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2 J. Theor. Phys.theory.[9, 10℄ The neessity for a lassial treatment of the van der Waals-London-Casimir foresating between marosopi bodies have been emphasized in a series of subsequent papers.[11℄-[16℄The marosopi bodies brought their own partiularities with respet to the eletrial polariza-tion, like spei� eletromagneti modes (plasmons, polaritons, surfae e�ets, et), as omparedwith quantum-mehanial behaviour of individual partiles. On the other side, the atual exper-imental interest lies in the eletromagneti fores ating betwen marosopi bodies, espeiallyof �nite size, like the ouples sphere-half-spae, two spheres, et.[17℄-[36℄ Therefore, a lassialounterpart of the (quantum) van der Waals-London and Casimir fores is expeted.Reently, a method suitable for marosopi bodies has been put forward,[37℄ based on the lassialinteration between the eletromagneti �eld and matter. It onsists mainly in representing thematter polarization by a displaement �eld u(R, t) of the mobile harges, funtion of position
R and time t, subjeted to the lassial (Newton) equation of motion. The well-known Lorentz-Drude (plasma) model is employed for the polarizable (non-magneti) matter. The eletromagnetioupling between two bodies amounts to solving the oupled equations of motion of the polarizationfor the eigenfrequenies. The energy is then estimated as the orretion brought by interation tothe zero-point energy of the vauum (the temperature e�ets, usually small, may be inluded) andthe fore is thereby derived from the variation of the energy with the separation distane bewteenthe bodies. The Casimir fore (∼ 1/d4) ating between two half-spaes has been derived by thismethod, as well as the van der Waals-London fore (∼ 1/d3). An attempt has also been made[38℄for the non-retarded van der Waals-London oupling between a point-like body and a half-spae(the fore going like 1/d4). It was shown in Ref. [37℄ that the Casimir fore implies eletromagnetimodes propagating between the two half-spaes, oupled to surfae plasmon-polaritonmodes insidethe half-spaes, the latter being propagating modes along the in-plane diretions (parallel to thesurfae of the bodies) and damped along the diretion perpendiular to the surfae. We givehere the results for the Casimir fore (∼ 1/d2) ating at large distane between a (marosopi)sphere and a half-spae, as well as the orresponding van der Waals-London fore (∼ 1/d4). Theresult 1/d2 an be viewed as being the Coulomb fore arising between the sphere and its imagein the half-spae. It is worth noting that for the non-retarded regime the fore is the same as fora quantum partile, while for the retarded regime, the marosopi sphere looks like an in�nitemedium of quatum-mehanial partiles and the relationship d−n+3−d−n holds. Similarly, we givehere the results for two interating spheres, whih exhibit partiularities of marosopi bodies(for instane, the fore is di�erent for idential or distint substanes). For idential substane,the Casimir fore is the same as for the ouple sphere-half-spae, whih, with the image-foreinterpretation, is not an unexpeted result. For distint substanes, the Casimir fore betweentwo spheres goes like 1/d4, whih implies, with respet to the quantum-mehanial result (∼ 1/d8),that the two marosopi spheres at like in�nite media (the relationship d−n+4 − d−n). In thenon-retarded limit the van der Waals-London fore ating between two spheres goes like 1/d5, andit has no quantum-mehanial analog. Coupling involving point-like bodies or spherial shells isalso disussed. Suh bodies behave mainly as spheres. In some speial ases, repulsive fores areobtained.The eletri polarization of the material bodies an be represented as slight osillatory movementsof mobile harges with respet to a neutralizing (quasi-) rigid bakground. Suh movements anbe desribed by a displaement �eld u(R, t), as disussed above. The veloity v = u̇ of the mobileharges in matter is muh smaller than the light veloity c, v/c ≪ 1, so that ωu/c ≪ 1, where
ω is the frequeny of both the osillatory motion of the displaement u and the eletromagneti�eld (the polarization �eld) produed by the motion of the harges. This inequality means thatmatter polarization proeeds mainly by rather limited displaements u, depending on frequenies.For �nite-size bodies, there is a natural limitation for suh displaements, the (linear) size a



J. Theor. Phys. 3of the body. By analogy with the "dipole radiation", the ondition ωa/c ≪ 1 an be alled"dipole approximation" (orresponding to long wavelengths). We adopt this approximation herefor the sphere (whih implies ertain limitations on the frequenies). We shall see that suh anapproximation amounts to estimating the leading ontributions to the (retarded) fores, higher-order ontributions (whih would relieve the limitations imposed upon the frequenies) resultingin higher-order orretions to the fore.Lorentz-Drude modelThe well-known Lorentz-Drude model of (homogeneous) polarizable matter[39℄-[43℄ onsists ofidential harges q, with mass m and density n, moving in a rigid neutralizing bakground. Aslight displaement �eld u(R, t) of the mobile harges is subjeted to the equation of motion
mü = q(E + E0) − mω2

cu − mγu̇ , (1)where E is the eletri �eld produed by the polarization harges and urrents, E0 is an externaleletri �eld, ωc is a harateristi frequeny of the body and γ is a damping fator. For dieletris
ωc 6= 0, for ondutors ωc = 0. Sine the polarization is given by P = nqu, it is easy to see thatequation (1) leads to the well-known eletri suseptibility

χ = −
ω2

p

4π
· 1

ω2 − ω2
c + iωγ

(2)and dieletri funtion ε = 1+4πχ, where ωp =
√

4πnq2/m is the plasma frequeny. We note theabsene of the Lorentz fore in equation (1), whose ontribution is quadrati in the displaement�eld u and, onsequently, it may be negleted. However, we an inlude an external magneti�eld in the equation of motion (1), if neessary.The displaement �eld u produes polarization harge and urrent densities given by
ρ = −divP = −nqdivu , j =

∂P

∂t
= nqu̇ , (3)whih an be used to ompute the eletromagneti potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

(4)(subjeted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the eletri�eld E in equation (1), whene we an get the displaement u. This way, we an ompute theeletromagneti �elds of a polarizable body, subjeted to the ation of an external eletromagneti�eld. The external �elds in equation (1) are the mutual �elds by whih the bodies at one uponanother.Half-spaeFor a half-spae extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step funtion, and get the polarizationharge and urrent densities

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) ,j = nq(u̇, u̇z)θ(z − d) .

(6)



4 J. Theor. Phys.We use the Fourier deomposition of the type
u(r, z; t) =

1

(2π)3

∫

dkdωu(k, z; ω)e−iωt+ikr , (7)and may omit oassionally the arguments k, ω, writing simply u(z), or u. The eletromagnetipotentials given by equations (4) inludes the "retarded" Coulomb potential ei ω
c
|R−R′|/ |R −R′|,for whih we use the deomposition[44℄

eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (8)where λ = ω/c and κ =

√
λ2 − k2. The alulations are straightforward and we get the Fouriertranforms of the potentials

Φ(k, z; ω) == 2π
κ

∫ ∞

d
dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

A(k, z; ω) = 2πλ
κ

∫ ∞

d
dz′(u, uz)e

iκ|z−z′|

(9)(where we have left aside the fator nq; it is restored in the �nal formulae). In order to ompute theeletri �eld it is onvenient to refer the in-plane vetors (i.e., vetors parallel with the surfae ofthe half-spae) to the vetors k and k⊥, where k⊥ is perpendiular to k and of the same magnitudeas k; for instane, we write
u = u1

k

k
+ u2

k⊥

k
(10)and a similar representation for the eletri �eld parallel with the surfae of the half-spae. Inperforming the alulations, it is worth paying attention to the orret derivative of the modulusfuntion, aording to the equation

∂2

∂z2
eiκ|z−z′| = −κ2eiκ|z−z′| + 2iκδ(z − z′) . (11)We get the eletri �eld

E1 = 2πiκ
∫ ∞

d
dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫ ∞

d
dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫ ∞

d
dz′u1e

iκ|z−z′| + 2πik2

κ

∫ ∞

d
dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(12)We an hek easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(d)δ(z − d) , (13)whih is Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (14)whih re�ets the Faraday's and Maxwell-Ampere's equations. From equation (13), we an hekthe transversality ondition divE = 0 for the eletri �eld outside the half-spae (z < d).



J. Theor. Phys. 5We use now the equations of motion (1) (with γ = 0) for the ombinations iku1 + ∂uz/∂z and
k∂u1/∂z+iκ2uz in the region z > d. Taking into aount that divE0 = 0 and k∂E01/∂z+iκ2E0z =
0 (for a plane wave) these equations lead to

∂2u1,2

∂z2 + κ′2u1,2 = 0 , (15)where
κ′2 = κ2 −

λ2ω2
p

ω2 − ω2
c

. (16)We an see that u1,2 = A1,2e
iκ′z, where A1,2 are onstants, i.e. the �eld propagates in the half-spaewith a modi�ed wavevetor κ′, aording to the Ewald-Oseen extintion theorem.[45℄ Similarly,the equations of motion (1) lead to uz = −(k/κ′)A1e

iκ′z. The modi�ed wavevetor κ′ given byequation (16) an also be written as
κ′2 = ε

ω2

c2
− k2 , (17)where ε = 1 + 4πχ is the dieletri funtion (as given by equation (2)). We an hek the well-known polaritoni dispersion relation εω2 = c2K

′2, where K′ = (k, κ′) is the wavevetor.The onstants A1,2 an be derived from the original equations (1) (for z > d). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz = q

m
E02 .

(18)The external �eld in these equations is the �eld generated by the sphere (outside the sphere, inthe region of the half-spae). Similarly, the external �eld for the sphere is the �eld generated bythe half-spae in the region z < d. This latter �eld is given by equations (12):
E1 = −2πA1

κκ′−k2

κ′(κ+κ′)
ei(κ+κ′)de−iκz , z < d ,

E2 = −2πA2
λ2

κ(κ+κ′)
ei(κ+κ′)de−iκz , z < d

(19)and Ez = (k/κ)E1. We an see that it is the �eld re�eted by the half-spae (κ → −κ).The sphereWe onsider a sphere of radius a, with the enter at the origin and with a density n0q of mobileharges. The fator n0q is left aside, but it will be restored in the �nal formuale (it gives theplasma frequeny ωp0 =
√

4πn0q2/m of the sphere). The harateristi frequeny of the sphere inequation (1) is denoted by ωc0. The eletromagneti �eld generated by a sphere under the ationof an external eletromagneti �eld has been derived in Ref. [46℄. This is the well-known Mie'stheory.[45, 47℄ Those results an be used here to investigate the oupling of the sphere with thehalf-spae. However, the full, exat solution given in Refs. [46, 47℄ is unpratiable, on one side,and, on the other side, the oupling is governed by the long wavelength part of the full solution,orresponding to λa ≪ 1 (the dipole approximation). This approximation is also justi�ed by theresults obtained for two oupled half-spaes,[37℄ where the Casimir fore implies surfae plasmon-polariton modes, whih are damped (evanesent) waves inside the two bodies. This is preiselythe situation for the sphere, providing the ondition λa ≪ 1 is ful�lled. Higher-order orretionsto the dipole approximation an be inluded, resulting in orretions to the leading ontributionsto the fore.



6 J. Theor. Phys.We derive here this relevant part of the solution by a diret approah, suggested by the half-spae�eld whih ats upon the sphere (equations (19)). First, we rewrite the �eld given by equations(19) as
E1,2 = −2πA1,2f1,2(k) (20)and Ez = (k/κ)E1, where the funtions f1,2(k) an easily be identi�ed from equations (19). Weneed the Fourier transform of this �eld, written as
E⊥ = E1

k

k
+ E2

k⊥

k
(21)for the in-plane omponent. We use the parametrization r = r(sin θ, cos θ), k = k(cos θ′, sin θ′)and k⊥ = k(− sin θ′, cos θ′) and get

E⊥(r, z) = −iA1

∫

dkkf1(k)J1(kr)(sin θ, cos θ)−

−iA2

∫

dkkf2(k)J1(kr)(− cos θ, sin θ)
(22)and

Ez(r, z) = −A1

∫

dk
k2

κ
f1(k)J0(kr) , (23)where J0,1 are the zeroth and, respetively, �rst order Bessel funtions of the �rst kind. For r ≤ a(inside the sphere) and ωa/c ≪ 1 the wavevetors κ and κ′ an be approximated by κ ≃ κ′ ≃ ikand the funtions f1,2 beome

f1(k) ≃ e−k(2d−z) , f2(k) ≃ − λ2

2k2
e−k(2d−z) . (24)Notiing that 2d−z > 0 for −a ≤ z ≤ a (inside the sphere), the integrals intervening in equations(22) and (23) an be found in Ref. [44℄, p. 686 (6.611.1) and p. 694 (6.623.3). For d ≫ a we getthe eletri �eld produed by the half-spae inside the sphere

E0x = − i
8d3 (A1x + λ2d2A2y) , E0y = − i

8d3 (A1y − λ2d2A2x) ,

E0z = i
4d2 A1 .

(25)The su�x 0 is attahed here beause this �eld plays the role of the external �eld for the sphere.Within our approximation we may leave aside the A2-terms in equations (25).Equations (25) suggest that the displaement �eld inside the sphere is of the form
u = (αx + βy, αy − βx, γa)θ(a − R) , (26)where α, β and γ are onstants to be determined. We ompute the eletromagneti potentials Φand A given by equations (4) with ρ = −divu and j = −iωu, where u is given by equation (26).A further simpli�ation an be made, by notiing that the harge density an be written as

ρ = −2αθ(a − R) +
2

3
αaδ(a − R) + γaP1(cos θ)δ(a − R) − 2

3
αaP2(cos θ)δ(a − R) , (27)where Pn(cos θ) are the Legendre polynomials and cos θ = z/R (= z/a). Within the dipoleapproximation, the P2-term may be left aside. This amounts to putting α = 0. In addition, theoe�ient β an also be set equal to zero, in omparison with the z-omponent of the displaement(γa). This is in aordane with the observation made above regarding the absene of the A2-terms



J. Theor. Phys. 7in equations (25). Therefore, we are left with ρ = γzδ(a−R) and j = −iωγa(0, 0, 1)θ(a−R). Weuse the well-known deomposition of the spherial wave (Ref. [44℄, p. 930, 8.533.1)
eiλ|R−R

′|

λ|R−R′|
= i

∑

n=0(2n + 1)jn(λR<)hn(λR>)Pn(cos Θ) (28)and the addition formula (Ref. [44℄, p. 965, 8.814)
Pn(cos Θ) = Pn(cos θ)Pn(cos θ′) + 2

n
∑

m=1

(n − m)!

(n + m)!
P m

n (cos θ)P m
n (cos θ′) cos m(ϕ − ϕ′) , (29)where P m

n are the assoiated Legendre funtions, jn and hn are the spherial Bessel funtions (ofthe �rst kind and, respetively, the Hankel funtions), R< = min(R, R′), R> = max(R, R′), (θ, ϕ)de�ne the diretion of R, (θ′, ϕ′) de�ne the diretion of R′ and Θ (cos Θ = sin θ sin θ′ cos(ϕ −
ϕ′) + cos θ cos θ′ ) is the angle between R and R′. The alulations are straightforward. We getthe leading ontributions (λa ≪ 1) for R < a (inside the sphere)

Φ =
4π

3
γaz , A = −2πiλγa(a2 − 1

3
R2)(0, 0, 1) . (30)We an hek the Lorenz gauge divA − iλΦ = 0. We an see also that A may be negletedin omparison with Φ, in the limit λa ≪ 1. In this limit, the eletri �eld inside the sphere(E = −gradΦ) is given by

E = −4π

3
γa(0, 0, 1) . (31)We introdue this �eld, together with the external �eld given by equations (19), in the equationof motion (1), whih beomes

(ω2 − ω2
c0 −

1

3
ω2

p0)γaθ(a − R) = − q

m
E0z . (32)We an reognize in the lhs of this equation the lowest (dipole) frequeny ωp0/

√
3 of the spher-ial plasmon.[46℄ The Fourier transform of the funtion θ(a − R) entering equation (32) an beomputed easily. For ak ≪ 1 it is given by πa2, so that equation (32) beomes

(ω2 − ω2
c0 −

1

3
ω2

p0)πγa3 =
1

2
ω2

pA1
k(κκ′ − k2)

κκ′(κ + κ′)
ei(κ+κ′)d . (33)We turn now to the �eld reated by the sphere within the half-spae. It plays the role of theexternal �eld in equations (18). For R > a, the leading ontributions to the eletromagnetipotentials in the limit λa ≪ 1 are given by

Φ =
4πi

3
λ2a4γP1(cos θ)h1(λR) , A =

4π

3
λ2a4γh0(λR)(0, 0, 1) . (34)We an hek the Lorenz gauge divA− iλΦ = 0, the wave (Helmholtz) equations λ2Φ + ∆Φ = 0,

λ2A+∆A = 0 and the transversality onditions divE = 0 for the eletri �eld E = iλA− gradΦ.Comparing equations (34) with equations (30), and using the asymptoti formulae h0(z) ≃ −i/z,
h1(z) ≃ −i/z2 for z ≪ 1, we an hek also the ontinuity of the potentials at R = a. It is easy tosee that the salar potential an also be derived from iλΦ = ∂Az/∂z, so that the Fourier transformof the in-plane �eld is given by

E⊥ = −ikΦ = −1

λ
k

∂Az

∂z
, (35)



8 J. Theor. Phys.where Az is the Fourier transform of the vetor potential (Az(k, z; ω)). We an see that the k⊥-omponent of the eletri �eld is vanishing, so we have u2 = 0 (A2 = 0 in equations (18)). TheFourier transform of the vetor potential
Az =

4π

3
λ2a4γ

∫

drh0(λR)e−ikr (36)implies the Bessel funtion J0(kr). Making use of h0(z) = −ieiz/z the integral in equation (36)aquires the form of well-known integrals given in Ref. [44℄, pp. 714-715, 6.677.1,2. We get
Az(k, z) =

8π2

3

λa4

κ
γeiκz (37)and the eletri �eld

E1 = −8π2i

3
a4γkeiκz . (38)Making use of this (external) �eld, equations (18) beome

1

2
A1ω

2
p

κκ′ + k2

κ′(κ′ − κ)
ei(κ′−κ)d = −2πi

3
ω2

p0a
4γk . (39)From equations (33) and (39) we get the dispersion equation

e2iκd =
3iκ

2ak2ω2
p0

(ω2 − ω2
c0 −

1

3
ω2

p0)
κκ′ + k2

κκ′ − k2
· κ′ + κ

κ′ − κ
. (40)The solutions (ω) of this equation are the eletromagneti eigenfrequenies of the sphere oupledwith the half-plane (within the dipole approximation).Eletromagneti eigenfrequenies and the Casimir foreEquation (40) has solutions only for κ′ purely imaginary, i.e. κ′ = iα, α2 = λ2ω2

p/(ω2−ω2
c )−κ2 > 0.In this ase, it an be written as

ω2 − ω2
c0 −

1

3
ω2

p0 =
2ak2ω2

p0

3κ
e2i(κd−ϕ1−ϕ2−π/4), (41)where tanϕ1 = ακ/k2 and tan ϕ2 = α/κ. We dedue

κd = ϕ1 + ϕ2 + π/4 + nπ/2 (42)and
ω2 = B2

0 + (−1)n
2ak2ω2

p0

3κ
, (43)where B2

0 = ω2
c0 + 1

3
ω2

p0 and n is any integer. The solutions of equation (42) an be denoted by
κn, κn > 0. The fator k2/κ entering equation (43) an be written as k2/κ = (λ2 −κ2)/κ. Withindipole approximation the ondition B0a/c ≪ 1 and κ lose to λ should be ful�lled. Consequently,in this region we aproximate the fator k2/κ = (λ2−κ2)/κ by −2(κ−λ) , for λ−κ1 < κ < λ+κ2,where ∆κ = κ2 − κ1 is of the order of λ. The solution of equation (43) an then be written as

ωn ≃ B0

√

1 ± Cκ′
n , (44)where C = 4aω2

p0/3B2
0 , κ′

n = κn − λ and Cκ′
n ≪ 1. In equation (44) we may represent ∆κ′

n as
∆κ′

n = βB0/c, where β is a fator of the order of the unity. An estimation for this fator an be



J. Theor. Phys. 9obtained by omparing the �rst- and seond-order derivatives of the funtion λ2/κ− κ for κ = λ.We get β ≃ 2. Under these irumstanes, we an see also from equation (44) that α de�ned aboveremains a real quantity. We estimate the hange produed in the energy of the eletromagneti�eld by the sphere-half-spae oupling by the Euler-MaLaurin formula[48℄
∆E =

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

[

f (2m−1)(κ1) − f (2m−1)(κ2)
]

, (45)where Bm are Bernoulli's numbers and f(κ) = ~B0(1 ± Cκ)1/2 (~ being the Plank's onstant).The leading ontribution omes from the �rst-order derivative f (1)(κ) = ±(1/2)~B0C(1±Cκ)−1/2.The di�erene ∆f (1) = f (1)(κ1) − f (1)(κ2) an be approximated by ∆f (1) ≃ −f (2)(0)∆κ =
(1/4c)β~B2

0C
2, so we get the energy

∆E ≃ −4π

9
βB1

~a2ω4
p0

cB2
0d

= −2π

27
β

~a2ω4
p0

cB2
0d

(46)and the fore (the leading term)
F = −2π

27
β

~a2ω4
p0

cB2
0d

2
. (47)It is easy to see from equation (45) that higher-order orretions to this result are of the form

1/d4, 1/d6, et (all attrative). Similar orretions are obtained if higher-order ontributions areinluded beyond the dipole approximation. They result in higher powers of the k wavevetor inequation (43) and, by equation (45), in higher-powers of the 1/d. Under these irumstanes,and bearing in mind that we only estimate the hange in the energy due to the oupling, we maygive up the restritive ondition B0a/c ≪ 1. Similar results (to some extent) have been reportedreently in Refs. [35, 36℄.We an see that the fore given by equation (47) has a di�erent harater than the Casimir foreating between an atom and a half-spae (whih goes like 1/d5). The harateristi d2-dependenesuggests a Coulomb fore ating between a small partile (sphere) and its image in the half-spae.From the estimation of the fator k2/κ made above, we an see that this Casimir fore involves thesurfae plasmon-polaritons modes in both bodies, damped along the z-axis and either propagatingor damped along the in-plane diretions in the half-spae (parallel to the surfae). These lattermodes are reminisent of the �utuating modes.In addition, from the standpoint of a quantum-mehanial treatment, we may view a marosopisphere as an in�nite medium. Then, the relationship d−n+3 −d−n for n−3 = 2 gives n = 5, whihis indeed the exponent of the quantum Casimir fore ating between a quantum partile and ahalf-spae.van der Waals-London foreFor shorter distanes d the interation beomes non-retarded, and we an take the limit λ → 0 inthe dispersion equation (40). We get
(ω2 − ω2

c −
1

2
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
1

3
ω2

pω
2
p0ake−2kd , (48)where we an reognize the frequeny ωp/

√
2 of the well-known surfae plasmons.[49℄ We mayonsider the rhs of equation (31) as a small perturbation (ak ≪ 1). Introduing the notation

A2 = ω2
c + ω2

p/2 (and B2
0 = ω2

c0 + ω2
p0/3) the solutions of this equation an be written as
ω1 ≃ A +

ω2
pω2

p0

6A(A2−B2

0
)
ake−2kd ,

ω2 ≃ B0 −
ω2

pω2

p0

6B(A2−B2

0
)
ake−2kd .

(49)



10 J. Theor. Phys.Sine we are interested in the orretions brought about by the oupling to the total energy, we anleave aside, in fat, the restritive onditions Aω/c, B0ω/c ≪ 1. The ourrene of suh onditionsis a feature of the lassial approah, in ontrast with the quantum-mehanial approah, wherewe have a diret aess to the perturbation energy (see, for instane, Ref. [13℄). The hange ∆Ebrought by the interation in the zero-point energy of the eletromagneti �eld (per unit area) isgiven by
∆E = − ~a

96π

ω2
pω

2
p0

AB0(A + B0)
· 1

d3
, (50)and the orresponding fore (leading ontribution) aquires the form

F = − ~a

32π

ω2
pω

2
p0

AB0(A + B0)
· 1

d4
. (51)This is the well-known, lassial van der Waals-London fore, ating between a quantum partileand a half-spae (as well as between a point-like body and a half-spae[38℄). It orresponds to the

1/d7-law of interation between two quantum partiles (van der Waals-London).There are higher-order orretions to these leading ontributions going like 1/d5, −1/d6, et (withalternate signs). However, this behaviour is limited by d ≫ a. There is a rossover from theretarded, Casimir fore given by equation (47) and the non-retarded, van der Waals-Londonfore given by equation (51). The rossover distane d is obtained by equating the two fores(with the ross-setional area πa2 of the sphere). It is of the order d ∼
√

ac/ωp, where ωp is arepresentative frequeny of the order of the plasma frequenies of the two bodies. We notie that
d ∼ a

√

c/aωp ≫ a for ωpa/c ≪ 1.It is worth noting the great di�erene between the van der Waals-London and Casimir fores. Theformer implies the deloalized energy of the eletromagneti �eld ating upon the ross-setionalarea, while the latter is assoiated with the eletromagneti energy, arried out by the radiation,loalized bewteen the sphere and its image in the half-spae. Out of all the eletromagnetifrequenies, the subset of eigenfrequenies for the non-retarded interation (labelled by the in-plane wavevetor k) is onsiderably larger than the orresponding subset of eigenfrequenies ofthe retarded interation, labelled only by the one-dimensional set κn.Two spheresWe onsider two spheres, in the same onditions as above, one, with radius a and harge density
n0q plaed at the origin and another, with radius b and harge density nq, plaed at z = d. Theirequation of motion has the same form as equation (32) (with parameters γ and, respetively, γ′).Making use of equation (37), we get the �eld reated by the sphere plaed at the origin

Ez = iλAz −
∂Φ

∂z
= iλAz −

1

iλ

∂2Az

∂z2
=

ik2

λ
Az , (52)where Az = (8π2λa4/3κ)γeiκ|z| (equation (37)). Similarly, the �eld reated by the sphere plaedat the distane d an be obtained from this equation by hanging z into z−d. We get two oupledequations of motion

(ω2 − ω2
c0 − 1

3
ω2

p0)πγa3 = −2πi
3

ω2
p

b4k2

κ
γ′eiκd ,

(ω2 − ω2
c − 1

3
ω2

p)πγ′b3 = −2πi
3

ω2
p0

a4k2

κ
γeiκd ,

(53)whih lead to the dispersion equation
(ω2 − ω2

c −
1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) = −4

9
ω2

pω
2
p0ab

k4

κ2
e2iκd . (54)



J. Theor. Phys. 11The treatment of this equation is similar with the one given above for the ouple sphere-half-spae.We introdue the notation B2 = ω2
c + ω2

p/3 (and B2
0 = ω2

c0 + ω2
p0/3), and see that the solutionof equation (54) depends on whether the substanes of the spheres are idential (B = B0) ordistint (B 6= B0). For two spheres onsisting of idential substane, B = B0, the results arethe same as those orresponding to one sphere oupled to the half-spae, exept for the onstant

C in equations (46) and (47), whih is replaed by C = 4ω2
p

√
ab/3B2. With the image-foreinterpretation, this may not be an unexpeted result. For two distint substanes (B 6= B0), theleading ontribution omes from the third-order derivative in equation (45), sine the ontributionarising from the �rst-order derivative is vanishing, as a onsequene of the quadrati dependeneof k4/κ2 ≃ 4(κ − λ)2 in equation (54). The �nal result for the energy an be written as

∆E = − 32~

1215c

(π

d

)3 ω4
pω

4
p0(B

2 + B2
0)a

2b2

B2B2
0(B

2 − B2
0)

2
. (55)We an see that the fore goes like 1/d4. Comparing with the quantum-mehanial alulations,we an view the two spheres as two in�nite media, and use the relationship d−n+4 − d−n; hene,

n = 8, whih is indeed the exponent in the Casimir fore ating ating beween two quantumpartiles. Similar results are disussed reently in Refs. [35, 36℄In the non-retarded limit (κ = −ik) equation (54) beomes
(ω2 − ω2

c −
1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
4

9
ω2

pω
2
p0abk2e−2kd , (56)and the fore (per unit area) is given by

F = −~ab

12π

ω2
pω

2
p0

BB0(B + B0)
· 1

d5
(57)for distint substanes, and by

F = −
~abω4

p

24πB3
· 1

d5
(58)for idential substane. This fore has no quantum-mehanial analog.Point-like bodiesThe displaement �eld for a point-like body plaed at R0 an be taken as a3uδ(R−R0), where ais the "radius" of the body and u is a onstant vetor (depending only on the time). The hargeand urrent densities (temporal Fourier transforms) are given by

ρ = −a3(ugrad)δ(R− R0) , j = −ia3ωuδ(R− R0) , (59)where the fator nq is left aside. The eletromagneti potentials given by equations (4) an beomputed straightforwardly. They are given by
Φ = −a3(ugrad)F , A = −ia3λuF , (60)where

F =
eiλ|R−R0|

|R− R0|
. (61)We use the Fourier transform F (k, z) = (2πi/κ)eiκ|z−z0| given by equation (8) for the funtion F ,and introdue the in-plane (transverse) omponents u1,2, together with the z-omponent uz, forthe displaement. The �eld is obtained by E = iλA − gradΦ from the above equations.



12 J. Theor. Phys.For R0 = 0 we get immediately the �eld
E1 = a3κ(κu1 − kuz)F (k, z) , E2 = a3λ2u2F (k, z) ,

Ez = −a3k(κu1 − kuz)F (k, z)
(62)for z > 0 and F (k, z) = (2πi/κ)eiκz. Similarly, for the point-like body of radius b plaed at

R0 = (0, 0, d), with the displaement denoted by v, we get the �eld
E1 = b3κ(κv1 + kvz)F (k, z) , E2 = a3λ2v2F (k, z) ,

Ez = b3k(κv1 + kvz)F (k, z)
(63)for z < d and F (k, z) = (2πi/κ)eiκ(d−z).We write the equations of motion (1) for two point-like bodies, making use of the ombinations

κu1 − kuz and κv1 + kvz. We get two dispersion equations
(ω2 − ω2

c0)(ω
2 − ω2

c ) = −1
4
ω2

pω
2
p0ab(k2/κ − κ)2e2iκd ,

(ω2 − ω2
c0)(ω

2 − ω2
c ) = −1

4
ω2

pω
2
p0ab(k2/κ + κ)2e2iκd

(64)(the latter equation omes from the oordinates u2, v2). These two equations are not ompatiblewith one another. We hoose vanishing transverse omponents, u2 = v2 = 0, and we are left withthe �rst equation (64), whih an be treated similarly as equation (54). The analysis is similar forthe seond dispersion equation (64), orresponding to a vanishing displaement omponent alongthe z-axis.First, we onsider an idential substane, ωc0 = ωc. The solutions of the �rst equation (64) aregiven by κnd = nπ/2 and
ω2 = ω2

c ±
1

2
ω2

p

√
ab(k2/κ − κ) . (65)The fator k2/κ−κ = λ2/κ−2κ an be expanded in powers of κ−κ0, where, in the limit a, b → 0the κ0-term is immaterial. Sine in the limit a, b → 0 the exat result given by equation (65)amounts to the dipole approximation, we may take κ0 as the value of κ whih nulli�es the fator

k2/κ − κ: κ0 = λ/
√

2. Equation (65) an then be ast in the form
ωn = ωc

√

1 ± Cκn , (66)where κn varies around zero within the interval ∆κ = βλ = βωc, β being a numerial fator ofthe order of the unity (β ≃ 1/2). We apply the Ma-Laurin summation given by equation (45),the �nal result being
∆E = −π

6
β

~abω4
p

cω2
cd

. (67)We an see that the fore goes like 1/d2, the situation being similar with the interation betweentwo-idential spheres (or a sphere and a half-spae). For distint substanes, it is the third-orderderivative whih ontributes to the Euler-Ma-Laurin summation (due to the quadrati fator
(k2/κ− κ)2), the situation is similar with two interating spheres, and the Casimir fore goes like
1/d4. In the non-retarded limit (κ = ik) the �rst equation (64) has the same form as equation (56)for two spheres, and the fore goes like 1/d5. The oupling between a point-like body and a sphereis also similar with the oupling between two spheres. Di�erent other situations may appear,



J. Theor. Phys. 13related to these equations, depending on whether one body is "onduting", or both bodies are"onduting". In this ase, ωc0 = 0, for instane, or both harateristi frequenies are vanishing,
ωc = ωc0 = 0. These situations are treated similarly, by the same method desribed here. Suhspeial situations arise from the fat that we do not allow a dynamis for the (internal) polarizationof the loalized point-like bodies, whih is rather a speial, unrealisti assumption. This is whywe do not follow further suh ases here. Similar situations may appear also for spherial shellsof a vanishing thikness. The �eld generated by a spherial shell an be alulated by the samemethod as the one presented here for the sphere, and a large variety of oupling involving spherialshells an be treated. It is worth noting the great variety of situations whih an be investigatedby the the lassial interation between the eletromagneti �eld and marosopi bodies.The oupling between a point-like body and a half-spae is similar with the oupling between asphere and a half-spae. We use the oupled equations (18) for the half-spae with the (external)�eld given by equations (62) (the �eld generated by the sphere) and the equations of motion (1)for the point-like body with the �eld given by equations (19) (the �eld of the half-spae). Forvanishing transverse omponents of the displaement the dispersion equation is given by

ω2 − ω2
c0 =

i

2
ω2

p0a
κ2 − k2

κ

κκ′ − k2

κκ′ + k2

κ′ − κ

κ′ + κ
e2iκd . (68)This equation is analogous with the dispersion equations (40) and (41) for the ouple sphere-half-spae, exept (beside numerial oe�ients) for the fator k2/κ − κ, whih appears in the plaeof the fator k2/κ in equation (41). The treatment of the equation (68) is analogous with thetreatment done for the equations (40) and (41), resulting a Casimir fore ∼ 1/d2 and a van derWaals-London fore ∼ 1/d4. A speial ase is the "onduting" point-like body, for whih ωc0 = 0.In this, rather unrealisti, ase, it is easy to see that the Casimir fore is vanishing, while the vander Waals-London fore is repulsive.Spherial shellsBy analogy with the sphere, the displaement �eld for a spherial shell of radius a and thikness

ε, plaed at the origin, an be written as
u = εaγ(0, 0, 1)δ(R − a) . (69)The eletromagneti �eld an be omputed from the potentials in the same manner as for thesphere. Within our approximation, the �eld inside the sphere is vanishing. The external �eld isgiven by

E1 = −k

λ

∂Az

∂z
, Ez = iλAz +

i

λ

∂2Az

∂z2
, (70)where

Az = 4πλ2a3εγh0(λR) (71)(h0 being the Hankel funtion o fthe zeroth order). For the Fourier transforms we get
E1 = −8π2ia3εγkeiκz , Ez = 8π2ia3εγ

k2

κ
eiκz . (72)This �eld an be used for oupling the spherial shell with any other body desribed here, byusing the equation of motion (1). The dispersion equations are very similar with the equationsfor a sphere, exept for the ontribution of the (internal) polarization (whih we do not allow fora spherial shell). The results do not depend on the thikness ε.A "speial" ase



14 J. Theor. Phys.The �eld of a point-like body an be omputed straightforwardly in the diret spae, making useof the potentials given by equations (59) (without resorting to the Fourier tranforms). We maygive up the sharpness of the surfae of the marosopi bodies, as expressed by the funtion δin the displaement �eld given by a3uδ(R − R0). Suh a speial ase may sometimes be viewedas a "lassial" representation for quantum partiles. The equations of motion (1) an then bewritten in the diret spae (not by using Fourier transforms). We do so for two point-like partilesplaed at R0 = 0 and R0 = (0, 0, d), as before. We hoose vanishing transverse omponents ofthe displaement, and we are left with the dispersion equation
(ω2 − ω2

c0)(ω
2 − ω2

c ) =
a3b3

4π2d3
ω2

p0ω
2
p(1 − iλd)2e2iλd (73)for the displaement omponent along the z-axis. In the non-retarded ase (λ = 0), it is easy to seethat this equation leads to the attrative 1/d7-van der Waals-London fore (for both ωc, ωc0 6= 0)(if ωc = 0, or ωc0 = 0, the fore is repulsive; for both ωc = ωc0 = 0, the fore is repulsive andgoes like 1/d7/2). A similar onlusion is reahed for the transverse displaement omponents(vanishing displaement along the z-diretion).In the retarded regime, the solutions of the equation (73) are given by

λd − ϕ = nπ/2 , (74)where tanϕ = λd, and
(ω2 − ω2

c0)(ω
2 − ω2

c ) = ± a3b3

4π2d3
ω2

p0ω
2
p(1 + λ2d2)2 (75)(for the displaement along the z-axis). The analysis of the solutions of equation (75) depends onthe parameters ωc, ωc0. We onsider here the most interesting ase of idential partile, ωc = ωc0.Equation (75) an be solved easily, and we an see that the fore is vanishing. A similar onlusionholds for the dispersion equation of the transverse omponents of the displaement. This provesthe inadequay of suh a model for quantum partiles (beside its inorret use - in the diret spae- for marosopi bodies).Conluding remarksThe well-known van der Waals-London and Casimir fores are derived by quantum mehanialalulations (in the non-retarded and, respetively, retarded regime). The origin of these foresresides in the polarization of the material bodies. The marosopi bodies exhibit their own polar-ization harateristis, in omparison with the quantum partiles. A method has been developedhere for treating the lassial interation between the eletromagneti �eld and the polarizablematter, in order to derive the marosopi ounterpart of the van der Waals-London and Casimirfores. The method has been applied here to the ouples sphere-half-spae, two spheres, twopoint-like bodies, a point-like body and a half-spae or a sphere (in general, a point-like bodybehaves, in this respet, very muh alike a sphere). The oupling of two half-spaes has beendisussed in Ref. [37℄.The method is based on representing the polarization by a displaement �eld u of the mobileharges, whih obeys the lassial (Newton) equation of motion. The well-known Lorentz-Drude(plasma) model for polarizable matter has been used in this respet. The oupled equations ofmotion are solved for the eletromagneti eigenmodes, both in the retarded and non-retardedregime, and the oupling energy is estimated as the orretion brought by interation to thezero-point energy of the eletromagneti �eld (vauum �utuations; thermal orretions an be
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