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tEle
tromagneti
 for
es are 
omputed in the non-retarded regime (van der Wals-Londonfor
es) for any pair of the following bodies: one half-spa
e (a semi-in�nite solid with a planesurfa
e), spheres, spheri
al shells and point-like parti
les. The for
e a
ting beween a half-spa
e and any other body 
onsidered here goes like d−4 (for two half-spa
es it goes like
1/d3), where d is the separation distan
e between the bodies. The for
e a
ting between twospheres goes like 1/d5. These for
es are attra
tive. The spheri
al shells and the point-likebodies behave very mu
h alike the spheres, ex
ept for the la
k of (internal) polarization. Thislatter (rather unrealisti
) feature introdu
es some parti
ularities. Whenever a "
ondu
ting"parti
le of this type appears (like "
ondu
ting" spheri
al shells or point-like bodies), thefor
e is repulsive. For instan
e, a "
ondu
ting" spheri
al shell, or a "
ondu
ting" point-like body, gives always a repulsive for
e. Two "
ondu
ting" spheri
al shells, or the pair of"
ondu
ting" spheri
al shell-point-like body, or two "
ondu
ting" point-like bodies intera
twith a repulsive for
e whi
h goes like d−7/2. The 
al
ulations are performed within theLorentz-Drude (plasma) model of polarizable matter, by using the dipole approximation forthe spheri
al parti
les. The 
oupled equations of motion of the polarization are obtained forea
h pair of bodies and solved for the ele
tromagneti
 eigenfrequen
ies. The for
e is derivedfrom the variation of the zero-point energy of the ele
tromagneti
 �eld with the separationdistan
e.PACS: 03.50.De; 41.20.-q; 34.35.+a; 42.50.WkKeywords: Ele
tromagneti
 for
es; van der Waals-London for
e; va
uum �u
tuationsIntrodu
tionAs it is well-known,[1, 2℄ the van der Waals-London and Casimir for
es have been derived origi-nally by quantum-me
hani
al 
al
ulations in the non-retarded (small distan
es) and, respe
tively,retarded (longer distan
es) regime (following the original quantum-me
hani
al derivation of thevan der Waals-London for
es[3℄-[5℄). We fo
us in this paper on the non-retarded regime (van derWaals-London for
e), whi
h is more a

essible experimentally. The van der Waals-London for
ea
ting between a quantum parti
le (neutral atom) and a half-spa
e (a semi-in�nite solid with aplane surfa
e) goes like 1/d4, where d is the separation distan
e between the two bodies. For apair of neutral atoms the for
e goes like 1/d7. Subsequently, su
h results have been re-derivedby using the quantum-statisti
al theory of the ele
tromagneti
 �u
tuations[6℄-[8℄ and the sour
etheory.[9, 10℄ In parti
ular, the for
e a
ting between two half-spa
es have been obtained, whi
hgoes like 1/d3. In general, if the for
e a
ting between two parti
les goes like d−n, then the for
ebetween a parti
le and a half-spa
e goes like d−n+3 (and the for
e a
ting between two half-spa
es



2 J. Theor. Phys.goes like d−n+4). As it is well known, the origin of these for
es resides in the zero-point energy ofthe ele
tromagneti
 �eld (va
uum �u
tuations).The need for similar ele
tromagneti
 for
es a
ting between ma
ros
opi
 bodies has been pointedout long ago.[11℄-[15℄ The ma
ros
opi
 bodies bring their own 
hara
teristi
s with respe
t to theele
tri
al polarization (like plasmons, polaritons, surfa
e e�e
ts, et
), in 
omparison with individ-ual quantum parti
les. On the other hand, the experimental interest lies mainly in ma
ros
opi
bodies, espe
ially of �nite size (like spheres).[16℄-[35℄ A 
lassi
al 
ounterpart of the quantum vander Waals-London and Casimir for
es is therefore expe
ted.A method for 
omputing the ele
tromagneti
 for
es a
ting between ma
ros
opi
, polarizable bodieshas been put forward re
ently.[36, 37℄ It is based on representing the polarization by a slightdispla
ement �eld u(R, t) of the mobile 
harges (fun
tion of position R and the time t), subje
tedto the 
lassi
al (Newton) equation of motion, within the Lorentz-Drude (plasma) model of matterpolarization. The ele
tromagneti
 �eld is 
omputed by using this polarization, and the equationof motion is solved for the displa
ement �eld u. For intera
ting bodies we get 
oupled equations ofmotion, whi
h are solved for the eigenfrequen
ies. The energy is 
omputed as the 
orre
tion to thezero-point energy of the ele
tromagneti
 �eld, as brought about by the intera
tion, and the for
e isthereby derived. Making use of this method, the Casimir for
e a
ting between two half-spa
es hasbeen derived (∼ 1/d4), as well as the van der Waals-London for
e for two half-spa
es (∼ 1/d3)[36℄and the van der Waals for
e a
ting between a point-like body and a half-spa
e (∼ 1/d4).[37℄ Itwas shown in Refs. [36, 37℄ that the Casimir for
e is governed by the surfa
e plasmon-polaritonmodes, while the van der Waals�London for
e arises from surfa
e plasmons.We present here a series of 
omputations for the van der Waals-London for
e involving spheri
albodies (like spheres, spheri
al shells and point-like bodies) and a half-spa
e. The van der Waals-London for
e for a half-spa
e 
oupled to any body of the type 
onsidered here goes like 1/d4.The spheri
al shells and the point-like bodies behave very mu
h alike the spheres, ex
ept for thela
k of (internal) polarization. This rather unrealisti
 feature introdu
es some parti
ularities. Forinstan
e, whenever su
h a "
ondu
ting" body appears, the for
e is repulsive. An interesting 
aseo

urs for a pair of "
ondu
ting" spheri
al shells, or the pair of "
ondu
ting" spheri
al shell-point-like body, or two "
ondu
ting" point-like bodies, where the for
e is repulsive and goes like
1/d7/2.Lorentz-Drude modelThe well-known Lorentz-Drude model[38℄-[43℄ of (homogeneous) polarizable matter 
onsists ofidenti
al 
harges q, with mass m and density n, moving in a rigid neutralizing ba
kground. Aslight displa
ement �eld u(R, t) is subje
ted to the equation of motion

mü = q(E + E0) − mω2
cu − mγu̇ , (1)where E is the ele
tri
 �eld produ
ed by the polarization 
harges and 
urrents, E0 is an externalele
tri
 �eld, ωc is a 
hara
teristi
 frequen
y of the body and γ is a damping fa
tor. For diele
tri
s

ωc 6= 0, for 
ondu
tors ωc = 0. Sin
e the polarization is given by P = nqu, it is easy to see thatequation (1) leads to the well-known ele
tri
 sus
eptibility
χ = −

ω2
p

4π
· 1

ω2 − ω2
c + iωγ

(2)and diele
tri
 fun
tion ε = 1+4πχ, where ωp =
√

4πnq2/m is the plasma frequen
y. We note theabsen
e of the Lorenz for
e in equation (1), whose 
ontribution is quadrati
 in the displa
ement



J. Theor. Phys. 3�eld u and, 
onsequently, it may be negle
ted. However, we 
an in
lude an external magneti
�eld in equation of motion (1), if ne
essary.The displa
ement �eld u produ
es polarization 
harge and 
urrent densities given by
ρ = −divP = −nqdivu , j =

∂P

∂t
= nqu̇ , (3)whi
h 
an be used to 
ompute the ele
tromagneti
 potentials

Φ(R, t) =
∫

dR′ ρ(R′, t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′, t−|R−R′|/c)
|R−R′|

(4)(subje
ted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the ele
tri
�eld E in equation (1), when
e we 
an get the displa
ement u. This way, we 
an 
ompute the
oupled polarization modes for intera
ting bodies, the external �elds in equation (1) being themutual �elds by whi
h the bodies a
t one upon another. The eigenfrequn
ies of these 
oupledequations of motion are the relevant frequen
ies for the zero-point energy of the ele
tromagneti
�eld.We fo
us here on the non-retarded regime (van der Waals-London for
es), where the �elds varyslowly over the size of the bodies, and the ve
tor potential A (as well as the 
urrent density j)may be negle
ted (ωl/c ≪ 1, where ω is the frequen
y of the �elds and l is a s
ale of the bodiessize). As it is well known, this approximation is also 
alled the quasi-stati
 approximation.Half-spa
eFor a half-spa
e extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step fun
tion, and get the polarization
harge density

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) . (6)We use the Fourier de
omposition of the type

u(r, z; t) =
1

(2π)3

∫

dkdωu(k, z; ω)e−iωt+ikr , (7)and may omit o
assionally the arguments k, ω, writing simply u(z), or even u. As a rule, weomit everywhere the argument ω. Likewise, we leave aside the fa
tor nq, but restore it in the �nalformulae. The well-known de
omposition[44℄
1

|R− R′| =
1

2π

∫

dk
1

k
eik(r−r′)e−k|z−z′| , (8)is used for the Coulomb potential. The 
al
ulations are straightforward and we get the Fouriertranforms of the s
alar potential

Φ(k, z) = −2πi
k

∫ ∞

d
dz′kue−k|z−z′| − 2π

k
∂
∂z

∫ ∞

d
dz′uze

−k|z−z′| . (9)In order to 
ompute the ele
tri
 �eld it is 
onvenient to refer the in-plane ve
tors (i.e., ve
torsparallel with the surfa
e of the half-spa
e) to the ve
tors k and k⊥, where k⊥ is perpendi
ular to
k and of the same magnitude as k; for instan
e, we write

u = u1
k

k
+ u2

k⊥

k
(10)



4 J. Theor. Phys.and a similar representation for the ele
tri
 �eld parallel with the surfa
e of the half-spa
e. It isworth paying attention to the 
orre
t derivative of the modulus fun
tion, a

ording to the equation
∂2

∂z2
e−|z−z′| = k2e−k|z−z′| − 2kδ(z − z′) . (11)We get the ele
tri
 �eld

E1 = −ikΦ = −2πk
∫ ∞

d
dz′u1e

−k|z−z′| + 2πi ∂
∂z

∫ ∞

d
dz′uze

−k|z−z′| ,

Ez = −∂Φ
∂z

= 2πi ∂
∂z

∫ ∞

d
dz′u1e

−k|z−z′| + 2πk
∫ ∞

d
dz′uze

−k|z−z′| − 4π‘uzθ(z − d)
(12)(and E2 = 0). We 
an 
he
k easily the equalities

ikE1 +
∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(d)δ(z − d) , (13)whi
h is the Gauss's law, and
∂E1

∂z
− ikEz = 0 , (14)whi
h re�e
ts the fa
t that the �eld E derives from the gradient of the potential (E = −gradΦ).From equation (13), we 
an 
he
k the transversality 
ondition divE = 0 for the ele
tri
 �eldoutside the half-spa
e (z < d).Making use of these relations (equations (13) and (14)) in the equation of motion (1) (with γ = 0and for z > d), and taking into a

ount that divE0 = 0 and ∂E01/∂z− ikE0z = 0 in this equation,we get

∂2u1

∂z2 − k2u1 = 0 , (15)whose solution is u1 = A1e
−kz (and uz = iA1e

−kz), where A1 is a 
onstant. We use these solutionsfor u1 and uz in equations (12) in order to 
ompute the �eld. We get
E1 = −2πA1e

−kz , z > d ,

E1 = −2πA1e
k(z−2d) , z < d

(16)(and ikEz = ∂E1/∂z, E2 = 0 everywhere). The equation of motion (1) 
an now be written as
(ω2 − ω2

c −
1

2
ω2

p)A1e
−kz = − q

m
E01 , (ω2 − ω2

c )u2 = − q

m
E02 , (17)where we 
an re
ognize the frequen
y ωp/

√
2 of the surfa
e plasmons.[45℄The sphereWe 
onsider a sphere of radius a, with 
harge density n0q, pla
ed at the origin. We leave aside forthe moment the fa
tor n0q , whi
h will be restored in the �nal formulae. For small radii a, anda

ording to the symmetry of the problem, the displa
ement �eld of the sphere 
an be taken as

u = (βx, βy, αa)θ(a − R) , (18)where α and β are 
onstants. Indeed, the �eld generated by the half-spa
e in the region z < dis given by the (inverse) Fourier transform of the se
ond row in equations (16). For the in-plane�eld we get
E⊥(r, z) = −A1

2π

∫

dk
k

k
eikrek(z−2d) , (19)



J. Theor. Phys. 5and a similar equation for the 
omponent Ez(r, z). The integral in equation (19) implies the Besselfun
tion of the �rst order J1(kr), and the remaining integral is given in Ref. [44℄, p. 686 (6.611.1).We get the �elds
Ex ≃ −i

A1

8d3
x , Ey ≃ −i

A1

8d3
y , Ez ≃ i

A1

4d2
, (20)generated by the half-spa
e in the region of the sphere (for a ≪ d). Therefore, the displa
ement�eld u 
hosen for the sphere in equation (18) is justi�ed. The 
harge density 
orresponding to thedispla
ement �eld given by equation (18) (ρ = −divu) is

ρ = −divu =

= −2βθ(a − R) + 2
3
βaδ(a − R) + αaP1(cos θ)δ(a − R) − 2

3
βaP2(cos θ)δ(a − R) ,

(21)where Pn(cos θ) are the Legendre polynomials and cos θ = z/R (= z/a). Within the dipoleapproximation we may negle
t the P2-term in the above equation, whi
h amounts to putting
β = 0. Consequently, the displa
ement �eld redu
es to u = αa(0, 0, 1)θ(a − R) and the 
hargedensity is ρ = αaP1(cos θ)δ(a − R). We 
ompute the (non-retarded) s
alar potential given byequations (4) for this 
harge density, by using the well-known de
ompositon of the Coulombpotential

1

|R − R′| =
∑

n=0

Rn
<

Rn+1
>

Pn(cos Θ) (22)and the addition formula (Ref. [44℄, p. 965, 8.814)
Pn(cos Θ) = Pn(cos θ)Pn(cos θ′) + 2

n
∑

m=1

(n − m)!

(n + m)!
P m

n (cos θ)P m
n (cos θ′) cos m(ϕ − ϕ′) , (23)where P m

n are the asso
iated Legendre fun
tions, R< = min(R, R′), R> = max(R, R′), (θ, ϕ)de�ne the dire
tion of R, (θ′, ϕ′) de�ne the dire
tion of R′ and Θ (cos Θ = sin θ sin θ′ cos(ϕ −
ϕ′) + cos θ cos θ′ ) is the angle between R and R′. We get

Φ(R) = 4π
3

αaz , R < a ,

Φ(R) = 4π
3

αa4 z
R3 , R > a .

(24)The polarization �eld inside the sphere is Ez = −(4π/3)αa, and the equation of motion (1)be
omes
(ω2 − ω2

c0 −
1

3
ω2

p0)αaθ(a − R) = − q

m
E0z , (25)where ωc0 denotes the 
hara
teristi
 frequen
y of the sphere, ωp0 =

√

4πn0q2/m is the plasmafrequen
y of the sphere and the external �eld E0z is the �eld generated by the half-spa
e in-side the sphere. The Fourier transform of this �eld, as given by equations (16), is E0z(k, z) =
2πiA1e

k(z−2d) ≃ 2πiA1e
−2kd (z ≪ d). The Fourier transform of the fun
tion θ(a − R) enteringequation (25) 
an be 
omputed easily. For ak ≪ 1 it is given by πa2, so that equation (25)be
omes

(ω2 − ω2
c0 −

1

3
ω2

p0)αa3 = − i

2π
ω2

pA1e
−2kd . (26)We re
ognize in equation (26) the lowest (dipole) frequen
y ωp0/
√

3 of the spheri
al plasmons.[46℄



6 J. Theor. Phys.The �eld produ
ed by the sphere in the region of the half-spa
e (the external �eld for the half-spa
e) 
an be obtained from equations (24) (for R > a). We noti
e that z/R3 = −∂(1/R)/∂z,and the Fourier transform of the fun
tion f(R) = 1/R is[44℄
f(k, z) =

∫

dr
1

R
e−ikr = 2π

∫

z

dRJ0(k
√

R2 − z2) = 2π
e−k|z|

k
(27)(where J0 is the Bessel fun
tion of the zeroth order). Consequently, the �eld is given by

E01(k, z) = −8π2i

3
αa4ke−kz , E0z =

8π2

3
αa4ke−kz (28)(and E02 = 0) and equation (17) be
omes

(ω2 − ω2
c −

1

2
ω2

p)A1 =
2πi

3
ω2

p0αa4k (29)(and u2 = 0).The two 
oupled equations (26) and (29) give the dispersion equation
(ω2 − ω2

c −
1

2
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
1

3
ω2

pω
2
p0ake−2kd . (30)For
e between a sphere and a half-spa
eWithin the dipole aproximation the 
oupling strength ak is very weak (ak ≪ 1). We may 
onsiderthe rhs of equation (30) as a small perturbation. Introdu
ing the notations

A2 = ω2
c +

1

2
ω2

p , B2
0 = ω2

c0 +
1

3
ω2

p0 (31)the solutions of equation (30) 
an be written as
ω1 ≃ A +

ω2
p
ω2

p0

6A(A2−B2

0
)
ake−2kd ,

ω2 ≃ B0 −
ω2

p
ω2

p0

6B(A2−B2

0
)
ake−2kd

(32)(we note that A 6= B0). In the non-retarded limit we should impose in fa
t the 
onditions
A, B0 ≪ ωc, ωc0, ωp, ωp0 (and Aa/c, B0a/c ≪ 1). However, bearing in mind that we are interestedonly in the 
hange in energy brought about by the intera
tion, we may leave aside su
h restri
tive
onditions, and view, indeed, the rhs of equation (30) as a small perturbation. This is a spe
ialfeature of the 
lassi
al approa
h, in 
ontrast with quantum-me
hani
al 
al
ulations, where we havedire
t a

ess to the perturbation energy (see, for instan
e, Ref. [12℄). Making use of equations(32), we 
ompute the 
hange ∆E brought about by the intera
tion in the zero-point energy of theele
tromagneti
 �eld (per unit area). We get

∆E = − ~a

96π
·

ω2
pω

2
p0

AB0(A + B0)
· 1

d3
(33)and the for
e (leading 
ontribution in powers of 1/d)

F = − ~a

32π
·

ω2
pω

2
p0

AB0(A + B0)
· 1

d4
(34)



J. Theor. Phys. 7(where ~ is Plan
k's 
onstant). We note that in su
h 
lassi
al 
al
ulations the van der Waals-London for
e arises from the delo
alized energy of the stati
 ele
tromagneti
 �eld a
ting upon the
ross-se
tional area.Half-spa
e and a spheri
al shellWe 
onsider a spheri
al shell of radius a and small thi
kness ε, pla
ed at the origin. A

ording toour dis
ussion above for the sphere, we take the displa
ement �eld as
u = αεa(0, 0, 1)δ(R − a) (35)and, within the dipole approximation, the 
harge density is given by ρ = −αεaP1(cos θ)δ′(R− a).The potential is vanishing inside the sphere and it is given by Φ(R) = 4παεa3z/R3 outside thesphere (R > a); it is dis
ontinuous at the shell, as expe
ted. Sin
e z/R3 = −∂f/∂z, where

f = 1/R and f(k, z) = 2πe−k|z|/k, we get easily the �eld produ
ed by the shell in the region ofthe half-spa
e (the external �eld for the half-spa
e), E01 = −8π2iαεa3ke−kz, so that equation (17)be
omes
(ω2 − ω2

c −
1

2
ω2

p)A1 = 2πiω2
p0αεa3k . (36)We assume that the shell has not an (internal) polarization (this may be a rather unrealisti

ondition, whi
h 
an be removed by spe
i�
 
al
ulations for a shell of �nite thi
kness). Equation(1) be
omes

(ω2 − ω2
c0)αεaδ(R − a) = − q

m
E0z , (37)where E0z is the �eld 
reated by the half-spa
e in the region of the shell. Its Fourier transform,a

ording to equations (16), is E0z(k, z) = 2πiA1e

k(z−2d) ≃ 2πiA1e
−2kd (z ≪ d). The Fouriertransform of the fun
tion δ(R − a) is ≃ 2πa, and we get, from equation (37),

(ω2 − ω2
c0)αεa2 = − i

4π
ω2

pA1e
−2kd . (38)By equations (36) and (38) we get the dispersion equation

(ω2 − ω2
c −

1

2
ω2

p)(ω
2 − ω2

c0) =
1

2
ω2

pω
2
p0ake−2kd (39)(whi
h, noteworthy, does not depend on the thi
kness ε). Up to a numeri
al fa
tor, this equationis identi
al with equation (30) for a half-spa
e and a sphere. However, there appear here someparti
ularities. For ωc0 6= 0 the for
e is given by

F = −3~a

64π
·

ω2
pω

2
p0

ωc0A(A + ωc0)
· 1

d4
, (40)while for ωc0 = 0 ("
ondu
ting" shell), the for
e is

F =
3~a

64π
·
ω2

pω
2
p0

A3
· 1

d4
; (41)it is a repulsive for
e. This is due to the absen
e of the (internal) polarization of the shell.Half-spa
e and a point-like bodyThe displa
ement �eld of a point-like parti
le pla
ed at the origin 
an be written as

u = a3u0δ(R) , (42)



8 J. Theor. Phys.where u0 is a 
onstant ve
tor and a is a measure for the "radius" of the body. We assume that thebody has a 
harge density n0q (neutralized by the rigid ba
kground). This fa
tor is left aside forthe moment, but it is restored in the �nal formulae. The potential 
an be 
omputed immediately,
Φ(R) = a3u0R

R3
, (43)and the �eld 
reated by the body is given by

E01(k, z) = −2πa3k(u01 + iu0z)e
−k|z| (44)(and E02(k, z) = 0). Equations (17) be
ome

(ω2 − ω2
c −

1

2
ω2

p)A1 =
1

2
ω2

p0a
3k(u01 + iu0z) . (45)There is no internal (polarization) �eld, and the equation of motion (1) 
an be written as

(ω2 − ω2
c0)a

3u0δ(R) = − q

m
E0 . (46)for the point-like body. The Fourier transform of the fun
tion δ(R) is δ(z), whi
h we approximateby 1/a for z "inside" the body. The Fourier transforms of the half-spa
e �eld are given by equations(16), so we get

(ω2 − ω2
c0)a

2u01 =
1

2
ω2

pA1e
−2kd , (ω2 − ω2

c0)a
2u0z = − i

2
ω2

pA1e
−2kd . (47)These equations, together with equation (45), lead to the dispersion equation

(ω2 − ω2
c −

1

2
ω2

p)(ω
2 − ω2

c0) =
1

2
ω2

pω
2
p0ake−2kd , (48)whi
h is identi
al with the equation for the 
ouple half-spa
e-spheri
al shell. Consequently, thefor
e between a half-spa
e and a point-like parti
le is the same as the for
e between a half-spa
eand a spheri
al shell.Two spheresWe 
onsider a sphere of radius a pla
ed at the origin, with the 
harge density n0q, and a se
ondsphere, of radius b, pla
ed at z = d, with the 
harge density nq. Within the same dipole ap-proximation (with 
oe�
ients α and, respe
tively, α′), we use the results des
ribed above for thesphere. For instan
e, for the sphere pla
ed at the origin, equation (25) gives

(ω2 − ω2
c0 −

1

3
ω2

p0)παa3 = − q

m
E

(2)
0z , (49)where E

(2)
0z is the z-
omponent of the Fourier transform of the �eld produ
ed by the se
ond sphereat the origin. Similarly, for the se
ond sphere we have the equation

(ω2 − ω2
c −

1

3
ω2

p)πα′b3 = − q

m
E

(1)
0z , (50)where the �eld E

(1)
0z is given by

E
(1)
0z =

8π2

3
αa4ke−k|z| , (51)
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ording to equation (28), and the �eld produ
ed by the se
ond sphere (displa
ed by the distan
e
d) is

E
(2)
0z =

8π2

3
α′b4ke−k|z−d| . (52)Introdu
ing these �elds in equations (49) and (50), we get the dispersion equation

(ω2 − ω2
c −

1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
4

9
ω2

pω
2
p0abk2e−2kd . (53)With the notations B2 = ω2

c + ω2
p/3, B2

0 = ω2
c0 + ω2

p0/3 we get the for
e (per unit area)
F = −~ab

12π
·

ω2
pω

2
p0

BB0(B + B0)
· 1

d5
(54)for distin
t substan
es (B 6= B0). For identi
al substan
e, the for
e is given by

F = −~ab

24π
·

ω4
p

B3
· 1

d5
. (55)We 
an se that the for
e goes like d−5 (leading 
ontribution in powers of 1/d).Sphere-spheri
al shell 
oupleWe 
onsider a sphere of radius a pla
ed at the origin, with the 
harge density n0q, and a spheri
alshell of radius b and thi
kness ε, with the 
harge density nq, pla
ed at z = d. The results obtainedabove 
an be trans
ribed immediately for this situation. The dispersion equation is

(ω2 − ω2
c0 −

1

3
ω2

p0)(ω
2 − ω2

c ) =
4

3
ω2

pω
2
p0abk2e−2kd . (56)For ωc 6= 0 the for
e is given by

F = −~ab

4π
·

ω2
pω

2
p0

ωcB0(B0 + ωc)
· 1

d5
, (57)with B0 de�ned above. For a "
ondu
ting" shell (ωc = 0) the for
e is repulsive,

F =
~ab

4π
·
ω2

pω
2
p0

B3
0

· 1

d5
. (58)Two spheri
al shellsSimilarly, the results des
ribed above 
an be used for two spheri
al shells. With the same notationsand 
onventions as above, the dispersion equation for two spheri
al shells is given by

(ω2 − ω2
c0)(ω

2 − ω2
c ) = ω2

pω
2
p0abk2e−2kd . (59)For ωc, ωc0 6= 0 we get the for
e

F = −3~ab

16π
·

ω2
pω

2
p0

ωcωc0(ωc + ωc0)
· 1

d5
. (60)If one shell is "
ondu
ting" (say ωc0 = 0), the for
e is repulsive, given by

F =
3~ab

16π
·
ω2

pω
2
p0

ω3
c

· 1

d5
. (61)
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urs if both shells are "
ondu
ting" (ωc = ωc0 = 0). In this 
ase thesolution of the dispersion equation is ω = (ab)1/4√ωpωp0k
1/2e−kd/2, and the (repulsive) for
e isgiven by

F =
15~(ab)1/4√ωωp0

4
√

2π
· 1

d7/2
. (62)Combinations with a point-like body. For the 
ouple sphere-point-like body the dispersionequation is given by

(ω2 − ω2
c0 −

1

3
ω2

p0)(ω
2 − ω2

c ) =
2

3
ω2

pω
2
p0abk2e−2kd ; (63)it is the same as equation (56), ex
ept for a fa
tor 2/3 instead of 4/3 in the rhs of this equation.The for
e 
an be dedu
ed easily from the results for the 
ouple sphere-spheri
al shell. It goeslike 1/d5, and it is repulsive for a "
ondu
ting" point-like body. Similarly, the 
ouple spheri
alshell-point-like body is governed by the dispersion equation 
orresponding to a pair of spheri
alshells.Finally, we 
onsider two point-like bodies, one, with "radius" a and 
harge density n0q, pla
ed atthe origin, another, with "radius" b and 
harge density nq, pla
ed at z = d. We use displa
ementsas those given by equation (42), with two distin
t 
onstant ve
tors u0 and v0. The 
al
ulationsare similar with those des
ribed above for one point-like body pla
ed at the origin. The di�eren
e
omes from the se
ond body, displa
ed by the distan
e d. The �eld generated by this body issimilar with the �eld given by equation (44), where e−k|z| is repla
ed by e−k|z−d|. The dispersionequation is the same as equation (59) for two spheri
al shells.Con
luding remarksWe have presented in this paper a series of 
omputations regarding the 
lassi
al intera
tion of theele
tromagneti
 �eld with ma
ros
opi
, polarizable bodies, in the non-retarded regime (quasi-stati
�eld), and derived the 
lassi
al 
ounterpart of the van der Waals-London for
es. Spe
i�
ally, the
al
ulations were 
arried out for any 
ouple of the following bodies: one half-spa
e (a semi-in�nitesolid with a plane surfa
e) and spheres, spheri
al shells and point-like bodies. The polarization isrepresented by a displa
ement �eld subje
ted to the 
lassi
al (Newton) equation of motion. The
oupled equations of motion for two intera
ting bodies are solved for the eigenfrequen
ies, and theenergy is estimated as the 
orre
tion, due to the intera
tion, to the zero-point energy of the �eld(va
uum �u
tuations). The for
e is derived from the variation of this energy with the separationdistan
e d. We have limited ourselves to the non-retarded regime, 
orresponding to the van derWaals-Lndon for
es (small separation distan
es), a situation whi
h is of interest experimentally.The dipole approximation has been used for the spheri
al bodies (whi
h implies small dimensionsof the bodies in 
omparison with the separation distan
e).The van der Waals-London for
e for a half-spa
e and any other body 
onsidered here goes like

1/d4. The for
e a
ting between two spheres goes like 1/d5. These for
es are attra
tive. Thespheri
al shells and the point-like bodies behave very mu
h alike the spheres, ex
ept for theabsen
e of an (internal) polarization. This, rather unrealisti
, feature may give rise to someparti
ularities, espe
ially where su
h bodies are "
ondu
ting". For instan
e, a "
ondu
ting" shell,or a "
ondu
ting" point-like body 
oupled to any other body gives rise to a repulsive for
e. If bothshells, or point-like bodies are "
ondu
ting", the for
e is repulsive and goes like 1/d7/2. A greatvariety of intera
ting, polarizable, 
ompa
t bodies 
an be investigated by the method presentedhere (for instan
e, polarizable spheri
al shells of �nite thi
kness), with a large variety of resultsregarding the 
lassi
al 
ounterpart of the van der Waals-London for
e a
ting between ma
ros
opi




J. Theor. Phys. 11bodies. The retarded regime, for the 
lassi
al 
ounterpart of the Casmir for
e, 
an be treatedsimilarly. The 
orresponding results will be presented in a forth
oming publi
ation.A
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