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oupling between a sphere and a half-spa
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e), both in the retarded (radiation) and non-retarded regime. It is found that the Casimir for
e (retarded regime) goes like 1/d2 (at longdistan
e), where d is the separation distan
e between the sphere and the half-spa
e, while inthe non-retarded regime the van der Waals-London for
e goes like 1/d4. Similarly, we 
om-pute also the for
es betwen two spheres, two point-like bodies and a sphere and a point-likebody. For identi
al substan
e, the Casimir for
e between two spheres is the same as for the
ouple sphere-half-spa
e, while for distin
t substan
es the Casmir for
e goes like 1/d4. Inthe non-retarded regime, the for
e between two spheres goes like 1/d5. The point-like bodiesbehaves very mu
h alike the spheres. All the for
es are attra
tive, ex
ept for some parti
u-lar situations (related to the absen
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ussed. The 
al
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tua-tionsIntrodu
tionThe original derivation of the Casimir for
e[1, 2℄ has been done for the quantum intera
tion be-tween a neutral atom and a half-spa
e (a semi-in�nite solid with a plane surfa
e), two neutralatoms, as well as for two half-spa
es. For small distan
es of separation d, the 
lassi
al, non-retardedvan der Waals-London results[3℄-[5℄ have been re-obtained: the for
e goes like 1/d4 between anatom and a half-spa
e, and like 1/d7 between two atoms. As it is well-known, a d−n- for
e betweentwo parti
les results in a d−n+3-between a parti
le and a half-spa
e (and a d−n+4-for
e betweentwo half-spa
es). In the retarded regime (for longer distan
es), the (Casimir) for
e goes like 1/d5for the 
ouple atom-half-spa
e and like 1/d8 for two atoms. All these for
es are attra
tive. Theseresults have been re-derived within the framework of the general quantum-statisti
al theory of theele
tromagneti
 �u
tuations (parti
ularly for two intera
ting half-spa
es),[6℄-[8℄ and from sour
e



2 J. Theor. Phys.theory.[9, 10℄ The ne
essity for a 
lassi
al treatment of the van der Waals-London-Casimir for
esa
ting between ma
ros
opi
 bodies have been emphasized in a series of subsequent papers.[11℄-[16℄The ma
ros
opi
 bodies brought their own parti
ularities with respe
t to the ele
tri
al polariza-tion, like spe
i�
 ele
tromagneti
 modes (plasmons, polaritons, surfa
e e�e
ts, et
), as 
omparedwith quantum-me
hani
al behaviour of individual parti
les. On the other side, the a
tual exper-imental interest lies in the ele
tromagneti
 for
es a
ting betwen ma
ros
opi
 bodies, espe
iallyof �nite size, like the 
ouples sphere-half-spa
e, two spheres, et
.[17℄-[36℄ Therefore, a 
lassi
al
ounterpart of the (quantum) van der Waals-London and Casimir for
es is expe
ted.Re
ently, a method suitable for ma
ros
opi
 bodies has been put forward,[37℄ based on the 
lassi
alintera
tion between the ele
tromagneti
 �eld and matter. It 
onsists mainly in representing thematter polarization by a displa
ement �eld u(R, t) of the mobile 
harges, fun
tion of position
R and time t, subje
ted to the 
lassi
al (Newton) equation of motion. The well-known Lorentz-Drude (plasma) model is employed for the polarizable (non-magneti
) matter. The ele
tromagneti

oupling between two bodies amounts to solving the 
oupled equations of motion of the polarizationfor the eigenfrequen
ies. The energy is then estimated as the 
orre
tion brought by intera
tion tothe zero-point energy of the va
uum (the temperature e�e
ts, usually small, may be in
luded) andthe for
e is thereby derived from the variation of the energy with the separation distan
e bewteenthe bodies. The Casimir for
e (∼ 1/d4) a
ting between two half-spa
es has been derived by thismethod, as well as the van der Waals-London for
e (∼ 1/d3). An attempt has also been made[38℄for the non-retarded van der Waals-London 
oupling between a point-like body and a half-spa
e(the for
e going like 1/d4). It was shown in Ref. [37℄ that the Casimir for
e implies ele
tromagneti
modes propagating between the two half-spa
es, 
oupled to surfa
e plasmon-polaritonmodes insidethe half-spa
es, the latter being propagating modes along the in-plane dire
tions (parallel to thesurfa
e of the bodies) and damped along the dire
tion perpendi
ular to the surfa
e. We givehere the results for the Casimir for
e (∼ 1/d2) a
ting at large distan
e between a (ma
ros
opi
)sphere and a half-spa
e, as well as the 
orresponding van der Waals-London for
e (∼ 1/d4). Theresult 1/d2 
an be viewed as being the Coulomb for
e arising between the sphere and its imagein the half-spa
e. It is worth noting that for the non-retarded regime the for
e is the same as fora quantum parti
le, while for the retarded regime, the ma
ros
opi
 sphere looks like an in�nitemedium of quatum-me
hani
al parti
les and the relationship d−n+3−d−n holds. Similarly, we givehere the results for two intera
ting spheres, whi
h exhibit parti
ularities of ma
ros
opi
 bodies(for instan
e, the for
e is di�erent for identi
al or distin
t substan
es). For identi
al substan
e,the Casimir for
e is the same as for the 
ouple sphere-half-spa
e, whi
h, with the image-for
einterpretation, is not an unexpe
ted result. For distin
t substan
es, the Casimir for
e betweentwo spheres goes like 1/d4, whi
h implies, with respe
t to the quantum-me
hani
al result (∼ 1/d8),that the two ma
ros
opi
 spheres a
t like in�nite media (the relationship d−n+4 − d−n). In thenon-retarded limit the van der Waals-London for
e a
ting between two spheres goes like 1/d5, andit has no quantum-me
hani
al analog. Coupling involving point-like bodies or spheri
al shells isalso dis
ussed. Su
h bodies behave mainly as spheres. In some spe
ial 
ases, repulsive for
es areobtained.The ele
tri
 polarization of the material bodies 
an be represented as slight os
illatory movementsof mobile 
harges with respe
t to a neutralizing (quasi-) rigid ba
kground. Su
h movements 
anbe des
ribed by a displa
ement �eld u(R, t), as dis
ussed above. The velo
ity v = u̇ of the mobile
harges in matter is mu
h smaller than the light velo
ity c, v/c ≪ 1, so that ωu/c ≪ 1, where
ω is the frequen
y of both the os
illatory motion of the displa
ement u and the ele
tromagneti
�eld (the polarization �eld) produ
ed by the motion of the 
harges. This inequality means thatmatter polarization pro
eeds mainly by rather limited displa
ements u, depending on frequen
ies.For �nite-size bodies, there is a natural limitation for su
h displa
ements, the (linear) size a



J. Theor. Phys. 3of the body. By analogy with the "dipole radiation", the 
ondition ωa/c ≪ 1 
an be 
alled"dipole approximation" (
orresponding to long wavelengths). We adopt this approximation herefor the sphere (whi
h implies 
ertain limitations on the frequen
ies). We shall see that su
h anapproximation amounts to estimating the leading 
ontributions to the (retarded) for
es, higher-order 
ontributions (whi
h would relieve the limitations imposed upon the frequen
ies) resultingin higher-order 
orre
tions to the for
e.Lorentz-Drude modelThe well-known Lorentz-Drude model of (homogeneous) polarizable matter[39℄-[43℄ 
onsists ofidenti
al 
harges q, with mass m and density n, moving in a rigid neutralizing ba
kground. Aslight displa
ement �eld u(R, t) of the mobile 
harges is subje
ted to the equation of motion
mü = q(E + E0) − mω2

cu − mγu̇ , (1)where E is the ele
tri
 �eld produ
ed by the polarization 
harges and 
urrents, E0 is an externalele
tri
 �eld, ωc is a 
hara
teristi
 frequen
y of the body and γ is a damping fa
tor. For diele
tri
s
ωc 6= 0, for 
ondu
tors ωc = 0. Sin
e the polarization is given by P = nqu, it is easy to see thatequation (1) leads to the well-known ele
tri
 sus
eptibility

χ = −
ω2

p

4π
· 1

ω2 − ω2
c + iωγ

(2)and diele
tri
 fun
tion ε = 1+4πχ, where ωp =
√

4πnq2/m is the plasma frequen
y. We note theabsen
e of the Lorentz for
e in equation (1), whose 
ontribution is quadrati
 in the displa
ement�eld u and, 
onsequently, it may be negle
ted. However, we 
an in
lude an external magneti
�eld in the equation of motion (1), if ne
essary.The displa
ement �eld u produ
es polarization 
harge and 
urrent densities given by
ρ = −divP = −nqdivu , j =

∂P

∂t
= nqu̇ , (3)whi
h 
an be used to 
ompute the ele
tromagneti
 potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

(4)(subje
ted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the ele
tri
�eld E in equation (1), when
e we 
an get the displa
ement u. This way, we 
an 
ompute theele
tromagneti
 �elds of a polarizable body, subje
ted to the a
tion of an external ele
tromagneti
�eld. The external �elds in equation (1) are the mutual �elds by whi
h the bodies a
t one uponanother.Half-spa
eFor a half-spa
e extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step fun
tion, and get the polarization
harge and 
urrent densities

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) ,j = nq(u̇, u̇z)θ(z − d) .

(6)



4 J. Theor. Phys.We use the Fourier de
omposition of the type
u(r, z; t) =

1

(2π)3

∫

dkdωu(k, z; ω)e−iωt+ikr , (7)and may omit o
assionally the arguments k, ω, writing simply u(z), or u. The ele
tromagneti
potentials given by equations (4) in
ludes the "retarded" Coulomb potential ei ω
c
|R−R′|/ |R −R′|,for whi
h we use the de
omposition[44℄

eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (8)where λ = ω/c and κ =

√
λ2 − k2. The 
al
ulations are straightforward and we get the Fouriertranforms of the potentials

Φ(k, z; ω) == 2π
κ

∫ ∞

d
dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

A(k, z; ω) = 2πλ
κ

∫ ∞

d
dz′(u, uz)e

iκ|z−z′|

(9)(where we have left aside the fa
tor nq; it is restored in the �nal formulae). In order to 
ompute theele
tri
 �eld it is 
onvenient to refer the in-plane ve
tors (i.e., ve
tors parallel with the surfa
e ofthe half-spa
e) to the ve
tors k and k⊥, where k⊥ is perpendi
ular to k and of the same magnitudeas k; for instan
e, we write
u = u1

k

k
+ u2

k⊥

k
(10)and a similar representation for the ele
tri
 �eld parallel with the surfa
e of the half-spa
e. Inperforming the 
al
ulations, it is worth paying attention to the 
orre
t derivative of the modulusfun
tion, a

ording to the equation

∂2

∂z2
eiκ|z−z′| = −κ2eiκ|z−z′| + 2iκδ(z − z′) . (11)We get the ele
tri
 �eld

E1 = 2πiκ
∫ ∞

d
dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫ ∞

d
dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫ ∞

d
dz′u1e

iκ|z−z′| + 2πik2

κ

∫ ∞

d
dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(12)We 
an 
he
k easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(d)δ(z − d) , (13)whi
h is Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (14)whi
h re�e
ts the Faraday's and Maxwell-Ampere's equations. From equation (13), we 
an 
he
kthe transversality 
ondition divE = 0 for the ele
tri
 �eld outside the half-spa
e (z < d).



J. Theor. Phys. 5We use now the equations of motion (1) (with γ = 0) for the 
ombinations iku1 + ∂uz/∂z and
k∂u1/∂z+iκ2uz in the region z > d. Taking into a

ount that divE0 = 0 and k∂E01/∂z+iκ2E0z =
0 (for a plane wave) these equations lead to

∂2u1,2

∂z2 + κ′2u1,2 = 0 , (15)where
κ′2 = κ2 −

λ2ω2
p

ω2 − ω2
c

. (16)We 
an see that u1,2 = A1,2e
iκ′z, where A1,2 are 
onstants, i.e. the �eld propagates in the half-spa
ewith a modi�ed waveve
tor κ′, a

ording to the Ewald-Oseen extin
tion theorem.[45℄ Similarly,the equations of motion (1) lead to uz = −(k/κ′)A1e

iκ′z. The modi�ed waveve
tor κ′ given byequation (16) 
an also be written as
κ′2 = ε

ω2

c2
− k2 , (17)where ε = 1 + 4πχ is the diele
tri
 fun
tion (as given by equation (2)). We 
an 
he
k the well-known polaritoni
 dispersion relation εω2 = c2K

′2, where K′ = (k, κ′) is the waveve
tor.The 
onstants A1,2 
an be derived from the original equations (1) (for z > d). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz = q

m
E02 .

(18)The external �eld in these equations is the �eld generated by the sphere (outside the sphere, inthe region of the half-spa
e). Similarly, the external �eld for the sphere is the �eld generated bythe half-spa
e in the region z < d. This latter �eld is given by equations (12):
E1 = −2πA1

κκ′−k2

κ′(κ+κ′)
ei(κ+κ′)de−iκz , z < d ,

E2 = −2πA2
λ2

κ(κ+κ′)
ei(κ+κ′)de−iκz , z < d

(19)and Ez = (k/κ)E1. We 
an see that it is the �eld re�e
ted by the half-spa
e (κ → −κ).The sphereWe 
onsider a sphere of radius a, with the 
enter at the origin and with a density n0q of mobile
harges. The fa
tor n0q is left aside, but it will be restored in the �nal formuale (it gives theplasma frequen
y ωp0 =
√

4πn0q2/m of the sphere). The 
hara
teristi
 frequen
y of the sphere inequation (1) is denoted by ωc0. The ele
tromagneti
 �eld generated by a sphere under the a
tionof an external ele
tromagneti
 �eld has been derived in Ref. [46℄. This is the well-known Mie'stheory.[45, 47℄ Those results 
an be used here to investigate the 
oupling of the sphere with thehalf-spa
e. However, the full, exa
t solution given in Refs. [46, 47℄ is unpra
ti
able, on one side,and, on the other side, the 
oupling is governed by the long wavelength part of the full solution,
orresponding to λa ≪ 1 (the dipole approximation). This approximation is also justi�ed by theresults obtained for two 
oupled half-spa
es,[37℄ where the Casimir for
e implies surfa
e plasmon-polariton modes, whi
h are damped (evanes
ent) waves inside the two bodies. This is pre
iselythe situation for the sphere, providing the 
ondition λa ≪ 1 is ful�lled. Higher-order 
orre
tionsto the dipole approximation 
an be in
luded, resulting in 
orre
tions to the leading 
ontributionsto the for
e.



6 J. Theor. Phys.We derive here this relevant part of the solution by a dire
t approa
h, suggested by the half-spa
e�eld whi
h a
ts upon the sphere (equations (19)). First, we rewrite the �eld given by equations(19) as
E1,2 = −2πA1,2f1,2(k) (20)and Ez = (k/κ)E1, where the fun
tions f1,2(k) 
an easily be identi�ed from equations (19). Weneed the Fourier transform of this �eld, written as
E⊥ = E1

k

k
+ E2

k⊥

k
(21)for the in-plane 
omponent. We use the parametrization r = r(sin θ, cos θ), k = k(cos θ′, sin θ′)and k⊥ = k(− sin θ′, cos θ′) and get

E⊥(r, z) = −iA1

∫

dkkf1(k)J1(kr)(sin θ, cos θ)−

−iA2

∫

dkkf2(k)J1(kr)(− cos θ, sin θ)
(22)and

Ez(r, z) = −A1

∫

dk
k2

κ
f1(k)J0(kr) , (23)where J0,1 are the zeroth and, respe
tively, �rst order Bessel fun
tions of the �rst kind. For r ≤ a(inside the sphere) and ωa/c ≪ 1 the waveve
tors κ and κ′ 
an be approximated by κ ≃ κ′ ≃ ikand the fun
tions f1,2 be
ome

f1(k) ≃ e−k(2d−z) , f2(k) ≃ − λ2

2k2
e−k(2d−z) . (24)Noti
ing that 2d−z > 0 for −a ≤ z ≤ a (inside the sphere), the integrals intervening in equations(22) and (23) 
an be found in Ref. [44℄, p. 686 (6.611.1) and p. 694 (6.623.3). For d ≫ a we getthe ele
tri
 �eld produ
ed by the half-spa
e inside the sphere

E0x = − i
8d3 (A1x + λ2d2A2y) , E0y = − i

8d3 (A1y − λ2d2A2x) ,

E0z = i
4d2 A1 .

(25)The su�x 0 is atta
hed here be
ause this �eld plays the role of the external �eld for the sphere.Within our approximation we may leave aside the A2-terms in equations (25).Equations (25) suggest that the displa
ement �eld inside the sphere is of the form
u = (αx + βy, αy − βx, γa)θ(a − R) , (26)where α, β and γ are 
onstants to be determined. We 
ompute the ele
tromagneti
 potentials Φand A given by equations (4) with ρ = −divu and j = −iωu, where u is given by equation (26).A further simpli�
ation 
an be made, by noti
ing that the 
harge density 
an be written as

ρ = −2αθ(a − R) +
2

3
αaδ(a − R) + γaP1(cos θ)δ(a − R) − 2

3
αaP2(cos θ)δ(a − R) , (27)where Pn(cos θ) are the Legendre polynomials and cos θ = z/R (= z/a). Within the dipoleapproximation, the P2-term may be left aside. This amounts to putting α = 0. In addition, the
oe�
ient β 
an also be set equal to zero, in 
omparison with the z-
omponent of the displa
ement(γa). This is in a

ordan
e with the observation made above regarding the absen
e of the A2-terms



J. Theor. Phys. 7in equations (25). Therefore, we are left with ρ = γzδ(a−R) and j = −iωγa(0, 0, 1)θ(a−R). Weuse the well-known de
omposition of the spheri
al wave (Ref. [44℄, p. 930, 8.533.1)
eiλ|R−R

′|

λ|R−R′|
= i

∑

n=0(2n + 1)jn(λR<)hn(λR>)Pn(cos Θ) (28)and the addition formula (Ref. [44℄, p. 965, 8.814)
Pn(cos Θ) = Pn(cos θ)Pn(cos θ′) + 2

n
∑

m=1

(n − m)!

(n + m)!
P m

n (cos θ)P m
n (cos θ′) cos m(ϕ − ϕ′) , (29)where P m

n are the asso
iated Legendre fun
tions, jn and hn are the spheri
al Bessel fun
tions (ofthe �rst kind and, respe
tively, the Hankel fun
tions), R< = min(R, R′), R> = max(R, R′), (θ, ϕ)de�ne the dire
tion of R, (θ′, ϕ′) de�ne the dire
tion of R′ and Θ (cos Θ = sin θ sin θ′ cos(ϕ −
ϕ′) + cos θ cos θ′ ) is the angle between R and R′. The 
al
ulations are straightforward. We getthe leading 
ontributions (λa ≪ 1) for R < a (inside the sphere)

Φ =
4π

3
γaz , A = −2πiλγa(a2 − 1

3
R2)(0, 0, 1) . (30)We 
an 
he
k the Lorenz gauge divA − iλΦ = 0. We 
an see also that A may be negle
tedin 
omparison with Φ, in the limit λa ≪ 1. In this limit, the ele
tri
 �eld inside the sphere(E = −gradΦ) is given by

E = −4π

3
γa(0, 0, 1) . (31)We introdu
e this �eld, together with the external �eld given by equations (19), in the equationof motion (1), whi
h be
omes

(ω2 − ω2
c0 −

1

3
ω2

p0)γaθ(a − R) = − q

m
E0z . (32)We 
an re
ognize in the lhs of this equation the lowest (dipole) frequen
y ωp0/

√
3 of the spher-i
al plasmon.[46℄ The Fourier transform of the fun
tion θ(a − R) entering equation (32) 
an be
omputed easily. For ak ≪ 1 it is given by πa2, so that equation (32) be
omes

(ω2 − ω2
c0 −

1

3
ω2

p0)πγa3 =
1

2
ω2

pA1
k(κκ′ − k2)

κκ′(κ + κ′)
ei(κ+κ′)d . (33)We turn now to the �eld 
reated by the sphere within the half-spa
e. It plays the role of theexternal �eld in equations (18). For R > a, the leading 
ontributions to the ele
tromagneti
potentials in the limit λa ≪ 1 are given by

Φ =
4πi

3
λ2a4γP1(cos θ)h1(λR) , A =

4π

3
λ2a4γh0(λR)(0, 0, 1) . (34)We 
an 
he
k the Lorenz gauge divA− iλΦ = 0, the wave (Helmholtz) equations λ2Φ + ∆Φ = 0,

λ2A+∆A = 0 and the transversality 
onditions divE = 0 for the ele
tri
 �eld E = iλA− gradΦ.Comparing equations (34) with equations (30), and using the asymptoti
 formulae h0(z) ≃ −i/z,
h1(z) ≃ −i/z2 for z ≪ 1, we 
an 
he
k also the 
ontinuity of the potentials at R = a. It is easy tosee that the s
alar potential 
an also be derived from iλΦ = ∂Az/∂z, so that the Fourier transformof the in-plane �eld is given by

E⊥ = −ikΦ = −1

λ
k

∂Az

∂z
, (35)



8 J. Theor. Phys.where Az is the Fourier transform of the ve
tor potential (Az(k, z; ω)). We 
an see that the k⊥-
omponent of the ele
tri
 �eld is vanishing, so we have u2 = 0 (A2 = 0 in equations (18)). TheFourier transform of the ve
tor potential
Az =

4π

3
λ2a4γ

∫

drh0(λR)e−ikr (36)implies the Bessel fun
tion J0(kr). Making use of h0(z) = −ieiz/z the integral in equation (36)a
quires the form of well-known integrals given in Ref. [44℄, pp. 714-715, 6.677.1,2. We get
Az(k, z) =

8π2

3

λa4

κ
γeiκz (37)and the ele
tri
 �eld

E1 = −8π2i

3
a4γkeiκz . (38)Making use of this (external) �eld, equations (18) be
ome

1

2
A1ω

2
p

κκ′ + k2

κ′(κ′ − κ)
ei(κ′−κ)d = −2πi

3
ω2

p0a
4γk . (39)From equations (33) and (39) we get the dispersion equation

e2iκd =
3iκ

2ak2ω2
p0

(ω2 − ω2
c0 −

1

3
ω2

p0)
κκ′ + k2

κκ′ − k2
· κ′ + κ

κ′ − κ
. (40)The solutions (ω) of this equation are the ele
tromagneti
 eigenfrequen
ies of the sphere 
oupledwith the half-plane (within the dipole approximation).Ele
tromagneti
 eigenfrequen
ies and the Casimir for
eEquation (40) has solutions only for κ′ purely imaginary, i.e. κ′ = iα, α2 = λ2ω2

p/(ω2−ω2
c )−κ2 > 0.In this 
ase, it 
an be written as

ω2 − ω2
c0 −

1

3
ω2

p0 =
2ak2ω2

p0

3κ
e2i(κd−ϕ1−ϕ2−π/4), (41)where tanϕ1 = ακ/k2 and tan ϕ2 = α/κ. We dedu
e

κd = ϕ1 + ϕ2 + π/4 + nπ/2 (42)and
ω2 = B2

0 + (−1)n
2ak2ω2

p0

3κ
, (43)where B2

0 = ω2
c0 + 1

3
ω2

p0 and n is any integer. The solutions of equation (42) 
an be denoted by
κn, κn > 0. The fa
tor k2/κ entering equation (43) 
an be written as k2/κ = (λ2 −κ2)/κ. Withindipole approximation the 
ondition B0a/c ≪ 1 and κ 
lose to λ should be ful�lled. Consequently,in this region we aproximate the fa
tor k2/κ = (λ2−κ2)/κ by −2(κ−λ) , for λ−κ1 < κ < λ+κ2,where ∆κ = κ2 − κ1 is of the order of λ. The solution of equation (43) 
an then be written as

ωn ≃ B0

√

1 ± Cκ′
n , (44)where C = 4aω2

p0/3B2
0 , κ′

n = κn − λ and Cκ′
n ≪ 1. In equation (44) we may represent ∆κ′

n as
∆κ′

n = βB0/c, where β is a fa
tor of the order of the unity. An estimation for this fa
tor 
an be
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omparing the �rst- and se
ond-order derivatives of the fun
tion λ2/κ− κ for κ = λ.We get β ≃ 2. Under these 
ir
umstan
es, we 
an see also from equation (44) that α de�ned aboveremains a real quantity. We estimate the 
hange produ
ed in the energy of the ele
tromagneti
�eld by the sphere-half-spa
e 
oupling by the Euler-Ma
Laurin formula[48℄
∆E =

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

[

f (2m−1)(κ1) − f (2m−1)(κ2)
]

, (45)where Bm are Bernoulli's numbers and f(κ) = ~B0(1 ± Cκ)1/2 (~ being the Plan
k's 
onstant).The leading 
ontribution 
omes from the �rst-order derivative f (1)(κ) = ±(1/2)~B0C(1±Cκ)−1/2.The di�eren
e ∆f (1) = f (1)(κ1) − f (1)(κ2) 
an be approximated by ∆f (1) ≃ −f (2)(0)∆κ =
(1/4c)β~B2

0C
2, so we get the energy

∆E ≃ −4π

9
βB1

~a2ω4
p0

cB2
0d

= −2π

27
β

~a2ω4
p0

cB2
0d

(46)and the for
e (the leading term)
F = −2π

27
β

~a2ω4
p0

cB2
0d

2
. (47)It is easy to see from equation (45) that higher-order 
orre
tions to this result are of the form

1/d4, 1/d6, et
 (all attra
tive). Similar 
orre
tions are obtained if higher-order 
ontributions arein
luded beyond the dipole approximation. They result in higher powers of the k waveve
tor inequation (43) and, by equation (45), in higher-powers of the 1/d. Under these 
ir
umstan
es,and bearing in mind that we only estimate the 
hange in the energy due to the 
oupling, we maygive up the restri
tive 
ondition B0a/c ≪ 1. Similar results (to some extent) have been reportedre
ently in Refs. [35, 36℄.We 
an see that the for
e given by equation (47) has a di�erent 
hara
ter than the Casimir for
ea
ting between an atom and a half-spa
e (whi
h goes like 1/d5). The 
hara
teristi
 d2-dependen
esuggests a Coulomb for
e a
ting between a small parti
le (sphere) and its image in the half-spa
e.From the estimation of the fa
tor k2/κ made above, we 
an see that this Casimir for
e involves thesurfa
e plasmon-polaritons modes in both bodies, damped along the z-axis and either propagatingor damped along the in-plane dire
tions in the half-spa
e (parallel to the surfa
e). These lattermodes are reminis
ent of the �u
tuating modes.In addition, from the standpoint of a quantum-me
hani
al treatment, we may view a ma
ros
opi
sphere as an in�nite medium. Then, the relationship d−n+3 −d−n for n−3 = 2 gives n = 5, whi
his indeed the exponent of the quantum Casimir for
e a
ting between a quantum parti
le and ahalf-spa
e.van der Waals-London for
eFor shorter distan
es d the intera
tion be
omes non-retarded, and we 
an take the limit λ → 0 inthe dispersion equation (40). We get
(ω2 − ω2

c −
1

2
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
1

3
ω2

pω
2
p0ake−2kd , (48)where we 
an re
ognize the frequen
y ωp/

√
2 of the well-known surfa
e plasmons.[49℄ We may
onsider the rhs of equation (31) as a small perturbation (ak ≪ 1). Introdu
ing the notation

A2 = ω2
c + ω2

p/2 (and B2
0 = ω2

c0 + ω2
p0/3) the solutions of this equation 
an be written as
ω1 ≃ A +

ω2
pω2

p0

6A(A2−B2

0
)
ake−2kd ,

ω2 ≃ B0 −
ω2

pω2

p0

6B(A2−B2

0
)
ake−2kd .

(49)
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e we are interested in the 
orre
tions brought about by the 
oupling to the total energy, we 
anleave aside, in fa
t, the restri
tive 
onditions Aω/c, B0ω/c ≪ 1. The o

urren
e of su
h 
onditionsis a feature of the 
lassi
al approa
h, in 
ontrast with the quantum-me
hani
al approa
h, wherewe have a dire
t a

ess to the perturbation energy (see, for instan
e, Ref. [13℄). The 
hange ∆Ebrought by the intera
tion in the zero-point energy of the ele
tromagneti
 �eld (per unit area) isgiven by
∆E = − ~a

96π

ω2
pω

2
p0

AB0(A + B0)
· 1

d3
, (50)and the 
orresponding for
e (leading 
ontribution) a
quires the form

F = − ~a

32π

ω2
pω

2
p0

AB0(A + B0)
· 1

d4
. (51)This is the well-known, 
lassi
al van der Waals-London for
e, a
ting between a quantum parti
leand a half-spa
e (as well as between a point-like body and a half-spa
e[38℄). It 
orresponds to the

1/d7-law of intera
tion between two quantum parti
les (van der Waals-London).There are higher-order 
orre
tions to these leading 
ontributions going like 1/d5, −1/d6, et
 (withalternate signs). However, this behaviour is limited by d ≫ a. There is a 
rossover from theretarded, Casimir for
e given by equation (47) and the non-retarded, van der Waals-Londonfor
e given by equation (51). The 
rossover distan
e d is obtained by equating the two for
es(with the 
ross-se
tional area πa2 of the sphere). It is of the order d ∼
√

ac/ωp, where ωp is arepresentative frequen
y of the order of the plasma frequen
ies of the two bodies. We noti
e that
d ∼ a

√

c/aωp ≫ a for ωpa/c ≪ 1.It is worth noting the great di�eren
e between the van der Waals-London and Casimir for
es. Theformer implies the delo
alized energy of the ele
tromagneti
 �eld a
ting upon the 
ross-se
tionalarea, while the latter is asso
iated with the ele
tromagneti
 energy, 
arried out by the radiation,lo
alized bewteen the sphere and its image in the half-spa
e. Out of all the ele
tromagneti
frequen
ies, the subset of eigenfrequen
ies for the non-retarded intera
tion (labelled by the in-plane waveve
tor k) is 
onsiderably larger than the 
orresponding subset of eigenfrequen
ies ofthe retarded intera
tion, labelled only by the one-dimensional set κn.Two spheresWe 
onsider two spheres, in the same 
onditions as above, one, with radius a and 
harge density
n0q pla
ed at the origin and another, with radius b and 
harge density nq, pla
ed at z = d. Theirequation of motion has the same form as equation (32) (with parameters γ and, respe
tively, γ′).Making use of equation (37), we get the �eld 
reated by the sphere pla
ed at the origin

Ez = iλAz −
∂Φ

∂z
= iλAz −

1

iλ

∂2Az

∂z2
=

ik2

λ
Az , (52)where Az = (8π2λa4/3κ)γeiκ|z| (equation (37)). Similarly, the �eld 
reated by the sphere pla
edat the distan
e d 
an be obtained from this equation by 
hanging z into z−d. We get two 
oupledequations of motion

(ω2 − ω2
c0 − 1

3
ω2

p0)πγa3 = −2πi
3

ω2
p

b4k2

κ
γ′eiκd ,

(ω2 − ω2
c − 1

3
ω2

p)πγ′b3 = −2πi
3

ω2
p0

a4k2

κ
γeiκd ,

(53)whi
h lead to the dispersion equation
(ω2 − ω2

c −
1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) = −4

9
ω2

pω
2
p0ab

k4

κ2
e2iκd . (54)



J. Theor. Phys. 11The treatment of this equation is similar with the one given above for the 
ouple sphere-half-spa
e.We introdu
e the notation B2 = ω2
c + ω2

p/3 (and B2
0 = ω2

c0 + ω2
p0/3), and see that the solutionof equation (54) depends on whether the substan
es of the spheres are identi
al (B = B0) ordistin
t (B 6= B0). For two spheres 
onsisting of identi
al substan
e, B = B0, the results arethe same as those 
orresponding to one sphere 
oupled to the half-spa
e, ex
ept for the 
onstant

C in equations (46) and (47), whi
h is repla
ed by C = 4ω2
p

√
ab/3B2. With the image-for
einterpretation, this may not be an unexpe
ted result. For two distin
t substan
es (B 6= B0), theleading 
ontribution 
omes from the third-order derivative in equation (45), sin
e the 
ontributionarising from the �rst-order derivative is vanishing, as a 
onsequen
e of the quadrati
 dependen
eof k4/κ2 ≃ 4(κ − λ)2 in equation (54). The �nal result for the energy 
an be written as

∆E = − 32~

1215c

(π

d

)3 ω4
pω

4
p0(B

2 + B2
0)a

2b2

B2B2
0(B

2 − B2
0)

2
. (55)We 
an see that the for
e goes like 1/d4. Comparing with the quantum-me
hani
al 
al
ulations,we 
an view the two spheres as two in�nite media, and use the relationship d−n+4 − d−n; hen
e,

n = 8, whi
h is indeed the exponent in the Casimir for
e a
ting a
ting beween two quantumparti
les. Similar results are dis
ussed re
ently in Refs. [35, 36℄In the non-retarded limit (κ = −ik) equation (54) be
omes
(ω2 − ω2

c −
1

3
ω2

p)(ω
2 − ω2

c0 −
1

3
ω2

p0) =
4

9
ω2

pω
2
p0abk2e−2kd , (56)and the for
e (per unit area) is given by

F = −~ab

12π

ω2
pω

2
p0

BB0(B + B0)
· 1

d5
(57)for distin
t substan
es, and by

F = −
~abω4

p

24πB3
· 1

d5
(58)for identi
al substan
e. This for
e has no quantum-me
hani
al analog.Point-like bodiesThe displa
ement �eld for a point-like body pla
ed at R0 
an be taken as a3uδ(R−R0), where ais the "radius" of the body and u is a 
onstant ve
tor (depending only on the time). The 
hargeand 
urrent densities (temporal Fourier transforms) are given by

ρ = −a3(ugrad)δ(R− R0) , j = −ia3ωuδ(R− R0) , (59)where the fa
tor nq is left aside. The ele
tromagneti
 potentials given by equations (4) 
an be
omputed straightforwardly. They are given by
Φ = −a3(ugrad)F , A = −ia3λuF , (60)where

F =
eiλ|R−R0|

|R− R0|
. (61)We use the Fourier transform F (k, z) = (2πi/κ)eiκ|z−z0| given by equation (8) for the fun
tion F ,and introdu
e the in-plane (transverse) 
omponents u1,2, together with the z-
omponent uz, forthe displa
ement. The �eld is obtained by E = iλA − gradΦ from the above equations.



12 J. Theor. Phys.For R0 = 0 we get immediately the �eld
E1 = a3κ(κu1 − kuz)F (k, z) , E2 = a3λ2u2F (k, z) ,

Ez = −a3k(κu1 − kuz)F (k, z)
(62)for z > 0 and F (k, z) = (2πi/κ)eiκz. Similarly, for the point-like body of radius b pla
ed at

R0 = (0, 0, d), with the displa
ement denoted by v, we get the �eld
E1 = b3κ(κv1 + kvz)F (k, z) , E2 = a3λ2v2F (k, z) ,

Ez = b3k(κv1 + kvz)F (k, z)
(63)for z < d and F (k, z) = (2πi/κ)eiκ(d−z).We write the equations of motion (1) for two point-like bodies, making use of the 
ombinations

κu1 − kuz and κv1 + kvz. We get two dispersion equations
(ω2 − ω2

c0)(ω
2 − ω2

c ) = −1
4
ω2

pω
2
p0ab(k2/κ − κ)2e2iκd ,

(ω2 − ω2
c0)(ω

2 − ω2
c ) = −1

4
ω2

pω
2
p0ab(k2/κ + κ)2e2iκd

(64)(the latter equation 
omes from the 
oordinates u2, v2). These two equations are not 
ompatiblewith one another. We 
hoose vanishing transverse 
omponents, u2 = v2 = 0, and we are left withthe �rst equation (64), whi
h 
an be treated similarly as equation (54). The analysis is similar forthe se
ond dispersion equation (64), 
orresponding to a vanishing displa
ement 
omponent alongthe z-axis.First, we 
onsider an identi
al substan
e, ωc0 = ωc. The solutions of the �rst equation (64) aregiven by κnd = nπ/2 and
ω2 = ω2

c ±
1

2
ω2

p

√
ab(k2/κ − κ) . (65)The fa
tor k2/κ−κ = λ2/κ−2κ 
an be expanded in powers of κ−κ0, where, in the limit a, b → 0the κ0-term is immaterial. Sin
e in the limit a, b → 0 the exa
t result given by equation (65)amounts to the dipole approximation, we may take κ0 as the value of κ whi
h nulli�es the fa
tor

k2/κ − κ: κ0 = λ/
√

2. Equation (65) 
an then be 
ast in the form
ωn = ωc

√

1 ± Cκn , (66)where κn varies around zero within the interval ∆κ = βλ = βωc, β being a numeri
al fa
tor ofthe order of the unity (β ≃ 1/2). We apply the Ma
-Laurin summation given by equation (45),the �nal result being
∆E = −π

6
β

~abω4
p

cω2
cd

. (67)We 
an see that the for
e goes like 1/d2, the situation being similar with the intera
tion betweentwo-identi
al spheres (or a sphere and a half-spa
e). For distin
t substan
es, it is the third-orderderivative whi
h 
ontributes to the Euler-Ma
-Laurin summation (due to the quadrati
 fa
tor
(k2/κ− κ)2), the situation is similar with two intera
ting spheres, and the Casimir for
e goes like
1/d4. In the non-retarded limit (κ = ik) the �rst equation (64) has the same form as equation (56)for two spheres, and the for
e goes like 1/d5. The 
oupling between a point-like body and a sphereis also similar with the 
oupling between two spheres. Di�erent other situations may appear,



J. Theor. Phys. 13related to these equations, depending on whether one body is "
ondu
ting", or both bodies are"
ondu
ting". In this 
ase, ωc0 = 0, for instan
e, or both 
hara
teristi
 frequen
ies are vanishing,
ωc = ωc0 = 0. These situations are treated similarly, by the same method des
ribed here. Su
hspe
ial situations arise from the fa
t that we do not allow a dynami
s for the (internal) polarizationof the lo
alized point-like bodies, whi
h is rather a spe
ial, unrealisti
 assumption. This is whywe do not follow further su
h 
ases here. Similar situations may appear also for spheri
al shellsof a vanishing thi
kness. The �eld generated by a spheri
al shell 
an be 
al
ulated by the samemethod as the one presented here for the sphere, and a large variety of 
oupling involving spheri
alshells 
an be treated. It is worth noting the great variety of situations whi
h 
an be investigatedby the the 
lassi
al intera
tion between the ele
tromagneti
 �eld and ma
ros
opi
 bodies.The 
oupling between a point-like body and a half-spa
e is similar with the 
oupling between asphere and a half-spa
e. We use the 
oupled equations (18) for the half-spa
e with the (external)�eld given by equations (62) (the �eld generated by the sphere) and the equations of motion (1)for the point-like body with the �eld given by equations (19) (the �eld of the half-spa
e). Forvanishing transverse 
omponents of the displa
ement the dispersion equation is given by

ω2 − ω2
c0 =

i

2
ω2

p0a
κ2 − k2

κ

κκ′ − k2

κκ′ + k2

κ′ − κ

κ′ + κ
e2iκd . (68)This equation is analogous with the dispersion equations (40) and (41) for the 
ouple sphere-half-spa
e, ex
ept (beside numeri
al 
oe�
ients) for the fa
tor k2/κ − κ, whi
h appears in the pla
eof the fa
tor k2/κ in equation (41). The treatment of the equation (68) is analogous with thetreatment done for the equations (40) and (41), resulting a Casimir for
e ∼ 1/d2 and a van derWaals-London for
e ∼ 1/d4. A spe
ial 
ase is the "
ondu
ting" point-like body, for whi
h ωc0 = 0.In this, rather unrealisti
, 
ase, it is easy to see that the Casimir for
e is vanishing, while the vander Waals-London for
e is repulsive.Spheri
al shellsBy analogy with the sphere, the displa
ement �eld for a spheri
al shell of radius a and thi
kness

ε, pla
ed at the origin, 
an be written as
u = εaγ(0, 0, 1)δ(R − a) . (69)The ele
tromagneti
 �eld 
an be 
omputed from the potentials in the same manner as for thesphere. Within our approximation, the �eld inside the sphere is vanishing. The external �eld isgiven by

E1 = −k

λ

∂Az

∂z
, Ez = iλAz +

i

λ

∂2Az

∂z2
, (70)where

Az = 4πλ2a3εγh0(λR) (71)(h0 being the Hankel fun
tion o fthe zeroth order). For the Fourier transforms we get
E1 = −8π2ia3εγkeiκz , Ez = 8π2ia3εγ

k2

κ
eiκz . (72)This �eld 
an be used for 
oupling the spheri
al shell with any other body des
ribed here, byusing the equation of motion (1). The dispersion equations are very similar with the equationsfor a sphere, ex
ept for the 
ontribution of the (internal) polarization (whi
h we do not allow fora spheri
al shell). The results do not depend on the thi
kness ε.A "spe
ial" 
ase



14 J. Theor. Phys.The �eld of a point-like body 
an be 
omputed straightforwardly in the dire
t spa
e, making useof the potentials given by equations (59) (without resorting to the Fourier tranforms). We maygive up the sharpness of the surfa
e of the ma
ros
opi
 bodies, as expressed by the fun
tion δin the displa
ement �eld given by a3uδ(R − R0). Su
h a spe
ial 
ase may sometimes be viewedas a "
lassi
al" representation for quantum parti
les. The equations of motion (1) 
an then bewritten in the dire
t spa
e (not by using Fourier transforms). We do so for two point-like parti
lespla
ed at R0 = 0 and R0 = (0, 0, d), as before. We 
hoose vanishing transverse 
omponents ofthe displa
ement, and we are left with the dispersion equation
(ω2 − ω2

c0)(ω
2 − ω2

c ) =
a3b3

4π2d3
ω2

p0ω
2
p(1 − iλd)2e2iλd (73)for the displa
ement 
omponent along the z-axis. In the non-retarded 
ase (λ = 0), it is easy to seethat this equation leads to the attra
tive 1/d7-van der Waals-London for
e (for both ωc, ωc0 6= 0)(if ωc = 0, or ωc0 = 0, the for
e is repulsive; for both ωc = ωc0 = 0, the for
e is repulsive andgoes like 1/d7/2). A similar 
on
lusion is rea
hed for the transverse displa
ement 
omponents(vanishing displa
ement along the z-dire
tion).In the retarded regime, the solutions of the equation (73) are given by

λd − ϕ = nπ/2 , (74)where tanϕ = λd, and
(ω2 − ω2

c0)(ω
2 − ω2

c ) = ± a3b3

4π2d3
ω2

p0ω
2
p(1 + λ2d2)2 (75)(for the displa
ement along the z-axis). The analysis of the solutions of equation (75) depends onthe parameters ωc, ωc0. We 
onsider here the most interesting 
ase of identi
al parti
le, ωc = ωc0.Equation (75) 
an be solved easily, and we 
an see that the for
e is vanishing. A similar 
on
lusionholds for the dispersion equation of the transverse 
omponents of the displa
ement. This provesthe inadequa
y of su
h a model for quantum parti
les (beside its in
orre
t use - in the dire
t spa
e- for ma
ros
opi
 bodies).Con
luding remarksThe well-known van der Waals-London and Casimir for
es are derived by quantum me
hani
al
al
ulations (in the non-retarded and, respe
tively, retarded regime). The origin of these for
esresides in the polarization of the material bodies. The ma
ros
opi
 bodies exhibit their own polar-ization 
hara
teristi
s, in 
omparison with the quantum parti
les. A method has been developedhere for treating the 
lassi
al intera
tion between the ele
tromagneti
 �eld and the polarizablematter, in order to derive the ma
ros
opi
 
ounterpart of the van der Waals-London and Casimirfor
es. The method has been applied here to the 
ouples sphere-half-spa
e, two spheres, twopoint-like bodies, a point-like body and a half-spa
e or a sphere (in general, a point-like bodybehaves, in this respe
t, very mu
h alike a sphere). The 
oupling of two half-spa
es has beendis
ussed in Ref. [37℄.The method is based on representing the polarization by a displa
ement �eld u of the mobile
harges, whi
h obeys the 
lassi
al (Newton) equation of motion. The well-known Lorentz-Drude(plasma) model for polarizable matter has been used in this respe
t. The 
oupled equations ofmotion are solved for the ele
tromagneti
 eigenmodes, both in the retarded and non-retardedregime, and the 
oupling energy is estimated as the 
orre
tion brought by intera
tion to thezero-point energy of the ele
tromagneti
 �eld (va
uum �u
tuations; thermal 
orre
tions 
an be
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luded). The dipole approximation have been used for the ele
tromagneti
 �eld of a sphere, inorder to estimate the leading 
ontributions to the intera
tion.For a sphere 
oupled to a half-spa
e the Casimir for
e goes like 1/d2 (at large distan
e) andthe van der Waals-London for
e goes like 1/d4, where d is the separation distan
e between thetwo bodies. The latter is the same as the one obtained by quantum-me
hani
al 
al
ulations, theformer agrees with the quantum-me
hani
al 
al
ulations providing that the sphere is viewed asan in�nite medium. For two intera
ting spheres the Casimir for
e goes like 1/d2 if the spheres aremade of the same substan
e, and it goes like 1/d4 if the substan
es are diferent. The relationshipwith the quantum-me
hani
al 
al
ulations is the same as for a sphere and a half-spa
e. The vander Waals-London for
e for two intera
ting spheres goes like 1/d5; it has no quantum-me
hani
alanalog. The point-like bodies behave similarly with the spheres.A
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