dimensions
of the bodies in comparison with the separation distance).

The van der Waals-London force for a half-space and any other body considered here goes like
1/d*. The force acting between two spheres goes like 1/d°. These forces are attractive. The
spherical shells and the point-like bodies behave very much alike the spheres, except for the
absence of an (internal) polarization. This, rather unrealistic, feature may give rise to some
particularities, especially where such bodies are "conducting". For instance, a "conducting" shell,
or a "conducting" point-like body coupled to any other body gives rise to a repulsive force. If both
shells, or point-like bodies are "conducting”, the force is repulsive and goes like 1/d"/2. A great
variety of interacting, polarizable, compact bodies can be investigated by the method presented
here (for instance, polarizable spherical shells of finite thickness), with a large variety of results
regarding the classical counterpart of the van der Waals-London force acting between macroscopic
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bodies. The retarded regime, for the classical counterpart of the Casmir force, can be treated
similarly. The corresponding results will be presented in a forthcoming publication.
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