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Abstract

The electromagnetic field produced by a linear antenna of finite length are derived within
the dipole approximation. Some technical points are included, regarding mathematical arcana
in solving the Helmholtz equation. Similar results are given for a circular antenna. The dipole
approximation is generalized for a body of arbitrary shape. Both radiation fields and near-field
approximation are discussed. The electromagnetic field inside small bodies is also estimated
within the dipole approximation, and the well-known iridiscence caused by the polarization
resonance is derived.

Linear antenna. We consider a linear antenna of length [ placed between z = 0 and z = [, with
a small thickness a < [. The displacement field of the mobile charges ¢, with densiy n is given by

u(R,t) = a®6(r)v(z,1)0(2)0(l — 2)e. , (1)

where R = (r, 2), 0 is the delta function,f is the step function, v(z, ) is a function of the coordinate
z and the time ¢ and e, is the unit vector along the z-direction. Thsi displacement field generates
a charge density

p = —ngdivu = —nqa*s(r) ?0(2)«9([ —2) +vd(z) —vo(z—1) (2)
z
and a current density
j= nqa%(r)%&(z)@(l —z)e, , (3)

both satisfying the continuity equation dp/0t + divj = 0. We use the temporal Fourier transform
with frequency denoted by w and the well-known Kirchhoff’s retarded electromagnetic potentials

A(R, 1) = 1 [ qRABLRR )

R-F/|
(4)

O(R, 1) = L [ dR/ABLIRTRI)

subjected to the Lorenz gauge divA + (1/c)0®/0t = 0 (with ¢ the light velocity). We omit
usually the argument w in the Fourier transforms. The vector potential has only the z-component,
A =(0,0, A). We get

l / . ;
A= —ZNQCL2A/ le /U(Z ) 62)\ r24(z—2")2 (5)
0



and
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For /R < 1, and introducing the mean value

‘Kmmazw (7)

we get immediately
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A= —ipA O=-—pl|l——— ; 8

where p = nqga’lv = Nqv is the dipole moment, N being the total number of mobile charges.

This approximation is also called the dipole approximation (/R < 1). We can check immediately

the Lorenz gauge on this approximation. If © = 0 we take further terms in the expansion of
724 (2 — 2')? up to the leading contribution.

From equations (8) we can get the electric field E = —(1/¢)0A /0t — grad® and the magnetic field
H = curlA. The dipole approximation is valid for /R < 1, irrespective of the relation between
R, [ and the wavelength ¢/w = 1/\. We limit ourselves here to give the radiation fields in the
wave-zone, i.e. for AR > 1 (distances much longer than the wavelength):

AR
R

Ez = pAQ ; EL - _pAQE_gei)\R )

(9)

_ 2rsinf iR
H, = —pA"=pzme™

where E| is the transverse electric field (z = rcosp, y = rsiny) and H, is written in spherical
coordinates (z = Rcos#, r = Rsinf). We can see that these fields are (distorted) spherical waves,
with a significant dependence on direction. The FE.-component of the electric field is purely a
spherical wave, the transverse (radial) E,-component of the electric field is vanishing along the
azimuthal and polar directions, the magnetic field is axial and everywhere perpendicular to the
electric field, as for a plane wave.

We comment further on other possible techniques of solving this problem. Obviously, the problem
concerns the solution of the wave equations for the electromagnetic potentials with sources p and j
given by equations (2) and (3). It is convenient to deal first with the wave equation for the vector
potential A, and derive thereafter the scalar potential from the Lorenz gauge. By a temporal
Fourier transform the wave eqaution becomes the Helmholtz equation, which, leaving aside the
irrelevant factors, can be written as

AA+ XA =6(r)w(z) , (10)

where w(z) is a function extending from z = 0 to z = [ (vanishing outside this region). The most
direct approach to this equation would be to use the Green function for the equation

AG + NG = §(r)5(2) = 6(R) | (11)

which, as it is well known, is the spherical wave —(1/47)e*?/R (for outgoing wave boundary
conditions at infinity). Then, it is easy to see that the solution of equation (10) is given by
convolutions with the Green function, of the Kirchhoff’s solution-type given by equations (4).



However, we can choose to perform first a z-Fourier transform in equation (10), as a faster way to
the solution. Here, there may appear a first difficulty. Let us take the one-dimensional Helmholtz
equation

% + k*u = f(2) , (12)

with common notations. Naively, we can write at once the "solution", by Fourier transforming
the equation:

u(z) = % /dk#f@;eik’z ; (13)

and see immediately that we need to specify the path of integration. We should go back to the
equation for the Green function

0*G
w + I€2G = 5(2) (14)

and see that solution is of the form G' ~ Ae®* for z < 0 and z > 0, with the "boundary condition"
G'(e) — G'(—¢) =1, e — 0. We can check immediately that it is given by

1 .
G(z) = =™ 15
(:) = 5-¢ (15)
and its Fourier transform is )
G(k) = 16
(k) K2 — k%2 4+ ikp (16)

for 4 — 0*. The "solution" (13) becomes

u(z) = — /dkﬁe“” | (17)

T om K2 — k2 +ikp
where, now, the poles are placed without ambiguity.

We turn now to equation (10), written as

1 2 0A 0*A
" or

_ - 2 —
T + 522 + A =0(r)w(z) , (18)

and take the z-Fourier transform (obviously, the angular part is not implied here in the laplacian) .
According to the above discussion the precise imaginary part of the z-wavevector , which specifies
the integration path, cannot be determined. Leaving it aside and denoting k2 = \? — k2, we get
the Green-function equation

A LA A = ) | (19)
T

For r # 0 the solution is given by the Bessel functions of zero-th order, say CZy(z = kr), where
C'is a constant. It should satisfy the "boundary condition" 27‘(‘7“0% — 1 for r — 0 (obtained by

the Gauss’s theorem for integral of div) . On the other hand, the Hankel function H(gl)(z) goes
like (2i/7)Inz for z — 0 (and is outgoing wave for k in the upper half-plane), so we get finally

1 1
A(r,w) = = Ho(kr)w(r) = IHSU (VAT=52r) w(k) . (20)
1 1
Unfortunately, the integration path is not specified, so it is difficult to get the inverse Fourier
transform A(r, z). This can be seen immediately for contributions arising from x ~ A, where the
Hankel function has a starting branch cut along the negative axis.



All what we can get is the Fourier transform of the Green function

L [anGirmen = = [axuene= = o(r) =~ o)
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whence ,
H(l) k )_ 1 /d e —ikz (22)
o (kr) = | dz e :

Indeed, with z = rsinht and A = kcosh o, kK = ksinh «, the integral in equation (22) becomes
1 )
H(gl)(k,r) = — /dtezkrcosht 7 (23)
i

which is a known integral representation of the Hankel function.

It is worth computing w(k) for a function with a finite support, 0 < z < [. Let us consider
w(z) = we™?, then
ei(no—n)l—ul -1

(24)

w(K) = 1w
(x) K — Ko — 1t
We can use this Fourier transform in equation (20) in order to compute A(r, z). It is easy to see
that the contribution from the pole kg + ip gives a function A(r, z) with the same finite support
0 < z < I; had we know the full path of integration the correct inverse Fourier transform would
be obtained. However, in the limit [ — 0 we get w(k) = wl, and we get the correct result

wl 6z‘)\R

4t R
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A(r,2) = % / i HSP (k)i = (25)

as a result of equation (21).

Circular antenna. We consider a circular antenna of radius ry and thickness a < r¢, placed in
the x, y-plane with the center at the origin. The displacement field of the mobile charges is given

by

u(R,t) = a*§(2)d(r — ro)v(p, t)e, , (26)
where R = (r, z) and ¢ is the azimuthal angle. The charge and current densities are given by
p = —ngdivu and, respectively, j = nqgu, where n is the density of the mobile charges q. The

Kirchhoff’s potentials can be written immediately. For instance, the vector potential is given by

A$ _ i/\nqa2r0 / ngl U(SD,) sin 90, eiA\/R2—2rro cos(p—¢’ )41k (27)
\/R2 —2rrgcos(p — ¢') + 18

and a similar expression for A, (with the temporal Fourier transforms).

We limit ourselves to the dipole approximation R > rg, and consider the most common case
v(p) = v = const. We get straightforwardly A, = A, =0 and

1. roir) et 1. roir) et
Acp = —§z)\nqa2r(2)v <ﬁ — §> R = —57,)\]77'0 <ﬁ — §> R s (28)

where p = Ngquv is the dipole moment, N being the total number of the mobile charges (n =
N/a’rg). The radiation (wave-zone) field is given by

_ _1:\3,.. r AR
E, = —5iX°proge™
(29)
_ 1:)3 AR _ 1,32, 1 JiAR
H, = 5iX°progze™t , H, = —5i\progze™ .



We can see that these fields are dimished, in comparison with the fields of a linear antenna by
a factor Arp, and, as for a linear antenna, they are plane-wave fields. It is worth noting here
that instead of v, which is directly associated with the dipole moment, there appears vry, as a
consequence of the next-order term in the expansion in powers of ry. Such terms are usually seen
as quadrupole contribution, though they do not imply v2. Properly assessed, such terms arise
from quadratic combinations of the displacement and the dimensions of the body, and their origin
is actually dipolar.

Generalized dipole approximation. Let us consider the temporal Fourier transform of the
vector potential given by equations (4),

1 [10: 0 P
- de I\ R-R/| 30
-/ R-RI / (30)

and assume the dipole approximation R > R’. The leading contribution to equation (30) is given
by
1 , , ei)\R
A=- / dRj(R') - &
. IR —
We denote the average current density in equaton (31) by vj, where v is the volume of the body:

(31)

(32)

If this average value is vanishing we take higher-order terms in the expansion of eAR-®'l/|R — R/|.
From the continuity equation we get the charge density p = (1/iw)divj, so that the scalar potential
in equations (4) can be written as

divj /

de zMR—R | 33
iw / R — R/ | ’ (33)

or, within the same approximation,

oAR

R

@ = —(jgrad) (34)

We can check the Lorenz gauge divA —iA® = 0. Now it is easy to get the electric and the magnetic
fields. In the wave-zone (AR > 1) the radiation fields are given by

E =

v\ [ B (jR)R] e H o\ . MR

R? R’ c R? (35)

Cc

We can see that the fields are perpendicular to each other, as for a plane wave, and both are
perpendicular to the direction R of the propagation of the wave. We can see also that only the
transverse component of the current (perpendiular to R) is effective.

The Poynting vector averaged over a large time 7' is given by

S = / dwE(w) x H(—w) | (36)

c
&m2T

or, making use of equations (35),

v iR’ R
S=—— / dw)? ( [j)* - — .
sm2cr )] <‘J‘ R? ) R3 (37)




Suppose that j(t) is of the form j(t) = joe ¥ + c.c., and j(w) = 27jod(w — Q) + 2mjod(w + Q).
Making use of §%(w — Q) = (T/27)d(w — Q), we get the Poynting vector

0% (., iR\ R
(e 39
Similarly, the density of the electromagnetic field is given by
2 ‘JR‘ 1
~ 8r2c 2T/d A <’ ’ R? >R2 ’ (39)

and we can check the energy conservation 0W/0t + divS = 0.

It is worth computing the electromagnetic stress

1
Uij:_

47

1

[EiEj + H;H; — §5ij(E2 + HZ)} . (40)

We take j = je. and compute terms like E;(w)FE;(—w). Up to a common factor —v?A\? |j|* /47c?,
we get

2? (2% +y?) v (2°+y?) 2% (2 +y?)
Ozz = RS y Oyy = R6 y Ozz = RS )
(41)
_ zy(a?+y?) — yz(=’+y?) _ zz(@?+y?)
Ozy = RO y Oyz = RO ) Oz = RO .

It is easy to check that the stress force g; = Jo;;/0x; is vanishing, as expected for average quan-
tities, and the electromagnetic momentum G = S/c? in the equation of motion g = dG /0t is a
constant. The stress force acts only for time-dependent terms (containing factors like e2i«!=2AR),
is oscillating in time and space, and produce a corresponding temporal change in the electromag-
netic momentum (Poynting vector). The ponderomotive force in dielectrics, connected with the
electromagnetic stress tensor, arises form the changes in the dielectric structure.

Near-field approximation. The electromagnetic potentials of the generalized dipole approx-
imation, as given by equations (32) and (34), can also be used for moderate distances, with
higher-order terms in the R’-expansion, if needed.

If AR < 1 (the quasi-static approximation) the dipole fields are given by

E:_i_v[j_g(jR)R] 1 vjx R

w R3’ c R3

where we recognize the dipole electric field and the magnetic field (the Biot-Savart law).

Finally, we comment upon the fields inside a polarizable body. From equations (4) it is obvious
that the main contributions to the integrals of the electromagnetic potentials come from the region
R/ ~ R. We get easily

D=0 43
pk : (43)

where j is an average current, a is a cutoff length and we assumed \a < 1. For a small body, a can
be taken as the linear size of the body. The electric field (very small) is given by E = (2mila?/c)j
and the magnetic field is vanishing. Comparing with equations (42) we can see that the fields
exhibit jumps at the surface of the body. In the equation of motion (w? — w?)u = —(¢/m)E
for the displacement u of the mobile charges with mass m, making use of j = —iwnqu, we

get (w?* — Wl + a*wiw?/2¢)u = 0, where w, is a characteristic frequency and w, = \/4wng?/m



is the plasma frequency; hence, we can see a renormalization of the characteristic frequency
W = we/y/1 +w?/2wi, where wy = c¢/a. This polarization resonance is active when the body is
subject to an external excitation, and it can be seen as an iridiscence, as it is known for small

bodies.
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