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Abstract

A new derivation of the WKB approximation is provided, based on the wave propagation
in a slightly inhomogeneous medium.

The WKB approximation (or WKBJ approximation, after the names of Wentzel, Kramers, Bril-
louin and Jeffreys, see for example Ref.1) provides the solution of the second-order differential
equation

d2ψ

dx2
= −k2(x)ψ (1)

with k(x) (in general complex) a slowly varying function of x. With the substitution

ψ(x) = eΦ(x) (2)

the function Φ(x) satisfies the equation

Φ
′2(x) + Φ

′′
(x) + k2(x) = 0 , (3)

whence
Φ
′2(x) = −k2(x)± ik

′
(x) + ... . (4)

Introducing (4) into (2) we obtain the WKB solution

ψ(x) =
C√
k(x)

e
±i
∫ x

x0
k·dx

, (5)

where C and x0 are constants of integration.The function k(x) can be viewed as a wavevector and
λ(x) = 1/k(x) can be taken as a wavelength; the solution given by (5) is then valid for∣∣∣∣∣dλdx

∣∣∣∣∣� 1 . (6)

The WKB approximation, also known as the semi-classical approximation in quantum mechan-
ics, and the geometrical optics approximation in wave theory,[2] has been studied extensively,
especially by Langer.[3] We present in this note a new derivation of it, suuggested by the wave
propagation in a slightly inhomogeneous medium.

Let us assume that a wave of unit amplitude and of wavevector k0 propagates through a slightly
inhomogeneous medium from x0 = 0 to xN = L. The wave is reflected at x0 = 0 with the
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amplitude R, and is transmitted at the other end xN = L with the amplitude T . The propagation
is assumed to proceed along a straight line and with a wavevector k(x) which depends slightly on
position, i.e. the variation of the corresponding wavelength over the scale length of the medium
inhomogeneities is much smaller than unity. This is precisely the condition of geometrical optics
given by (6). Accordingly, we divide the medium sample into slices of coordinates xn, n = 0, 1, ...N ,
such that the wavevector k(x) = kn is constant for xn−1 < x < xn; within each of these intervals
we may write the wave as

ψn(x) = Ane
iknx +Bne

−iknx , xn−1 < x < xn, n = 0, 1, ...N + 1 , (7)

where A0 = 1, B0 = R, AN+1 = T, BN+1 = 0, x−1 and xN+1 being arbitrary. A schematic picture
of this setup is shown in Fig.1.
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Figure 1: A schematic picture of the setup used in text for wave propagation in an inhomogeneous
medium

The continuity conditions

ψn(xn) = ψn+1(xn) , ψ
′

n(xn) = ψ
′

n+1(xn) (8)

allow one to express the amplitudes An+1, Bn+1 in terms of An, Bn. In matricial notation we
have (

An+1

Bn+1

)
= Mn

(
An

Bn

)
, n = 0, 1, ...N , (9)

where

Mn =

 1
2

(
1 + kn

kn+1

)
e−i(kn+1−kn)xn 1

2

(
1− kn

kn+1

)
e−i(kn+1+kn)xn

1
2

(
1− kn

kn+1

)
ei(kn+1+kn)xn 1

2

(
1 + kn

kn+1

)
ei(kn+1−kn)xn

 . (10)

By reiterating the relationship (9) we obtain(
T
0

)
= M

(
1
R

)
, (11)

where
M = MNMN−1...M1M0 . (12)

Since kn varies slowly with n we may limit ourselves to the first two terms in the series expansion

kn+1 = kn + k
′

n + ... = kn(1 + un) , (13)

where

un =
d

dn
(ln kn) � 1 . (14)
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Using this linear approximation in (10) we can express the matrix Mn as

Mn = M0
n

(
1 +M1

n

)
, (15)

where

M0
n =

(
e−unknxn

eiunknxn

)
(16)

is a diagonal matrix and

M1
n =

1

2
un

(
−1 e−2iknxn

e2iknxn −1

)
. (17)

Within the same approximation we can compute now the product of matrices in (12) as

M = M0
NM

0
N−1...M

0
1M

0
0

(
1 +M1

N +M1
N−1 + ...+M1

1 +M1
0

)
, (18)

and obtain

M =

(
(1− u/2) e−iϕ εe−iϕ

ε∗eiϕ (1− u/2) eiϕ

)
, (19)

with the following notations:

u =
N∑

n=0

un =
∫ N

0
dn · d

dn
(ln kn) = ln [k(L)/k0] , (20)

ϕ =
N∑

n=0

unknxn

∫ N

0
dn · k′nxn =

∫ L

0
dk · x = k(L)L−

∫ L

0
k · dx , (21)

ε =
N∑

n=0

une
−2iknxn . (22)

In the above equations we have replaced the summations by integrations since kn is a slowly
varying function of n. It is easy to see now that ε given by (22) can be neglected within the
present approximation. Indeed, we have the following estimation for ε:

ε =
N∑

n=0

une
−2iknxn =

∫ L

0
dx · (ln k)

′
e−2ikx ' u · e

−2ik(L)L − 1

−2ik(L)L
, (23)

and we can see that ε is smaller than u by a factor of order 1/k(L)L � 1. In other words, the
interference effects in this short-wavelength approximation lead to a vanishing reflection coefficient
R, because, making use of (11) and (19), we obtain

R = − ε∗

1− u/2
' 0 (24)

and

T ∼= (1− u/2) e−iϕ =
[
1− 1

2
ln [k(L)/k0]

]
· e−ik(L)L+i

∫ L

0
k·dx . (25)

The outgoing wave at xN = L is therefore

ψ(L) =
[
1− 1

2
ln [k(L)/k0]

]
· ei
∫ L

0
k·dx , (26)
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and we can see that its amplitude is the sum of the first two terms in the expansion of [k0/k(L)]1/2;
according to (5) this is precisely the WKB solution. It is easy to check that the ”current” conser-

vation ψ∗ (∂ψ/∂x) − (∂ψ∗/∂x)ψ = const amounts to k0

(
1− |R|2

)
= k(L) |T |2, which is verified

by (24) and (25).

The above calculations are presented in terms of purely propagating waves, i.e. without ab-
sorption, as if the wavevector k(x) were purely real; actually, the calculations remain valid for a
complex k(x). Indeed, assuming that k(x) acquires an imaginary part κ(x) the wave ψ(x) in (7)
must be replaced by

ψn(x) = Ane
iknxe−κn(x−xn−1) +Bne

−iknxe−κn(xn−x) , xn−1 < x < xn , (27)

such as to account for absorption. Following the same reasoning as above we arrive again at
equation (26) with a complex k(x).
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