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u(R, t) = a2δ(r)v(z, t)θ(z)θ(l − z)ez , (1)where R = (r, z), δ is the delta funtion,θ is the step funtion, v(z, t) is a funtion of the oordinate

z and the time t and ez is the unit vetor along the z-diretion. Thsi displaement �eld generatesa harge density
ρ = −nqdivu = −nqa2δ(r)

[

∂v

∂z
θ(z)θ(l − z) + vδ(z) − vδ(z − l)

] (2)and a urrent density
j = nqa2δ(r)

∂v

∂t
θ(z)θ(l − z)ez , (3)both satisfying the ontinuity equation ∂ρ/∂t + divj = 0. We use the temporal Fourier transformwith frequeny denoted by ω and the well-known Kirhho�'s retarded eletromagneti potentials

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

,

Φ(R, t) = 1
c

∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

(4)subjeted to the Lorenz gauge divA + (1/c)∂Φ/∂t = 0 (with c the light veloity). We omitusually the argument ω in the Fourier transforms. The vetor potential has only the z-omponent,
A = (0, 0, A). We get

A = −inqa2λ
∫ l

0
dz′

v(z′)
√

r2 + (z − z′)2
eiλ

√
r2+(z−z′)2 (5)
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Φ = nqa2

∫ l

0
dz′v(z′)

∂

∂z′
1

√

r2 + (z − z′)2
eiλ

√
r2+(z−z′)2 . (6)For l/R ≪ 1, and introduing the mean value

∫ l

0
dzv(z) = lv (7)we get immediately

A = −ipλ
eiλR

R
, Φ = −p

(

iλz

R
− z

R2

)

eiλR

R
, (8)where p = nqa2lv = Nqv is the dipole moment, N being the total number of mobile harges.This approximation is also alled the dipole approximation (l/R ≪ 1). We an hek immediatelythe Lorenz gauge on this approximation. If v = 0 we take further terms in the expansion of

√

r2 + (z − z′)2 up to the leading ontribution.From equations (8) we an get the eletri �eld E = −(1/c)∂A/∂t−gradΦ and the magneti �eld
H = curlA. The dipole approximation is valid for l/R ≪ 1, irrespetive of the relation between
R, l and the wavelength c/ω = 1/λ. We limit ourselves here to give the radiation �elds in thewave-zone, i.e. for λR ≫ 1 (distanes muh longer than the wavelength):

Ez = pλ2 eiλR

R
, E⊥ = −pλ2 zr

R3 e
iλR ,

Hϕ = −pλ2 r sin θ
R2 eiλR ,

(9)where E⊥ is the transverse eletri �eld (x = r cos ϕ, y = r sin ϕ) and Hϕ is written in spherialoordinates (z = R cos θ, r = R sin θ). We an see that these �elds are (distorted) spherial waves,with a signi�ant dependene on diretion. The Ez-omponent of the eletri �eld is purely aspherial wave, the transverse (radial) E⊥-omponent of the eletri �eld is vanishing along theazimuthal and polar diretions, the magneti �eld is axial and everywhere perpendiular to theeletri �eld, as for a plane wave.We omment further on other possible tehniques of solving this problem. Obviously, the problemonerns the solution of the wave equations for the eletromagneti potentials with soures ρ and jgiven by equations (2) and (3). It is onvenient to deal �rst with the wave equation for the vetorpotential A, and derive thereafter the salar potential from the Lorenz gauge. By a temporalFourier transform the wave eqaution beomes the Helmholtz equation, whih, leaving aside theirrelevant fators, an be written as
∆A + λ2A = δ(r)w(z) , (10)where w(z) is a funtion extending from z = 0 to z = l (vanishing outside this region). The mostdiret approah to this equation would be to use the Green funtion for the equation

∆G + λ2G = δ(r)δ(z) = δ(R) , (11)whih, as it is well known, is the spherial wave −(1/4π)eiλR/R (for outgoing wave boundaryonditions at in�nity). Then, it is easy to see that the solution of equation (10) is given byonvolutions with the Green funtion, of the Kirhho�'s solution-type given by equations (4).



J. Theor. Phys. 3However, we an hoose to perform �rst a z-Fourier transform in equation (10), as a faster way tothe solution. Here, there may appear a �rst di�ulty. Let us take the one-dimensional Helmholtzequation
∂2u

∂z2
+ κ2u = f(z) , (12)with ommon notations. Naively, we an write at one the "solution", by Fourier transformingthe equation:

u(z) =
1

2π

∫

dk
f(k)

κ2 − k2
eikz ; (13)and see immediately that we need to speify the path of integration. We should go bak to theequation for the Green funtion

∂2G

∂z2
+ κ2G = δ(z) (14)and see that solution is of the form G ∼ Ae±iκz for z < 0 and z > 0, with the "boundary ondition"

G
′

(ε) − G
′

(−ε) = 1, ε → 0. We an hek immediately that it is given by
G(z) =

1

2iκ
eiκ|z| (15)and its Fourier transform is

G(k) =
1

κ2 − k2 + iκµ
(16)for µ → 0+. The "solution" (13) beomes

u(z) =
1

2π

∫

dk
f(k)

κ2 − k2 + iκµ
eikz , (17)where, now, the poles are plaed without ambiguity.We turn now to equation (10), written as

1

r

∂

∂r

(

r
∂A

∂r

)

+
∂2A

∂z2
+ λ2A = δ(r)w(z) , (18)and take the z-Fourier transform (obviously, the angular part is not implied here in the laplaian) .Aording to the above disussion the preise imaginary part of the z-wavevetor κ, whih spei�esthe integration path, annot be determined. Leaving it aside and denoting k2 = λ2 − κ2, we getthe Green-funtion equation

A
′′

+
1

r
A

′

+ k2A = δ(r)w(κ) . (19)For r 6= 0 the solution is given by the Bessel funtions of zero-th order, say CZ0(z = kr), where
C is a onstant. It should satisfy the "boundary ondition" 2πrC ∂Z0

∂r
→ 1 for r → 0 (obtained bythe Gauss's theorem for integral of div) . On the other hand, the Hankel funtion H

(1)
0 (z) goeslike (2i/π) ln z for z → 0 (and is outgoing wave for k in the upper half-plane), so we get �nally

A(r, κ) =
1

4i
H0(kr)w(κ) =

1

4i
H

(1)
0

(√
λ2 − κ2r

)

w(κ) . (20)Unfortunately, the integration path is not spei�ed, so it is di�ult to get the inverse Fouriertransform A(r, z). This an be seen immediately for ontributions arising from κ ≃ λ, where theHankel funtion has a starting branh ut along the negative axis.



4 J. Theor. Phys.All what we an get is the Fourier transform of the Green funtion
1

2π

∫

dκG(r, κ)eiκz =
1

8πi

∫

dκH
(1)
0 (kr)eiκz = G(R) = − 1

4π

eiλR

R
, (21)whene

H
(1)
0 (kr) =

1

iπ

∫

dz
eiλR

R
e−iκz . (22)Indeed, with z = r sinh t and λ = k cosh α, κ = k sinh α, the integral in equation (22) beomes

H
(1)
0 (kr) =

1

iπ

∫

dteikr cosh t , (23)whih is a known integral representation of the Hankel funtion.It is worth omputing w(κ) for a funtion with a �nite support, 0 < z < l. Let us onsider
w(z) = weiκ0z, then

w(κ) = iw
ei(κ0−κ)l−µl − 1

κ − κ0 − iµ
. (24)We an use this Fourier transform in equation (20) in order to ompute A(r, z). It is easy to seethat the ontribution from the pole κ0 + iµ gives a funtion A(r, z) with the same �nite support

0 < z < l; had we know the full path of integration the orret inverse Fourier transform wouldbe obtained. However, in the limit l → 0 we get w(κ) = wl, and we get the orret result
A(r, z) =

wl

8πi

∫

dκH
(1)
0 (kr)eiκz = −wl

4π

eiλR

R
, (25)as a result of equation (21).Cirular antenna. We onsider a irular antenna of radius r0 and thikness a ≪ r0, plaed inthe x, y-plane with the enter at the origin. The displaement �eld of the mobile harges is givenby

u(R, t) = a2δ(z)δ(r − r0)v(ϕ, t)eϕ , (26)where R = (r, z) and ϕ is the azimuthal angle. The harge and urrent densities are given by
ρ = −nqdivu and, respetively, j = nqu̇, where n is the density of the mobile harges q. TheKirhho�'s potentials an be written immediately. For instane, the vetor potential is given by

Ax = iλnqa2r0

∫

dϕ′ v(ϕ′) sin ϕ′

√

R2 − 2rr0 cos(ϕ − ϕ′) + r2
0

eiλ
√

R2−2rr0 cos(ϕ−ϕ′)+r2

0 (27)and a similar expression for Ay (with the temporal Fourier transforms).We limit ourselves to the dipole approximation R ≫ r0, and onsider the most ommon ase
v(ϕ) = v = const. We get straightforwardly Ar = Az = 0 and

Aϕ = −1

2
iλnqa2r2

0v

(

r

R2
− iλr

R

)

eiλR

R
= −1

2
iλpr0

(

r

R2
− iλr

R

)

eiλR

R
, (28)where p = Nqv is the dipole moment, N being the total number of the mobile harges (n =

N/a2r0). The radiation (wave-zone) �eld is given by
Eϕ = −1

2
iλ3pr0

r
R2 e

iλR ,

Hr = 1
2
iλ3pr0

rz
R3 e

iλR , Hz = −1
2
iλ2pr0

1
R2 e

iλR .
(29)



J. Theor. Phys. 5We an see that these �elds are dimished, in omparison with the �elds of a linear antenna bya fator λr0, and, as for a linear antenna, they are plane-wave �elds. It is worth noting herethat instead of v, whih is diretly assoiated with the dipole moment, there appears vr0, as aonsequene of the next-order term in the expansion in powers of r0. Suh terms are usually seenas quadrupole ontribution, though they do not imply v2. Properly assessed, suh terms arisefrom quadrati ombinations of the displaement and the dimensions of the body, and their originis atually dipolar.Generalized dipole approximation. Let us onsider the temporal Fourier transform of thevetor potential given by equations (4),
A =

1

c

∫

dR′ j(R′)

|R − R′|e
iλ|R−R′| , (30)and assume the dipole approximation R ≫ R′. The leading ontribution to equation (30) is givenby

A =
1

c

∫

dR′j(R′) · eiλR

R
. (31)We denote the average urrent density in equaton (31) by vj, where v is the volume of the body:

A =
v

c
j
eiλR

R
. (32)If this average value is vanishing we take higher-order terms in the expansion of eiλ|R−R′|/ |R −R′|.From the ontinuity equation we get the harge density ρ = (1/iω)divj, so that the salar potentialin equations (4) an be written as

Φ =
1

iω

∫

dR′ divj

|R− R′|e
iλ|R−R′| , (33)or, within the same approximation,

Φ =
v

iω
(jgrad)

eiλR

R
. (34)We an hek the Lorenz gauge divA−iλΦ = 0. Now it is easy to get the eletri and the magneti�elds. In the wave-zone (λR ≫ 1) the radiation �elds are given by

E =
ivλ

c

[

j− (jR)R

R2

]

eiλR

R
, H = −ivλ

c
(j ×R)

eiλR

R2
. (35)We an see that the �elds are perpendiular to eah other, as for a plane wave, and both areperpendiular to the diretion R of the propagation of the wave. We an see also that only thetransverse omponent of the urrent (perpendiular to R) is e�etive.The Poynting vetor averaged over a large time T is given by

S =
c

8π2T

∫

dωE(ω)× H(−ω) , (36)or, making use of equations (35),
S =

v2

8π2cT

∫

dωλ2

(

|j|2 − |jR|2
R2

)

R

R3
. (37)



6 J. Theor. Phys.Suppose that j(t) is of the form j(t) = j0e
−Ωt + c.c., and j(ω) = 2πj0δ(ω − Ω) + 2πj0δ(ω + Ω).Making use of δ2(ω − Ω) = (T/2π)δ(ω − Ω), we get the Poynting vetor

S =
Ω2v2

2πc3

(

|j0|2 −
|j0R|2

R2

)

R

R3
. (38)Similarly, the density of the eletromagneti �eld is given by

W =
v2

8π2c2T

∫

dωλ2

(

|j|2 − |jR|2
R2

)

1

R2
, (39)and we an hek the energy onservation ∂W/∂t + divS = 0.It is worth omputing the eletromagneti stress

σij =
1

4π

[

EiEj + HiHj −
1

2
δij(E

2 + H2)
]

. (40)We take j = jez and ompute terms like Ei(ω)Ej(−ω). Up to a ommon fator −v2λ2 |j|2 /4πc2,we get
σxx = x2(x2+y2)

R6 , σyy = y2(x2+y2)
R6 , σzz = z2(x2+y2)

R6 ,

σxy = xy(x2+y2)
R6 , σyz = yz(x2+y2)

R6 , σzx = xz(x2+y2)
R6 .

(41)It is easy to hek that the stress fore gi = ∂σij/∂xj is vanishing, as expeted for average quan-tities, and the eletromagneti momentum G = S/c2 in the equation of motion g = ∂G/∂t is aonstant. The stress fore ats only for time-dependent terms (ontaining fators like e2iωt−2iλR),is osillating in time and spae, and produe a orresponding temporal hange in the eletromag-neti momentum (Poynting vetor). The ponderomotive fore in dieletris, onneted with theeletromagneti stress tensor, arises form the hanges in the dieletri struture.Near-�eld approximation. The eletromagneti potentials of the generalized dipole approx-imation, as given by equations (32) and (34), an also be used for moderate distanes, withhigher-order terms in the R′-expansion, if needed.If λR ≪ 1 (the quasi-stati approximation) the dipole �elds are given by
E = −iv

ω

[

j− 3
(jR)R

R2

]

1

R3
, H =

v

c

j× R

R3
, (42)where we reognize the dipole eletri �eld and the magneti �eld (the Biot-Savart law).Finally, we omment upon the �elds inside a polarizable body. From equations (4) it is obviousthat the main ontributions to the integrals of the eletromagneti potentials ome from the region

R′ ≃ R. We get easily
A ≃ 2πa2

c
j , Φ = 0 , (43)where j is an average urrent, a is a uto� length and we assumed λa ≪ 1. For a small body, a anbe taken as the linear size of the body. The eletri �eld (very small) is given by E = (2πiλa2/c)jand the magneti �eld is vanishing. Comparing with equations (42) we an see that the �eldsexhibit jumps at the surfae of the body. In the equation of motion (ω2 − ω2

c )u = −(q/m)Efor the displaement u of the mobile harges with mass m, making use of j = −iωnqu, weget (ω2 − ω2
c + a2ω2

pω
2/2c2)u = 0, where ωc is a harateristi frequeny and ωp =

√

4πnq2/m



J. Theor. Phys. 7is the plasma frequeny; hene, we an see a renormalization of the harateristi frequeny
ω = ωc/

√

1 + ω2
p/2ω2

0, where ω0 = c/a. This polarization resonane is ative when the body issubjet to an external exitation, and it an be seen as an iridisene, as it is known for smallbodies.© J. Theor. Phys. 2011, apoma�theor1.theory.nipne.ro


