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Abstract

We investigate here the classical electromagnetic coupling between a sphere and a half-
space (a semi-infinite solid with a plane surface), both in the retarded (radiation) and non-
retarded regime. It is found that the Casimir force (retarded regime) goes like 1/d? (at long
distance), where d is the separation distance between the sphere and the half-space, while in
the non-retarded regime the van der Waals-London force goes like 1/d*. Similarly, we com-
pute also the forces betwen two spheres, two point-like bodies and a sphere and a point-like
body. For identical substance, the Casimir force between two spheres is the same as for the
couple sphere-half-space, while for distinct substances the Casmir force goes like 1/d*. In
the non-retarded regime, the force between two spheres goes like 1/d°. The point-like bodies
behaves very much alike the spheres. All the forces are attractive, except for some particu-
lar situations (related to the absence of an (internal) polarization). Spherical shells are also
discussed. The calculations are performed within the well-known Lorentz-Drude (plasma)
model of polarizable matter, by using the dipole approximation for the sphere. The cou-
pled equations of motion of the polarization are obtained and solved for the electromagnetic
eigenfrequencies. The force is estimated from the correction brought by interaction to the
zero-point energy of the polarization field (vacuum fluctuations). The connection between
the present classical theory for macroscopic bodies and the quantum-mechanical treatment
is discussed.
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Introduction

The original derivation of the Casimir force[l, 2| has been done for the quantum interaction be-
tween a neutral atom and a half-space (a semi-infinite solid with a plane surface), two neutral
atoms, as well as for two half-spaces. For small distances of separation d, the classical, non-retarded
van der Waals-London results[3]-[5] have been re-obtained: the force goes like 1/d* between an
atom and a half-space, and like 1/d” between two atoms. As it is well-known, a d~"- force between
two particles results in a d~""3-between a particle and a half-space (and a d~""*-force between
two half-spaces). In the retarded regime (for longer distances), the (Casimir) force goes like 1/d®
for the couple atom-half-space and like 1/d® for two atoms. All these forces are attractive. These
results have been re-derived within the framework of the general quantum-statistical theory of the
electromagnetic fluctuations (particularly for two interacting half-spaces),[6]-[8] and from source
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theory.[9, 10] The necessity for a classical treatment of the van der Waals-London-Casimir forces
acting between macroscopic bodies have been emphasized in a series of subsequent papers.|11]-[16]
The macroscopic bodies brought their own particularities with respect to the electrical polariza-
tion, like specific electromagnetic modes (plasmons, polaritons, surface effects, etc), as compared
with quantum-mechanical behaviour of individual particles. On the other side, the actual exper-
imental interest lies in the electromagnetic forces acting betwen macroscopic bodies, especially
of finite size, like the couples sphere-half-space, two spheres, etc.[17]-[36] Therefore, a classical
counterpart of the (quantum) van der Waals-London and Casimir forces is expected.

Recently, a method suitable for macroscopic bodies has been put forward,[37] based on the classical
interaction between the electromagnetic field and matter. It consists mainly in representing the
matter polarization by a displacement field u(R,¢) of the mobile charges, function of position
R and time ¢, subjected to the classical (Newton) equation of motion. The well-known Lorentz-
Drude (plasma) model is employed for the polarizable (non-magnetic) matter. The electromagnetic
coupling between two bodies amounts to solving the coupled equations of motion of the polarization
for the eigenfrequencies. The energy is then estimated as the correction brought by interaction to
the zero-point energy of the vacuum (the temperature effects, usually small, may be included) and
the force is thereby derived from the variation of the energy with the separation distance bewteen
the bodies. The Casimir force (~ 1/d*) acting between two half-spaces has been derived by this
method, as well as the van der Waals-London force (~ 1/d?). An attempt has also been made[38]
for the non-retarded van der Waals-London coupling between a point-like body and a half-space
(the force going like 1/d?%). It was shown in Ref. [37] that the Casimir force implies electromagnetic
modes propagating between the two half-spaces, coupled to surface plasmon-polariton modes inside
the half-spaces, the latter being propagating modes along the in-plane directions (parallel to the
surface of the bodies) and damped along the direction perpendicular to the surface. We give
here the results for the Casimir force (~ 1/d?) acting at large distance between a (macroscopic)
sphere and a half-space, as well as the corresponding van der Waals-London force (~ 1/d*). The
result 1/d* can be viewed as being the Coulomb force arising between the sphere and its image
in the half-space. It is worth noting that for the non-retarded regime the force is the same as for
a quantum particle, while for the retarded regime, the macroscopic sphere looks like an infinite
medium of quatum-mechanical particles and the relationship d="*2 —d =" holds. Similarly, we give
here the results for two interacting spheres, which exhibit particularities of macroscopic bodies
(for instance, the force is different for identical or distinct substances). For identical substance,
the Casimir force is the same as for the couple sphere-half-space, which, with the image-force
interpretation, is not an unexpected result. For distinct substances, the Casimir force between
two spheres goes like 1/d*, which implies, with respect to the quantum-mechanical result (~ 1/d®),
that the two macroscopic spheres act like infinite media (the relationship d="** — d=™"). In the
non-retarded limit the van der Waals-London force acting between two spheres goes like 1/d°, and
it has no quantum-mechanical analog. Coupling involving point-like bodies or spherical shells is
also discussed. Such bodies behave mainly as spheres. In some special cases, repulsive forces are
obtained.

The electric polarization of the material bodies can be represented as slight oscillatory movements
of mobile charges with respect to a neutralizing (quasi-) rigid background. Such movements can
be described by a displacement field u(R, t), as discussed above. The velocity v = 1 of the mobile
charges in matter is much smaller than the light velocity ¢, v/c < 1, so that wu/c < 1, where
w is the frequency of both the oscillatory motion of the displacement u and the electromagnetic
field (the polarization field) produced by the motion of the charges. This inequality means that
matter polarization proceeds mainly by rather limited displacements u, depending on frequencies.
For finite-size bodies, there is a natural limitation for such displacements, the (linear) size a
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of the body. By analogy with the "dipole radiation", the condition wa/c < 1 can be called
"dipole approximation" (corresponding to long wavelengths). We adopt this approximation here
for the sphere (which implies certain limitations on the frequencies). We shall see that such an
approximation amounts to estimating the leading contributions to the (retarded) forces, higher-
order contributions (which would relieve the limitations imposed upon the frequencies) resulting
in higher-order corrections to the force.

Lorentz-Drude model

The well-known Lorentz-Drude model of (homogeneous) polarizable matter|[39]-[43] consists of
identical charges ¢, with mass m and density n, moving in a rigid neutralizing background. A
slight displacement field u(R, t) of the mobile charges is subjected to the equation of motion

mii = ¢(E + Eg) — mw?u — myu | (1)

where E is the electric field produced by the polarization charges and currents, Eg is an external
electric field, w, is a characteristic frequency of the body and v is a damping factor. For dielectrics
we # 0, for conductors w. = 0. Since the polarization is given by P = nqu, it is easy to see that
equation (1) leads to the well-known electric susceptibility

w 1

2
— w? + iwy )
and dielectric function € = 1+ 4y, where w, = /4mng?/m is the plasma frequency. We note the
absence of the Lorentz force in equation (1), whose contribution is quadratic in the displacement
field u and, consequently, it may be neglected. However, we can include an external magnetic
field in the equation of motion (1), if necessary.

The displacement field u produces polarization charge and current densities given by

P
p = —divP = —ngdivu , j = 88—t =ngu , (3)

which can be used to compute the electromagnetic potentials

O(R,t) = [dREBLIRRIS

IR—R/| (4)
AR,t) = %de/j(R'yt—\R—R'VC)

IR-R/|

(subjected to the Lorenz gauge divA + (1/c¢)0®/0t = 0). These potentials give rise to the electric
field E in equation (1), whence we can get the displacement u. This way, we can compute the
electromagnetic fields of a polarizable body, subjected to the action of an external electromagnetic
field. The external fields in equation (1) are the mutual fields by which the bodies act one upon
another.

Half-space

For a half-space extending over the region z > d we take the polarization as
P= HQ(uv uz>0(2 - d) ) (5)

where 6(z) = 0 for z < 0 and 6(z) = 1 for z > 0 is the step function, and get the polarization
charge and current densities

o)

Uz
oz

p = —nq(divua+ $=)0(z — d) — nqu,(d)é(z — d) ,

(6)
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We use the Fourier decomposition of the type

1
(2m)?

u(r, z;t) = /dkdwu(/’f,z;u))ei“’t”kr : (7)

and may omit ocassionally the arguments k, w, writing simply u(z), or u. The electromagnetic
potentials given by equations (4) includes the "retarded" Coulomb potential e R~®'l/|R — R/,
for which we use the decomposition|[44]

AR-R/|

i 1 ik(r—r') ik|z—2z'
T 3 [ M ®)

where A\ = w/c and K = /A2 — k2. The calculations are straightforward and we get the Fourier
tranforms of the potentials

Ok, z;w) == 2?” fdoo dz'kuetlz==='1 — %% fdoo dz'uel==#1 o

9

Ak, z;w) = ? fdoo d7'(u, u,)e™*=

(where we have left aside the factor ng; it is restored in the final formulae). In order to compute the
electric field it is convenient to refer the in-plane vectors (i.e., vectors parallel with the surface of
the half-space) to the vectors k and k| , where k, is perpendicular to k and of the same magnitude
as k; for instance, we write

k k
u:u1E+u2f (10)

and a similar representation for the electric field parallel with the surface of the half-space. In
performing the calculations, it is worth paying attention to the correct derivative of the modulus
function, according to the equation

az . ! . !
W@“"Z_Z = k27 4 20k (2 — o) . (11)
2

We get the electric field

. o ; v o0 - _
By =2mik [, dz'uye™F# 1 — 2D [0 oty etnl =2

Kk Oz
.\ 2 . ’
Ey = 27r;)\ fdoo dz/uzem|zfz | ’ (]_2)
. f 1.2 p ’
E, = 2R [ dy uy el 2k [0 gty e — A 0(z — d) .
z Kk 0z Jd K d # #

We can check easily the equalities

) u
kE = Ar (i — —d)—4 — 1
ikEy + 7 T (zku1+ % ) 0(z — d) — 4mu,(d)é(z — d) , (13)
which is Gauss’s law, and
E
k% + ik’ E, = —4mi)*u.0(z — d) | (14)
2

which reflects the Faraday’s and Maxwell-Ampere’s equations. From equation (13), we can check
the transversality condition divE = 0 for the electric field outside the half-space (z < d).
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We use now the equations of motion (1) (with v = 0) for the combinations iku; + du,/0z and
kOu, /0z+ik*u, in the region z > d. Taking into account that divEy = 0 and kOEy, /0z+ik*Ey, =
0 (for a plane wave) these equations lead to

8281;’2 + HI2U1,2 =0, (15)
where 22
w

/1'2:/{2—w2_22. (16)

We can see that u; 5 = ALQGZ'HI'Z, where A; , are constants, i.e. the field propagates in the half-space
with a modified wavevector x', according to the Ewald-Oseen extinction theorem.[45] Similarly,
the equations of motion (1) lead to u, = —(k/x")A1e™*. The modified wavevector " given by
equation (16) can also be written as

w2

2 2

l‘f,/ = 60_2 —k s (]_7)
where ¢ = 1 + 47y is the dielectric function (as given by equation (2)). We can check the well-
known polaritonic dispersion relation ew? = ¢? K%, where K’ = (k, x') is the wavevector.

The constants A; 5 can be derived from the original equations (1) (for z > d). We get

1 2 kK'+k? i(k'—k)d jikz _ 4
2A1wpn/(n/fn)e € o mEb1 ’

(18)

%Agwf, li(li)ili) el mdeins = %EOZ :

The external field in these equations is the field generated by the sphere (outside the sphere, in
the region of the half-space). Similarly, the external field for the sphere is the field generated by
the half-space in the region z < d. This latter field is given by equations (12):

E, = _27TA1%6i(H+H’)d67inz L2 < d ’
(19)
E2 — —27TA2 K(,:\_iH/) ei(lfnLn/)defin L2 < d

and E, = (k/k)E;. We can see that it is the field reflected by the half-space (k — —k).
The sphere

We consider a sphere of radius a, with the center at the origin and with a density ngq of mobile
charges. The factor ngq is left aside, but it will be restored in the final formuale (it gives the
plasma frequency wyy = v/47mnoq?/m of the sphere). The characteristic frequency of the sphere in
equation (1) is denoted by we. The electromagnetic field generated by a sphere under the action
of an external electromagnetic field has been derived in Ref. [46]. This is the well-known Mie’s
theory.[45, 47| Those results can be used here to investigate the coupling of the sphere with the
half-space. However, the full, exact solution given in Refs. [46, 47| is unpracticable, on one side,
and, on the other side, the coupling is governed by the long wavelength part of the full solution,
corresponding to Aa < 1 (the dipole approximation). This approximation is also justified by the
results obtained for two coupled half-spaces,|37] where the Casimir force implies surface plasmon-
polariton modes, which are damped (evanescent) waves inside the two bodies. This is precisely
the situation for the sphere, providing the condition Aa < 1 is fulfilled. Higher-order corrections
to the dipole approximation can be included, resulting in corrections to the leading contributions
to the force.
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We derive here this relevant part of the solution by a direct approach, suggested by the half-space
field which acts upon the sphere (equations (19)). First, we rewrite the field given by equations
(19) as

Ei 5= -21A 5 f12(k) (20)

and E, = (k/k)E), where the functions f,(k) can easily be identified from equations (19). We
need the Fourier transform of this field, written as
k k|
E =F-—+FE,— 21
i 1% + Lo 3 (21)
for the in-plane component. We use the parametrization r = r(sin6, cos ), k = k(cos®’, sin€’)
and k; = k(—sin#’, cos ') and get

E|(r,z) = —iA; [dkkfi(k)Ji(kr)(sin 6, cosf)—
(22)
—iAy [ dkk f2(k)Ji(kr)(— cos O, sinf)

and
E.(r,2) = —4, / A" (k) k) (23)

where Jy; are the zeroth and, respectively, first order Bessel functions of the first kind. For » < a
(inside the sphere) and wa/c < 1 the wavevectors  and £’ can be approximated by k ~ k' ~ ik
and the functions f; o become

)\2
~ —k(2d—2) ~_ —k(2d—2) ) 24
filk) = D () = - e (24)
Noticing that 2d — z > 0 for —a < z < a (inside the sphere), the integrals intervening in equations
(22) and (23) can be found in Ref. [44], p. 686 (6.611.1) and p. 694 (6.623.3). For d > a we get
the electric field produced by the half-space inside the sphere
EOz = _#@411’ + )\2d2A2y> ) EOy = _#<A1y - )\2d2A2£L’) ’
‘ (25)
EOz - ﬁAl .
The suffix 0 is attached here because this field plays the role of the external field for the sphere.
Within our approximation we may leave aside the A,-terms in equations (25).

Equations (25) suggest that the displacement field inside the sphere is of the form
u = (ax + By, ay — Bz, va)f(a — R) , (26)

where «, 8 and v are constants to be determined. We compute the electromagnetic potentials ®
and A given by equations (4) with p = —divu and j = —iwu, where u is given by equation (26).
A further simplification can be made, by noticing that the charge density can be written as

p=—2a0(a — R)+ %aaé(a — R) +~vaPi(cos0)é(a — R) — %O{CLPQ(COS 6)d(a — R) , (27)

where P,(cosf) are the Legendre polynomials and cos = z/R (= z/a). Within the dipole
approximation, the P,-term may be left aside. This amounts to putting o = 0. In addition, the
coefficient 5 can also be set equal to zero, in comparison with the z-component of the displacement
(va). This is in accordance with the observation made above regarding the absence of the As-terms
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in equations (25). Therefore, we are left with p = yzd(a — R) and j = —iwvya(0,0,1)0(a — R). We
use the well-known decomposition of the spherical wave (Ref. [44], p. 930, 8.533.1)

GIAR—R/|

SERT = ! 2ne0(20+ 1)jn(AR)hn (AR5 ) Fy(cos ©) (28)

and the addition formula (Ref. [44], p. 965, 8.814)

P,(cos©) = P,(cos0)P,(cos ') + 2 Z %Pff(cos O)P"(cos @) cosm(p —¢') ,  (29)

where P’ are the associated Legendre functions, j, and h,, are the spherical Bessel functions (of
the first kind and, respectively, the Hankel functions), R. = min(R, R'), R~ = max(R, R'), (6, ¢)
define the direction of R, (¢, ¢') define the direction of R’ and © (cos©® = sinfsin @’ cos(p —
¢') 4+ cosfcos@ ) is the angle between R and R'. The calculations are straightforward. We get
the leading contributions (Aa < 1) for R < a (inside the sphere)
4 1

o = ?W'yaz , A = —2midvya(a® — gRQ)(O, 0,1). (30)
We can check the Lorenz gauge divA — iA® = 0. We can see also that A may be neglected
in comparison with ®, in the limit A\a < 1. In this limit, the electric field inside the sphere
(E = —grad®) is given by

4
E= —gw(o, 0,1) . (31)

We introduce this field, together with the external field given by equations (19), in the equation
of motion (1), which becomes

1
(W? — wiy — zwi)yab(a — R) = —%EOZ : (32)

3
We can recognize in the lhs of this equation the lowest (dipole) frequency wyo/ V/3 of the spher-
ical plasmon.[46] The Fourier transform of the function 6(a — R) entering equation (32) can be
computed easily. For ak < 1 it is given by ma?, so that equation (32) becomes

k(kk' — k)
ZA i(k+k")d ) 33
“r lli/i/(/€+/€/)e (33)

We turn now to the field created by the sphere within the half-space. It plays the role of the
external field in equations (18). For R > a, the leading contributions to the electromagnetic
potentials in the limit A\a < 1 are given by

471

4
= < Na'yPi(cosO)hi(AR) . A = ?ﬁ)\Qa“vho()\R)(O, 0,1). (34)

We can check the Lorenz gauge divA — i\® = 0, the wave (Helmholtz) equations \2® + A® = 0,
A2A + AA = 0 and the transversality conditions divE = 0 for the electric field E = i\A — grad®.
Comparing equations (34) with equations (30), and using the asymptotic formulae ho(z) ~ —i/z,
hi(z) >~ —i/2* for 2 < 1, we can check also the continuity of the potentials at R = a. It is easy to
see that the scalar potential can also be derived from iA® = 0A,/0z, so that the Fourier transform
of the in-plane field is given by

1. 0A,

E, — —ikd — —~k
+ ! A Oz

(35)
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where A, is the Fourier transform of the vector potential (A, (k, z;w)). We can see that the k, -
component of the electric field is vanishing, so we have us = 0 (Ay = 0 in equations (18)). The
Fourier transform of the vector potential

4 .
A, = ?”Aza‘w / drho(AR)e™ ™" (36)

implies the Bessel function Jy(kr). Making use of ho(z) = —ie?/z the integral in equation (36)
acquires the form of well-known integrals given in Ref. [44], pp. 714-715, 6.677.1,2. We get

812 \a* .
Az k, AP 7 74 37
(k,2) = —-——ne (37)
and the electric field
871-2,&. 4 1Kz
E, = e yke'™ . (38)

Making use of this (external) field, equations (18) become

R Al Y 21 45
§A1wpme( ) = —? pOa ’)/k’ . (39)

From equations (33) and (39) we get the dispersion equation

; / 2 /
gikd _ OIK 9 s 1 o k' +Ek* K +k
- 2ak2 2 (w — Wep — FW )
ak?wy

e (40)

kK — k2 K — Kk

The solutions (w) of this equation are the electromagnetic eigenfrequencies of the sphere coupled
with the half-plane (within the dipole approximation).

Electromagnetic eigenfrequencies and the Casimir force

Equation (40) has solutions only for &’ purely imaginary, i.e. &’ = ia, o = N’w? /(w?—w?)—£* > 0.
In this case, it can be written as

1 2akW?, .

W — WCQO N gwio _ p0 eZz(nd—cpl—cpg—nM) (41)

3K ’

where tan p; = ar/k* and tan p, = a/k. We deduce
kd = p1 + po + /4 +nm/2 (42)

and
L 2ak* W}
3k
where B = w2 + %wﬁo and n is any integer. The solutions of equation (42) can be denoted by
Kny kin > 0. The factor k?/k entering equation (43) can be written as k?/rk = (A\? — k?)/k. Within
dipole approximation the condition Bya/c < 1 and & close to A should be fulfilled. Consequently,
in this region we aproximate the factor k%/k = (A — k%) /k by —2(k— ) , for A\— k1 < K < A+ Ka,
where Ak = kg — Ky is of the order of A\. The solution of equation (43) can then be written as

wn =~ Boy/1 £ Ck, (44)

where C' = 4aw?, /383, k), = r, — A and Ck;, < 1. In equation (44) we may represent Ax;, as

Akl = [By/c, where 3 is a factor of the order of the unity. An estimation for this factor can be

w? = B + (1) (43)
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obtained by comparing the first- and second-order derivatives of the function A\?/x — k for kK = \.
We get § ~ 2. Under these circumstances, we can see also from equation (44) that a defined above
remains a real quantity. We estimate the change produced in the energy of the electromagnetic
field by the sphere-half-space coupling by the Euler-MacLaurin formula[48]

ap = 30 CURET [en b — g ()] 5)

m=1

where B,, are Bernoulli’s numbers and f(x) = hBy(1 & Ck)'/? (h being the Planck’s constant).
The leading contribution comes from the first-order derivative f1) (k) = £(1/2)AB,C(1+Cr) /2.
The difference AfM = fM (k) — fM(ky) can be approximated by AfM ~ —f@(0)Ar =
(1/4c)BhB2C?, so we get the energy

4 haPwd or ha’w}
AE~——§B o _ 2 » 46
S ¢B2d 27" ¢B2d (46)
and the force (the leading term)
on _ha’wy,
F=—5Pema (47)

It is easy to see from equation (45) that higher-order corrections to this result are of the form
1/d*, 1/d®, etc (all attractive). Similar corrections are obtained if higher-order contributions are
included beyond the dipole approximation. They result in higher powers of the & wavevector in
equation (43) and, by equation (45), in higher-powers of the 1/d. Under these circumstances,
and bearing in mind that we only estimate the change in the energy due to the coupling, we may
give up the restrictive condition Bya/c < 1. Similar results (to some extent) have been reported
recently in Refs. [35, 36].

We can see that the force given by equation (47) has a different character than the Casimir force
acting between an atom and a half-space (which goes like 1/d°). The characteristic d>-dependence
suggests a Coulomb force acting between a small particle (sphere) and its image in the half-space.
From the estimation of the factor £?/x made above, we can see that this Casimir force involves the
surface plasmon-polaritons modes in both bodies, damped along the z-axis and either propagating
or damped along the in-plane directions in the half-space (parallel to the surface). These latter
modes are reminiscent of the fluctuating modes.

In addition, from the standpoint of a quantum-mechanical treatment, we may view a macroscopic
sphere as an infinite medium. Then, the relationship d="*2 —d =" for n — 3 = 2 gives n = 5, which
is indeed the exponent of the quantum Casimir force acting between a quantum particle and a
half-space.

van der Waals-London force

For shorter distances d the interaction becomes non-retarded, and we can take the limit A — 0 in
the dispersion equation (40). We get
Ly Ly o

gwpo) = —wiwiake (48)

1
(w2_wc2__w2)(w2_w30_ - 3 p*p

2 p
where we can recognize the frequency w,/ V2 of the well-known surface plasmons.[49] We may
consider the rhs of equation (31) as a small perturbation (ak < 1). Introducing the notation
A? = w? +w2/2 (and Bf = w?) + w2/3) the solutions of this equation can be written as

wy~ A+ _“pn ake2kd
1= 6A(A2—B2) )
(49)
wiw?o —2kd

Wy X~ BO — W_Bg)ake
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Since we are interested in the corrections brought about by the coupling to the total energy, we can
leave aside, in fact, the restrictive conditions Aw/c, Byw/c < 1. The occurrence of such conditions
is a feature of the classical approach, in contrast with the quantum-mechanical approach, where
we have a direct access to the perturbation energy (see, for instance, Ref. [13]). The change AFE
brought by the interaction in the zero-point energy of the electromagnetic field (per unit area) is
given by

ha wiw? 1

AE = — L R 50
967 AB()(A + BQ) d3 ’ ( )
and the corresponding force (leading contribution) acquires the form
h w w? 1
JA 20 (51)

321 ABO(A + By) d*

This is the well-known, classical van der Waals-London force, acting between a quantum particle
and a half-space (as well as between a point-like body and a half-space[38]). It corresponds to the
1/d"-law of interaction between two quantum particles (van der Waals-London).

There are higher-order corrections to these leading contributions going like 1/d°, —1/d®, etc (with
alternate signs). However, this behaviour is limited by d > a. There is a crossover from the
retarded, Casimir force given by equation (47) and the non-retarded, van der Waals-London
force given by equation (51). The crossover distance d is obtained by equating the two forces
(with the cross-sectional area ma® of the sphere). Tt is of the order d ~ y/ac/w,, where w, is a
representative frequency of the order of the plasma frequencies of the two bodies. We notice that

d ~ ay/c/aw, > a for wya/c < 1.

It is worth noting the great difference between the van der Waals-London and Casimir forces. The
former implies the delocalized energy of the electromagnetic field acting upon the cross-sectional
area, while the latter is associated with the electromagnetic energy, carried out by the radiation,
localized bewteen the sphere and its image in the half-space. Out of all the electromagnetic
frequencies, the subset of eigenfrequencies for the non-retarded interaction (labelled by the in-
plane wavevector k) is considerably larger than the corresponding subset of eigenfrequencies of
the retarded interaction, labelled only by the one-dimensional set k,,.

Two spheres

We consider two spheres, in the same conditions as above, one, with radius a and charge density
noq placed at the origin and another, with radius b and charge density ngq, placed at z = d. Their
equation of motion has the same form as equation (32) (with parameters v and, respectively, 7).
Making use of equation (37), we get the field created by the sphere placed at the origin
0P 1 0%A,  ik?
E. =1i)\A, INA, — — =—A, ,

- B iA 072 A
where A, = (872)\a*/3k)ye™? (equation (37)). Similarly, the field created by the sphere placed
at the distance d can be obtained from this equation by changing z into z —d. We get two coupled
equations of motion

(52)

(w? — w2, — %wﬁo)ﬂya‘g’ = —%wﬁ%v'ei“d ,
(53)
a*k? K
(w? —w——w)fyb 23 f,offfyed,
which lead to the dispersion equation
1 1 4 k4
(W? — w? - gwi)(wQ — w2 - §w1270) =3 pwpoab e?ind (54)
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The treatment of this equation is similar with the one given above for the couple sphere-half-space.
We introduce the notation B> = w? + w2/3 (and Bf = w} + w2,/3), and see that the solution
of equation (54) depends on whether the substances of the spheres are identical (B = By) or
distinct (B # By). For two spheres consisting of identical substance, B = By, the results are
the same as those corresponding to one sphere coupled to the half-space, except for the constant
C' in equations (46) and (47), which is replaced by C' = 4%3\/%/332. With the image-force
interpretation, this may not be an unexpected result. For two distinct substances (B # Byp), the
leading contribution comes from the third-order derivative in equation (45), since the contribution
arising from the first-order derivative is vanishing, as a consequence of the quadratic dependence
of k*/Kk* ~ 4(k — X)? in equation (54). The final result for the energy can be written as

(55)

32h <7T)3 wywno(B* + Bj)a*h?
1215¢ \d B2?B2(B? — B?)?
We can see that the force goes like 1/d*. Comparing with the quantum-mechanical calculations,
we can view the two spheres as two infinite media, and use the relationship d="** — d="; hence,
n = 8, which is indeed the exponent in the Casimir force acting acting beween two quantum
particles. Similar results are discussed recently in Refs. 35, 36]

In the non-retarded limit (k = —ik) equation (54) becomes
o o Lo o 1, 4 9 9 o ok
(W —w; — gwp)(w —wih — gwpo) = §wpwp0abk: e , (56)

and the force (per unit area) is given by

po b @ 1 (57)
127'(' BB(](B —|— Bo) d5

for distinct substances, and by

habw? 1
_ p
F=—0B & (58)

for identical substance. This force has no quantum-mechanical analog.

Point-like bodies

The displacement field for a point-like body placed at Ry can be taken as a®*ud(R — Ry), where a
is the "radius" of the body and u is a constant vector (depending only on the time). The charge
and current densities (temporal Fourier transforms) are given by

p=—a’(ugrad)6(R —Ry) , j = —ia*wud(R — Ry) , (59)

where the factor ng is left aside. The electromagnetic potentials given by equations (4) can be
computed straightforwardly. They are given by

® = —a*(ugrad)F , A = —ia®* \uF | (60)
where
¢INR—Ro| 1)
F=——.
R — Ry

We use the Fourier transform F(k, z) = (2mi/k)e™!*~#| given by equation (8) for the function F,
and introduce the in-plane (transverse) components u; o, together with the z-component u,, for
the displacement. The field is obtained by E = i\AA — grad® from the above equations.
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For Ry = 0 we get immediately the field

Ey = d®*k(kuy — ku,)F(k,2) , By = a*NuyF(k, 2)
(62)
E. = —a*k(kuy — ku,)F(k, 2)

for z > 0 and F(k,z) = (2mi/k)e™*. Similarly, for the point-like body of radius b placed at
Ry = (0, 0, d), with the displacement denoted by v, we get the field

Ey = bk(kvy + kv )F(k,2) , By = a* v F(k, 2) ,
(63)
E, = b¥k(kvy + kv,)F(k, 2)

for z < d and F(k,z) = (2mi/k)e4=2),

We write the equations of motion (1) for two point-like bodies, making use of the combinations
kuy — ku, and kv, + kv,. We get two dispersion equations

(WQ - W?o)(w2 - wf) = —iwﬁwﬁoab(ﬁ/,{ _ /-f)2e2i“d ’
(64)
(W —wi) (W —w?) = —iwﬁwﬁoab(l{?/,{ + g)2e2ind

(the latter equation comes from the coordinates us, v2). These two equations are not compatible
with one another. We choose vanishing transverse components, uy = v = 0, and we are left with
the first equation (64), which can be treated similarly as equation (54). The analysis is similar for
the second dispersion equation (64), corresponding to a vanishing displacement component along
the z-axis.

First, we consider an identical substance, w.,g = w.. The solutions of the first equation (64) are
given by k,d = nm/2 and

1
w=w?+ §w§\/%(k2//<; —K) . (65)

The factor k? /k —k = A\?/k — 2k can be expanded in powers of x — kg, where, in the limit a, b — 0
the ko-term is immaterial. Since in the limit a, b — 0 the exact result given by equation (65)
amounts to the dipole approximation, we may take kg as the value of x which nullifies the factor
k?/k — K: Ko = A/v/2. Equation (65) can then be cast in the form

Wy =we\/1+£Ck,, , (66)

where k, varies around zero within the interval Ax = G\ = fw,, # being a numerical factor of
the order of the unity (3 ~ 1/2). We apply the Mac-Laurin summation given by equation (45),
the final result being

x  habw*
AE = ~5 cw2(; . (67)

We can see that the force goes like 1/d?, the situation being similar with the interaction between
two-identical spheres (or a sphere and a half-space). For distinct substances, it is the third-order
derivative which contributes to the Euler-Mac-Laurin summation (due to the quadratic factor
(k?/k — k)?), the situation is similar with two interacting spheres, and the Casimir force goes like
1/d*. In the non-retarded limit (x = ik) the first equation (64) has the same form as equation (56)
for two spheres, and the force goes like 1/d®. The coupling between a point-like body and a sphere
is also similar with the coupling between two spheres. Different other situations may appear,
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related to these equations, depending on whether one body is "conducting", or both bodies are
"conducting". In this case, w. = 0, for instance, or both characteristic frequencies are vanishing,
w. = wq = 0. These situations are treated similarly, by the same method described here. Such
special situations arise from the fact that we do not allow a dynamics for the (internal) polarization
of the localized point-like bodies, which is rather a special, unrealistic assumption. This is why
we do not follow further such cases here. Similar situations may appear also for spherical shells
of a vanishing thickness. The field generated by a spherical shell can be calculated by the same
method as the one presented here for the sphere, and a large variety of coupling involving spherical
shells can be treated. It is worth noting the great variety of situations which can be investigated
by the the classical interaction between the electromagnetic field and macroscopic bodies.

The coupling between a point-like body and a half-space is similar with the coupling between a
sphere and a half-space. We use the coupled equations (18) for the half-space with the (external)
field given by equations (62) (the field generated by the sphere) and the equations of motion (1)
for the point-like body with the field given by equations (19) (the field of the half-space). For
vanishing transverse components of the displacement the dispersion equation is given by

: 2 32,0 12,
9 i 5 K= k"R —k*K — K 5.

2
W — Wi = —wona
0 970 Kk kK + k2K +k

(68)

This equation is analogous with the dispersion equations (40) and (41) for the couple sphere-half-
space, except (beside numerical coefficients) for the factor k?/x — , which appears in the place
of the factor k?/k in equation (41). The treatment of the equation (68) is analogous with the
treatment done for the equations (40) and (41), resulting a Casimir force ~ 1/d* and a van der
Waals-London force ~ 1/d*. A special case is the "conducting" point-like body, for which w.y = 0.
In this, rather unrealistic, case, it is easy to see that the Casimir force is vanishing, while the van
der Waals-London force is repulsive.

Spherical shells
By analogy with the sphere, the displacement field for a spherical shell of radius a and thickness
g, placed at the origin, can be written as

u=-¢eay(0,0, 1)§(R—a) . (69)

The electromagnetic field can be computed from the potentials in the same manner as for the
sphere. Within our approximation, the field inside the sphere is vanishing. The external field is
given by

koA i 0?A
Ey=—~—"2  E. =i A, + ——— , 70
! A0z ORI (70)
where
A, = 47 *a’eyho(\R) (71)
(ho being the Hankel function o fthe zeroth order). For the Fourier transforms we get
. k2
By = —8r%iadeyke™ | B, = 8r%ialey—e'* . (72)
K

This field can be used for coupling the spherical shell with any other body described here, by
using the equation of motion (1). The dispersion equations are very similar with the equations
for a sphere, except for the contribution of the (internal) polarization (which we do not allow for
a spherical shell). The results do not depend on the thickness .

A "special" case
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The field of a point-like body can be computed straightforwardly in the direct space, making use
of the potentials given by equations (59) (without resorting to the Fourier tranforms). We may
give up the sharpness of the surface of the macroscopic bodies, as expressed by the function ¢
in the displacement field given by a*ud(R — Rg). Such a special case may sometimes be viewed
as a "classical" representation for quantum particles. The equations of motion (1) can then be
written in the direct space (not by using Fourier transforms). We do so for two point-like particles
placed at Rp = 0 and Rg = (0, 0, d), as before. We choose vanishing transverse components of
the displacement, and we are left with the dispersion equation

3b3

(W? — W) (W? — w?) = hwﬁowﬁ(l — i\d)%e?M (73)
for the displacement component along the z-axis. In the non-retarded case (A = 0), it is easy to see
that this equation leads to the attractive 1/d"-van der Waals-London force (for both w., weo # 0)
(if w. = 0, or wey = 0, the force is repulsive; for both w. = w, = 0, the force is repulsive and
goes like 1/d7/?). A similar conclusion is reached for the transverse displacement components
(vanishing displacement along the z-direction).

In the retarded regime, the solutions of the equation (73) are given by

A —p=nr/2, (74)
where tan ¢ = A\d, and
2 2 2 2 a’b’ 2 2 2 122
(W —w) (W —wl) = imwpowp(l + A%dY) (75)

(for the displacement along the z-axis). The analysis of the solutions of equation (75) depends on
the parameters w., w.. We consider here the most interesting case of identical particle, w. = weo.
Equation (75) can be solved easily, and we can see that the force is vanishing. A similar conclusion
holds for the dispersion equation of the transverse components of the displacement. This proves
the inadequacy of such a model for quantum particles (beside its incorrect use - in the direct space
- for macroscopic bodies).

Concluding remarks

The well-known van der Waals-London and Casimir forces are derived by quantum mechanical
calculations (in the non-retarded and, respectively, retarded regime). The origin of these forces
resides in the polarization of the material bodies. The macroscopic bodies exhibit their own polar-
ization characteristics, in comparison with the quantum particles. A method has been developed
here for treating the classical interaction between the electromagnetic field and the polarizable
matter, in order to derive the macroscopic counterpart of the van der Waals-London and Casimir
forces. The method has been applied here to the couples sphere-half-space, two spheres, two
point-like bodies, a point-like body and a half-space or a sphere (in general, a point-like body
behaves, in this respect, very much alike a sphere). The coupling of two half-spaces has been
discussed in Ref. [37].

The method is based on representing the polarization by a displacement field u of the mobile
charges, which obeys the classical (Newton) equation of motion. The well-known Lorentz-Drude
(plasma) model for polarizable matter has been used in this respect. The coupled equations of
motion are solved for the electromagnetic eigenmodes, both in the retarded and non-retarded
regime, and the coupling energy is estimated as the correction brought by interaction to the
zero-point energy of the electromagnetic field (vacuum fluctuations; thermal corrections can be
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included). The dipole approximation have been used for the electromagnetic field of a sphere, in
order to estimate the leading contributions to the interaction.

For a sphere coupled to a half-space the Casimir force goes like 1/d? (at large distance) and
the van der Waals-London force goes like 1/d*, where d is the separation distance between the
two bodies. The latter is the same as the one obtained by quantum-mechanical calculations, the
former agrees with the quantum-mechanical calculations providing that the sphere is viewed as
an infinite medium. For two interacting spheres the Casimir force goes like 1/d? if the spheres are
made of the same substance, and it goes like 1/d* if the substances are diferent. The relationship
with the quantum-mechanical calculations is the same as for a sphere and a half-space. The van
der Waals-London force for two interacting spheres goes like 1/d°; it has no quantum-mechanical
analog. The point-like bodies behave similarly with the spheres.
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