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tThe ele
tromagneti
 �eld produ
ed by a linear antenna of �nite length are derived withinthe dipole approximation. Some te
hni
al points are in
luded, regarding mathemati
al ar
anain solving the Helmholtz equation. Similar results are given for a 
ir
ular antenna. The dipoleapproximation is generalized for a body of arbitrary shape. Both radiation �elds and near-�eldapproximation are dis
ussed. The ele
tromagneti
 �eld inside small bodies is also estimatedwithin the dipole approximation, and the well-known iridis
en
e 
aused by the polarizationresonan
e is derived.Linear antenna. We 
onsider a linear antenna of length l pla
ed between z = 0 and z = l, witha small thi
kness a ≪ l. The displa
ement �eld of the mobile 
harges q, with densiy n is given by
u(R, t) = a2δ(r)v(z, t)θ(z)θ(l − z)ez , (1)where R = (r, z), δ is the delta fun
tion,θ is the step fun
tion, v(z, t) is a fun
tion of the 
oordinate

z and the time t and ez is the unit ve
tor along the z-dire
tion. Thsi displa
ement �eld generatesa 
harge density
ρ = −nqdivu = −nqa2δ(r)

[

∂v

∂z
θ(z)θ(l − z) + vδ(z) − vδ(z − l)

] (2)and a 
urrent density
j = nqa2δ(r)

∂v

∂t
θ(z)θ(l − z)ez , (3)both satisfying the 
ontinuity equation ∂ρ/∂t + divj = 0. We use the temporal Fourier transformwith frequen
y denoted by ω and the well-known Kir
hho�'s retarded ele
tromagneti
 potentials

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

,

Φ(R, t) = 1
c

∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

(4)subje
ted to the Lorenz gauge divA + (1/c)∂Φ/∂t = 0 (with c the light velo
ity). We omitusually the argument ω in the Fourier transforms. The ve
tor potential has only the z-
omponent,
A = (0, 0, A). We get

A = −inqa2λ
∫ l

0
dz′

v(z′)
√

r2 + (z − z′)2
eiλ

√
r2+(z−z′)2 (5)
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Φ = nqa2

∫ l

0
dz′v(z′)

∂

∂z′
1

√

r2 + (z − z′)2
eiλ

√
r2+(z−z′)2 . (6)For l/R ≪ 1, and introdu
ing the mean value

∫ l

0
dzv(z) = lv (7)we get immediately

A = −ipλ
eiλR

R
, Φ = −p

(

iλz

R
− z

R2

)

eiλR

R
, (8)where p = nqa2lv = Nqv is the dipole moment, N being the total number of mobile 
harges.This approximation is also 
alled the dipole approximation (l/R ≪ 1). We 
an 
he
k immediatelythe Lorenz gauge on this approximation. If v = 0 we take further terms in the expansion of

√

r2 + (z − z′)2 up to the leading 
ontribution.From equations (8) we 
an get the ele
tri
 �eld E = −(1/c)∂A/∂t−gradΦ and the magneti
 �eld
H = curlA. The dipole approximation is valid for l/R ≪ 1, irrespe
tive of the relation between
R, l and the wavelength c/ω = 1/λ. We limit ourselves here to give the radiation �elds in thewave-zone, i.e. for λR ≫ 1 (distan
es mu
h longer than the wavelength):

Ez = pλ2 eiλR

R
, E⊥ = −pλ2 zr

R3 e
iλR ,

Hϕ = −pλ2 r sin θ
R2 eiλR ,

(9)where E⊥ is the transverse ele
tri
 �eld (x = r cos ϕ, y = r sin ϕ) and Hϕ is written in spheri
al
oordinates (z = R cos θ, r = R sin θ). We 
an see that these �elds are (distorted) spheri
al waves,with a signi�
ant dependen
e on dire
tion. The Ez-
omponent of the ele
tri
 �eld is purely aspheri
al wave, the transverse (radial) E⊥-
omponent of the ele
tri
 �eld is vanishing along theazimuthal and polar dire
tions, the magneti
 �eld is axial and everywhere perpendi
ular to theele
tri
 �eld, as for a plane wave.We 
omment further on other possible te
hniques of solving this problem. Obviously, the problem
on
erns the solution of the wave equations for the ele
tromagneti
 potentials with sour
es ρ and jgiven by equations (2) and (3). It is 
onvenient to deal �rst with the wave equation for the ve
torpotential A, and derive thereafter the s
alar potential from the Lorenz gauge. By a temporalFourier transform the wave eqaution be
omes the Helmholtz equation, whi
h, leaving aside theirrelevant fa
tors, 
an be written as
∆A + λ2A = δ(r)w(z) , (10)where w(z) is a fun
tion extending from z = 0 to z = l (vanishing outside this region). The mostdire
t approa
h to this equation would be to use the Green fun
tion for the equation

∆G + λ2G = δ(r)δ(z) = δ(R) , (11)whi
h, as it is well known, is the spheri
al wave −(1/4π)eiλR/R (for outgoing wave boundary
onditions at in�nity). Then, it is easy to see that the solution of equation (10) is given by
onvolutions with the Green fun
tion, of the Kir
hho�'s solution-type given by equations (4).
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an 
hoose to perform �rst a z-Fourier transform in equation (10), as a faster way tothe solution. Here, there may appear a �rst di�
ulty. Let us take the one-dimensional Helmholtzequation
∂2u

∂z2
+ κ2u = f(z) , (12)with 
ommon notations. Naively, we 
an write at on
e the "solution", by Fourier transformingthe equation:

u(z) =
1

2π

∫

dk
f(k)

κ2 − k2
eikz ; (13)and see immediately that we need to spe
ify the path of integration. We should go ba
k to theequation for the Green fun
tion

∂2G

∂z2
+ κ2G = δ(z) (14)and see that solution is of the form G ∼ Ae±iκz for z < 0 and z > 0, with the "boundary 
ondition"

G
′

(ε) − G
′

(−ε) = 1, ε → 0. We 
an 
he
k immediately that it is given by
G(z) =

1

2iκ
eiκ|z| (15)and its Fourier transform is

G(k) =
1

κ2 − k2 + iκµ
(16)for µ → 0+. The "solution" (13) be
omes

u(z) =
1

2π

∫

dk
f(k)

κ2 − k2 + iκµ
eikz , (17)where, now, the poles are pla
ed without ambiguity.We turn now to equation (10), written as

1

r

∂

∂r

(

r
∂A

∂r

)

+
∂2A

∂z2
+ λ2A = δ(r)w(z) , (18)and take the z-Fourier transform (obviously, the angular part is not implied here in the lapla
ian) .A

ording to the above dis
ussion the pre
ise imaginary part of the z-waveve
tor κ, whi
h spe
i�esthe integration path, 
annot be determined. Leaving it aside and denoting k2 = λ2 − κ2, we getthe Green-fun
tion equation

A
′′

+
1

r
A

′

+ k2A = δ(r)w(κ) . (19)For r 6= 0 the solution is given by the Bessel fun
tions of zero-th order, say CZ0(z = kr), where
C is a 
onstant. It should satisfy the "boundary 
ondition" 2πrC ∂Z0

∂r
→ 1 for r → 0 (obtained bythe Gauss's theorem for integral of div) . On the other hand, the Hankel fun
tion H

(1)
0 (z) goeslike (2i/π) ln z for z → 0 (and is outgoing wave for k in the upper half-plane), so we get �nally

A(r, κ) =
1

4i
H0(kr)w(κ) =

1

4i
H

(1)
0

(√
λ2 − κ2r

)

w(κ) . (20)Unfortunately, the integration path is not spe
i�ed, so it is di�
ult to get the inverse Fouriertransform A(r, z). This 
an be seen immediately for 
ontributions arising from κ ≃ λ, where theHankel fun
tion has a starting bran
h 
ut along the negative axis.



4 J. Theor. Phys.All what we 
an get is the Fourier transform of the Green fun
tion
1

2π

∫

dκG(r, κ)eiκz =
1

8πi

∫

dκH
(1)
0 (kr)eiκz = G(R) = − 1

4π

eiλR

R
, (21)when
e

H
(1)
0 (kr) =

1

iπ

∫

dz
eiλR

R
e−iκz . (22)Indeed, with z = r sinh t and λ = k cosh α, κ = k sinh α, the integral in equation (22) be
omes

H
(1)
0 (kr) =

1

iπ

∫

dteikr cosh t , (23)whi
h is a known integral representation of the Hankel fun
tion.It is worth 
omputing w(κ) for a fun
tion with a �nite support, 0 < z < l. Let us 
onsider
w(z) = weiκ0z, then

w(κ) = iw
ei(κ0−κ)l−µl − 1

κ − κ0 − iµ
. (24)We 
an use this Fourier transform in equation (20) in order to 
ompute A(r, z). It is easy to seethat the 
ontribution from the pole κ0 + iµ gives a fun
tion A(r, z) with the same �nite support

0 < z < l; had we know the full path of integration the 
orre
t inverse Fourier transform wouldbe obtained. However, in the limit l → 0 we get w(κ) = wl, and we get the 
orre
t result
A(r, z) =

wl

8πi

∫

dκH
(1)
0 (kr)eiκz = −wl

4π

eiλR

R
, (25)as a result of equation (21).Cir
ular antenna. We 
onsider a 
ir
ular antenna of radius r0 and thi
kness a ≪ r0, pla
ed inthe x, y-plane with the 
enter at the origin. The displa
ement �eld of the mobile 
harges is givenby

u(R, t) = a2δ(z)δ(r − r0)v(ϕ, t)eϕ , (26)where R = (r, z) and ϕ is the azimuthal angle. The 
harge and 
urrent densities are given by
ρ = −nqdivu and, respe
tively, j = nqu̇, where n is the density of the mobile 
harges q. TheKir
hho�'s potentials 
an be written immediately. For instan
e, the ve
tor potential is given by

Ax = iλnqa2r0

∫

dϕ′ v(ϕ′) sin ϕ′

√

R2 − 2rr0 cos(ϕ − ϕ′) + r2
0

eiλ
√

R2−2rr0 cos(ϕ−ϕ′)+r2

0 (27)and a similar expression for Ay (with the temporal Fourier transforms).We limit ourselves to the dipole approximation R ≫ r0, and 
onsider the most 
ommon 
ase
v(ϕ) = v = const. We get straightforwardly Ar = Az = 0 and

Aϕ = −1

2
iλnqa2r2

0v

(

r

R2
− iλr

R

)

eiλR

R
= −1

2
iλpr0

(

r

R2
− iλr

R

)

eiλR

R
, (28)where p = Nqv is the dipole moment, N being the total number of the mobile 
harges (n =

N/a2r0). The radiation (wave-zone) �eld is given by
Eϕ = −1

2
iλ3pr0

r
R2 e

iλR ,

Hr = 1
2
iλ3pr0

rz
R3 e

iλR , Hz = −1
2
iλ2pr0

1
R2 e

iλR .
(29)
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an see that these �elds are dimished, in 
omparison with the �elds of a linear antenna bya fa
tor λr0, and, as for a linear antenna, they are plane-wave �elds. It is worth noting herethat instead of v, whi
h is dire
tly asso
iated with the dipole moment, there appears vr0, as a
onsequen
e of the next-order term in the expansion in powers of r0. Su
h terms are usually seenas quadrupole 
ontribution, though they do not imply v2. Properly assessed, su
h terms arisefrom quadrati
 
ombinations of the displa
ement and the dimensions of the body, and their originis a
tually dipolar.Generalized dipole approximation. Let us 
onsider the temporal Fourier transform of theve
tor potential given by equations (4),
A =

1

c

∫

dR′ j(R′)

|R − R′|e
iλ|R−R′| , (30)and assume the dipole approximation R ≫ R′. The leading 
ontribution to equation (30) is givenby

A =
1

c

∫

dR′j(R′) · eiλR

R
. (31)We denote the average 
urrent density in equaton (31) by vj, where v is the volume of the body:

A =
v

c
j
eiλR

R
. (32)If this average value is vanishing we take higher-order terms in the expansion of eiλ|R−R′|/ |R −R′|.From the 
ontinuity equation we get the 
harge density ρ = (1/iω)divj, so that the s
alar potentialin equations (4) 
an be written as

Φ =
1

iω

∫

dR′ divj

|R− R′|e
iλ|R−R′| , (33)or, within the same approximation,

Φ =
v

iω
(jgrad)

eiλR

R
. (34)We 
an 
he
k the Lorenz gauge divA−iλΦ = 0. Now it is easy to get the ele
tri
 and the magneti
�elds. In the wave-zone (λR ≫ 1) the radiation �elds are given by

E =
ivλ

c

[

j− (jR)R

R2

]

eiλR

R
, H = −ivλ

c
(j ×R)

eiλR

R2
. (35)We 
an see that the �elds are perpendi
ular to ea
h other, as for a plane wave, and both areperpendi
ular to the dire
tion R of the propagation of the wave. We 
an see also that only thetransverse 
omponent of the 
urrent (perpendiular to R) is e�e
tive.The Poynting ve
tor averaged over a large time T is given by

S =
c

8π2T

∫

dωE(ω)× H(−ω) , (36)or, making use of equations (35),
S =

v2

8π2cT

∫

dωλ2

(

|j|2 − |jR|2
R2

)

R

R3
. (37)
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−Ωt + c.c., and j(ω) = 2πj0δ(ω − Ω) + 2πj0δ(ω + Ω).Making use of δ2(ω − Ω) = (T/2π)δ(ω − Ω), we get the Poynting ve
tor

S =
Ω2v2

2πc3

(

|j0|2 −
|j0R|2

R2

)

R

R3
. (38)Similarly, the density of the ele
tromagneti
 �eld is given by

W =
v2

8π2c2T

∫

dωλ2

(

|j|2 − |jR|2
R2

)

1

R2
, (39)and we 
an 
he
k the energy 
onservation ∂W/∂t + divS = 0.It is worth 
omputing the ele
tromagneti
 stress

σij =
1

4π

[

EiEj + HiHj −
1

2
δij(E

2 + H2)
]

. (40)We take j = jez and 
ompute terms like Ei(ω)Ej(−ω). Up to a 
ommon fa
tor −v2λ2 |j|2 /4πc2,we get
σxx = x2(x2+y2)

R6 , σyy = y2(x2+y2)
R6 , σzz = z2(x2+y2)

R6 ,

σxy = xy(x2+y2)
R6 , σyz = yz(x2+y2)

R6 , σzx = xz(x2+y2)
R6 .

(41)It is easy to 
he
k that the stress for
e gi = ∂σij/∂xj is vanishing, as expe
ted for average quan-tities, and the ele
tromagneti
 momentum G = S/c2 in the equation of motion g = ∂G/∂t is a
onstant. The stress for
e a
ts only for time-dependent terms (
ontaining fa
tors like e2iωt−2iλR),is os
illating in time and spa
e, and produ
e a 
orresponding temporal 
hange in the ele
tromag-neti
 momentum (Poynting ve
tor). The ponderomotive for
e in diele
tri
s, 
onne
ted with theele
tromagneti
 stress tensor, arises form the 
hanges in the diele
tri
 stru
ture.Near-�eld approximation. The ele
tromagneti
 potentials of the generalized dipole approx-imation, as given by equations (32) and (34), 
an also be used for moderate distan
es, withhigher-order terms in the R′-expansion, if needed.If λR ≪ 1 (the quasi-stati
 approximation) the dipole �elds are given by
E = −iv

ω

[

j− 3
(jR)R

R2

]

1

R3
, H =

v

c

j× R

R3
, (42)where we re
ognize the dipole ele
tri
 �eld and the magneti
 �eld (the Biot-Savart law).Finally, we 
omment upon the �elds inside a polarizable body. From equations (4) it is obviousthat the main 
ontributions to the integrals of the ele
tromagneti
 potentials 
ome from the region

R′ ≃ R. We get easily
A ≃ 2πa2

c
j , Φ = 0 , (43)where j is an average 
urrent, a is a 
uto� length and we assumed λa ≪ 1. For a small body, a 
anbe taken as the linear size of the body. The ele
tri
 �eld (very small) is given by E = (2πiλa2/c)jand the magneti
 �eld is vanishing. Comparing with equations (42) we 
an see that the �eldsexhibit jumps at the surfa
e of the body. In the equation of motion (ω2 − ω2

c )u = −(q/m)Efor the displa
ement u of the mobile 
harges with mass m, making use of j = −iωnqu, weget (ω2 − ω2
c + a2ω2

pω
2/2c2)u = 0, where ωc is a 
hara
teristi
 frequen
y and ωp =

√

4πnq2/m



J. Theor. Phys. 7is the plasma frequen
y; hen
e, we 
an see a renormalization of the 
hara
teristi
 frequen
y
ω = ωc/

√

1 + ω2
p/2ω2

0, where ω0 = c/a. This polarization resonan
e is a
tive when the body issubje
t to an external ex
itation, and it 
an be seen as an iridis
en
e, as it is known for smallbodies.
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