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Abstract

The Coulomb potential at an arbitrary point in an ionic lattice is related to the Coulomb
potential generated at that point by one ion, or a few ions, of the lattice.

Suppose that we are interested in the Coulomb potential of the crystalline field of an ionic
lattice at an arbitrary point; we denote this point by 0 and take it as the origin of the reference
frame. Let us chose an ion of the lattice, whose charge is taken as equal to unity, placed at the
position R; it may appear as being the most convenient to chose this ion as close as possible to 0.
We denote the Coulomb potential V (| r−R |) produced by this ion at the point r by v(r), i.e.

v(r) =V (| r−R |) . (1)

The total Coulomb potential produced by the lattice at r may be written as

V(r) =v(r)+
∑

i

qiV (| r−Ri |) , (2)

where the summation extends over all the remaining ions in the lattice and qi denotes the charge
of the i-th ion.

The ions can be classified according to their distance Rn to the point r, and we label by m the
m-th ion in each class n; i.e., for any i in (2) there is a couple nm, such that Ri = Rnm. Further
on, for any ion nm there is a rotation R−1(nm) which brings Rnm parallel to R; if we denote this
rotated vector by Rn and by αn the ratio of its modulus to R, we may write

Rnm = R(nm)Rn = αnR(nm)R . (3)

It follows that the potential (2) may be written as

V(r) =v(r)+
∑
nm

qnm

αn

R(nm)V (| r/αn −R |) = v(r)+
∑
nm

qnm

αn

R(nm)v(r/αn) =

=
∑
nm

qnm

αn

R(nm)v(r/αn) , (4)

where the homogeneity of the Coulomb potential has been used and we have extended the sum-
mation to including αn = 1, too. This is the basic relationship of the present remarks.

The total Coulomb potential at the point we are interested in is obtained from (4) as

V(0) =
∑
nm

qnm

αn

v(0) , (5)
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i.e., it is given by the ion we have chosen with an effective charge.If we denote by xi, i = 1, 2, 3,
the components of the vector r we may write the derivatives of V(r) given by (4) as

∂V(r)

∂xi

|0=
[∑

nm

qnm

α2
n

R(nm)

] {
∂v(r)

∂xi

}
0

=

[∑
nm

qnm

α2
n

Rij(nm)

]
∂v(r)

∂xj

|0 , (6)

which shows that an effective-charge matrix gives the first-order derivatives of the potential.
Similarly, a second-rank tensor expresses the second-order derivatives by

∂2V(r)

∂xi∂xj

|0=
[∑

nm

qnm

α3
n

Rik(nm)Rjl(nm)

]
∂2v(r)

∂xk∂xl

|0 . (7)

A first remark would be that the series in (5) − (7) are alternate, so that it is relatively
easy to estimate the error in truncating them; which would provide an estimation of how many
ions contribute significantly to the Coulomb potential and to its derivatives at a given, position.
Secondly, it appears preferrable to chose not a single ion placed at R, but a few equivalent ions
surrounding the position 0; by equivalent ions we mean here those ions connected by lattice
translations, and we may chose, for example, the nearest-neighbours of 0. We get in this case
another potential v(r), and the relationships (5)− (7) hold also for this potential; in the case of a
lattice with basis we may have several types of v(r)-potentials, for each type relations similar with
(5)−(7) holding. For special 0-points the derivatives of v(r) may vanish, and even the second-order
derivatives may do so (as, for example, for points of cubic symmetry); in which case, from (6) and
(7), the derivatives of the total potential V(r) vanish; which means that the equilibrium position
of an ion, established with the short-range inter-molecular potentials, would not be changed by
the Coulomb potential.

Turning now to (4) we may define

1

αn

∑
m

qnmR(nm) = cos(β(αn))M(αn) , (8)

where β is such as to reproduce the oscillations of the lhs of (8) and the matrix M(αn) is no longer
a rotation. The initializations in (8) are n = 1, α = 1, β = 0 and M = 1. Since αn is a slowly
varying function (providing, of course, that 0 be not too close of an ion) we may pass to integral
in (4),

V(r) =
∫ ∞
1

dα · cos β ·G(α) , (9)

where G(α) = M(α)v(r/α)n
′
(α), and further on

V(r) =
∫ ∞
0

dβ · cos β · F (β) , (10)

where F (β) = G(α)α
′
(β). The integral in (10) may not converge; for example, one can see easily

from (8) that M(α) goes like α for large α (for a three-dimensional lattice). This situation is
specific to the long-range Coulomb potential, and we assume that it is regularized by suitable
exponentially-decreasing factors. Then, the estimation of (10) proceeds by integrating by parts;
we have successively

V(r) = sin 0 · [F (∞)− F (0)] + cos 0 ·
[
F (1)(∞)− F (1)(0)

]
−

− sin 0 ·
[
F (2)(∞)− F (2)(0)

]
− cos 0 ·

[
F (3)(∞)− F (3)(0)

]
+ ... =

= −F (1)(0) + F (3)(0)− ... . (11)
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Since α varies slowly we may limit ourselves to the first term in (11) ,which is given by

F (1)(0) =
[
M

′
(1)v(r)n

′
(1) + M(1)v

′

α(r)n
′
(1) + M(1)v(r)n

′′
(1)

]
· α′2

(1)+

+M(1)v(r)n
′
(1) · α′′

(1) . (12)

It is easy to check that the second term in (12) is proportional to −r·gradv(r), so that the potential
V(r) can be represented from (12) as

V(r) = M · v(r)− const · r · gradv(r) , (13)

where M denotes an undetermined matrix. One may also check easily that the representation
(13) is consistent with the series expansion given by (5)− (7).

The matrix M in (13) contains factors comparable with the magnitude of the const factor
in (13); from (12) one can see that, allowing for one-order of magnitude reduction due to n

′
(1),

these factors are proportional to the first derivative of the distance ratio of the ions; as the lattice
is uniformly packed this derivative is small, and the relative high Coulomb potential is greatly
reduced, as is well known (and as one might have expected). One can easily check that the order
of magnitude of this reduction is ∼ δ/a, where δ is the distance of the point 0 from the centre of
the unit cell and a is the lattice constant. There are positions in the lattice where the Coulomb
potential does not experience such a reduction, but their spatial extent is of the order of the
atomic size.

Finally we remark that if R defines a reflection axis the rotation matrices involved above reduce
to the unit matrix and (13) tells, in this case, that V(r) is close to a flat potential.
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