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2 J. Theor. Phys.bodies,[1, 2℄ to hydrodynamial �ow of miro�uids,[3℄ dispersive properties of surfae plasmon-polariton in nanoplasmonis,[4℄ terahertz-waves generation[5℄ or eletroni mirostrutures.[6, 7℄Giant orrugations have been found on the graphite surfae by sanning tunneling mirosopy,due to the elasti deformations indued by atomi fores between tip and surfae.[10℄ Periodisurfae orrugation plays a entral role in enhaned, or suppreseed, optial transmission in thesubwavelength regime,[9℄ or in highly-diretional optial emission.[10℄ An appreiable redution inthe thermal ondutane has been assigned to the phonon sattering by the surfae roughness.[11℄Stik-slip instability responsible for earthquakes has been studied, as well as the assoiated radi-ation of seismi surfae waves.[12℄ It has been reognized that elasti waves propagation e�etsmay play a entral role in the surfae roughness of the raks propagating in heterogeneous me-dia, like aluminium alloys, eramis or rok.[13, 14℄ The main di�ulty in getting more de�niteresults in this problem resides in modelling onveniently the surfae roughness suh as to arriveat mathematially operational approahes.[15℄We introdue here a model of inhomogeneous surfae roughness, whose elasti harateristis are,in general, distint than the ones of the underlying (isotropi) elasti half-spae (semi-in�nitesolid). It is shown that the elasti waves propagating in the semi-in�nite body (inident on andre�eted speularly by the surfae) generate a fore loalized on the surfae roughness, whih isresponsible for the sattered waves. The sattered waves are of two kinds: loalized (and propa-gating only) on the surfae (two-dimensional waves), and waves sattered bak in the body. For anenhaned roughness the waves sattered bak in the body may get on�ned to the surfae (damped,rough-surfae waves). Light di�usely sattered by a randomly rough surfae has been studied bothexperimentally and theoretially, with emphasis on multiple sattering.[16℄ The method employedin the present paper is based on a perturbation-theoretial sheme, and the resulting oupledintegral equations are solved in the �rst approximation with respet to the roughness magnitude.Multiple sattering is expeted to our in higher-order approximations. Forward and bakwardsattering of elasti waves have also been reported in orrugated waveguides.[17℄ Great insighthas been obtained previously in the oupling of the surfae (Rayleigh) waves to periodi orruga-tion (grating),[18℄-[20℄ espeialy as regards the wave attenuation, slowing and leaking (outgoinginreasing wave), orroborated with band gaps and stop bands, by using non-perturbational teh-niques. In addition to suh results, we show here that the surfae roughness may ause loalizedwaves, propagating only on the surfae, whih may store a ertain amount of energy, due tothe loalization e�ets. Attenuation of rustal waves aross the Alpine range has been reported,whih might be assoiated with the loalization of energy in the surfae-roughness region.[21℄ Themethod presented here an be extended to eletromagneti waves, or �uid waves, propagating ina semi-in�nite body with a rough surfae. It was employed reently to analyze the elasti wavesprodued by loalized fores in semi-in�nite solids.[22℄2 Elasti body with a rough surfaeWe onsider an isotropi elasti body extended boundlessly along the diretions r = (x, y) andlimited along the z-diretion by a free surfae z = h(r), where h(r) > 0 is a funtion to be furtherspei�ed (roughness funtion). The body, whih may also be termed a sem-in�nite solid (with arough, orrugated surfae), oupies the region z < h(r) (i.e. an elasti half-spae with a roughsurfae). It is onvenient to write the well-known equation for free elasti waves in an isotropibody[23℄ as
1

v2
t

ü− ∆u = m · grad · divu , (1)



J. Theor. Phys. 3where u(r, z, t) is the displaement �eld, t denotes the time, vt is the veloity of the transversewaves, m = v2
l /v

2
t − 1 > 1/3 (atually 1)[23℄ and vl is the veloity of the longitudinal waves.Indeed, equation (1) gives the free transverse waves (divu = 0) propagating with veloity vt andthe free longitudinal waves (curlu = 0) propagating with veloity vl.For a semi-in�nite body with a surfae desribed by equation z = h(r) and extending in the region

z < h(r) the displaement �eld an be written as
u = (v, w)θ[h(r) − z)] , (2)where v lies in the (x, y)-plane, w is direted along the z-axis and θ is the step funtion (θ(z) = 0for z < 0, θ(z) = 1 for z > 0). The roughness of the surfae (deviation from a plane) is givenby the magnitude of the funtion h(r), whih we assume to be very small in omparison with therelevant wavelengths along the z-diretions of the elasti disturbanes propagating in the body.Consequently, we may use the �rst-order approximation

u = (v, w)[θ(−z) + h(r)δ(z)] (3)for equation (2), where δ(z) is the Dira funtion. This is the usual approximation employedin the perturbation-theoretial approahes.[24℄-[26℄ The spei� onditions of validity for thisapproximation will be disussed on the �nal results.We write suh a displaement �eld as
u = u0 + δu0 , (4)where

u0 = (v0, w0)θ(−z) , δu0 = (v0, w0)|z=0 hδ(z) , (5)and assume that u0 satis�es the wave equation (1)
1

v2
t

ü0 − ∆u0 = m · grad · divu0 (6)with spei� boundary onditions at z = 0. This equation desribes inident and (speularly)re�eted waves propagating in a semi-in�nite solid with a plane surfae z = 0. We an see that
δu0 generates a soure-term loalized on the surfae (a fore), whih an produe sattered waves.We denote the displaement �eld assoiated with these sattered waves by u1; it satis�es the waveequation

1

v2
t

ü1 − ∆u1 = m · grad · divu1 +
f

v2
t

, (7)where the fore is given by
f

v2
t

=
1

v2
t

δü0 − ∆δu0 − m · grad · divδu0 . (8)Equations (7) and (8) represent merely a di�erent way of re-writing the wave equation for a semi-in�nite solid with a surfae roughness. For waves loalized on the surfae the solution of equation(7) is u1 = δu0. Another solutions are given by the waves sattered bak in the body by the surfaeroughness, i.e. waves generated in equation (12) by the soure term f (a partiular solution ofequation (7)). We generalize this model of surfae roughness by assuming that the roughness isinhomogeneous, i.e. it is a homogeneous elasti medium with di�erent elasti harateristis thanthe plane-surfae half-spae bulk (for instane, di�erent density and elasti onstants). Therefore,



4 J. Theor. Phys.we introdue distint veloities vt,l and denote all the hanged parameters with an overbar (forinstane, m = v2
l /v

2
t − 1). The fore is given in this ase by

f

v2
t

=
1

v2
t

δü0 − ∆δu0 − m · grad · divδu0 , (9)The results are expressed onveniently by using the relative di�erenes ηt,l = 1 − v2
t,l/v

2
t,l. Thedisplaement �eld u1 given by equation (7) an be written as u1 = (v, w)θ(−z).We might say that, in the presene of a displaement �eld u0, the roughness of the surfaegenerates a fore f , loalized on the surfae and of the same order of magnitude as the roughness

h (δu0 ∼ hδ(z)). This fore is the di�erene between the inertial fore δü0/v
2
t and the elasti fore

∆δu0 + m · grad · divδu0; it represents the distint way the surfae follows the elasti motion inomparison with the bulk. Equation (6) gives the free inident and re�eted waves propagatingin a half-spae with a plane surfae, while equation (7) gives the sattered waves produed by theroughness of the surfae, as a onsequene of the soure term f/v2
t .It is worth noting that suh a model of inhomogeneous surfae may orrespond either to a surfaewhose physial properties have been hanged, or to a solid whih is homogeneous everywhere,inluding its rough surfae. Indeed, in the latter ase, it is preisely the spatial variations of therough surfae whih a�et its elasti properties, viewed as a homogeneous medium, and render it,in fat, a rough surfae whih is inhomogeneous with respet to the bulk.The above perturbation-theoretial sheme an also be writen in a di�erent way, by reastingequation (1) into an equation involving the veloity vl of the longitudial waves and the parameter

n = 1 − v2
t /v

2
l = m/(1 + m). Then, equations (6) - (8) beome

1
v2

l

ü0 − ∆u0 = n(−∆u0 + grad · divu0) ,

1
v2

l

ü1 − ∆u1 = n(−∆u1 + grad · divu1) + f
v2

l

,

(10)where
f

v2
l

=
1

v2
l

δü0 − (1 − n)∆δu0 − n · grad · divδu0 . (11)We solve equation (7) and the seond equation (10) for the sattered transverse and, respetively,longitudinal waves by using the Green funtion method.3 Plane surfaeAs it is well known, the elementary solutions of equation (6), or the �rst equation (10), (homoge-neous elasti waves equation) for a half-spae with a plane surfae are transverse and longitudinalplane waves of the form
u0 = (e±iκ0z, e±iκ

′

0z)e−iωt+ik0r , (12)where both inident (+κ0, +κ
′

0) and re�eted (−κ0, −κ
′

0) waves are inluded, ω is the frequenyand k0 is the in-plane wavevetor. For divu0 = 0 we get the transverse waves, propagatingwith the veloity vt (ω = vtK0, where K0 = (k0, κ0)), with the z-omponent of the wavevetor
κ0 =

√

ω2/v2
t − k2

0. For curlu0 = 0 we get the longitudinal waves (through curl · curlu0 =
−∆u0 +grad ·divu0 = 0), propagating with the veloity vl and the z-omponent of the wavevetor
κ

′

0 =
√

ω2/v2
l − k2

0 (ω = vlK
′

0 and K
′

0 = (k0, κ
′

0)). The transverse waves have two polarizations,



J. Theor. Phys. 5one in the propagating plane (the (k0, κ0)-plane), alled the p-wave (parallel wave), anotherperpendiular to the propagating plane, alled the s-wave (from the German "senkreht", whihmeans "perpendiular"). Linear ombinations of the plane waves given by equation (12) aresubjet to onditions imposed on the surfae (e.g., free or �xed surfae).We derive here these free waves propagating in a half-spae with a plane surfae by a di�erentmethod, whih will be used subsequently in deriving the solutions for the sattered waves (equation(7) and the seond equation (10)). In order to simplify the notations we omit here the subsript
0.The solution of equation (6) is written as

u = [v(z), w(z)] θ(−z)e−iωt+ikr . (13)Introduing this u in equation (6) and leaving aside the exponential fator e−iωt+ikr we get
∂2u

∂z2
+ κ2u = S , (14)where κ2 = ω2/v2

t − k2 and the soure S has the omponents
S(x,y) = −imk

(

ikv + ∂w
∂z

)

θ(−z)+

+
(

∂v
∂z

∣

∣

∣

z=0
+ imk w|z=0

)

δ(z) + v|z=0 δ
′

(z) ,

Sz = −m
[

ik∂v
∂z

+ ∂2w
∂z2

]

θ(−z) + im kv|z=0 δ(z)+

+(1 + m)
[

∂w
∂z

∣

∣

∣

z=0
δ(z) + w|z=0 δ

′

(z)
]

.

(15)
We an see that the soure S, whih ollets all the ontributions from m·gradu and the derivativesof θ(−z) in ∆u, ats as an "external fore" in equation (14). As it is well known, the partiularsolution of equation (14) is given by

u(z) =
∫

dz′G(z − z′)S(z′) , (16)where
G(z) =

1

2iκ
eiκ|z| (17)is the Green funtion for equation (14) (Green funtion of the one-dimensional Helmholtz equa-tion). Making use of the notations v1 = vk/k and v2 = vk⊥/k, where k⊥is a vetor perpendiularto k and of the same magnitude k, equations (15)-(17) lead to

v2 = −
i

2κ

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκz −
1

2
v2|z=0 e−iκz (18)and

v1 = − imk2

2κ

∫ 0 dz′v1(z
′)eiκ|z−z′| − mk

2κ
∂
∂z

∫ 0 dz′w(z′)eiκ|z−z′|−

− i
2κ

∂v1

∂z

∣

∣

∣

z=0
e−iκz − 1

2
v1|z=0 e−iκz ,

(1 + m)w = −mk
2κ

∂
∂z

∫ 0 dz′v1(z
′)eiκ|z−z′| + imκ

2

∫ 0 dz′w(z′)eiκ|z−z′|−

− i
2κ

∂w
∂z

∣

∣

∣

z=0
e−iκz − 1

2
w|z=0 e−iκz .

(19)



6 J. Theor. Phys.Equation (18) orresponds to the s-wave. It is easy to see that the partiular solution givenby equation (18) is identially vanishing. Therefore, we are left with the free s-waves given byequation (12), as expeted (∼ e±iκze−iωt+ikr).Let us take the seond derivative of equations (19) with respet to z and use the identity
∂2

∂z2

∫

dz′f(z′)eiκ|z−z′| = −κ2
∫

dz′f(z′)eiκ|z−z′| + 2iκf(z) (20)for any arbitrary funtion f(z). We get
∂2v1

∂z2 + κ2v1 = −imk
(

ikv1 + ∂w
∂z

)

,

∂2w
∂z2 + κ2w = −m ∂

∂z

(

ikv1 + ∂w
∂z

)

.

(21)We an see that for div(v1, w) = 0, i.e. for ikv1 + ∂w/∂z = 0, we get the free p-waves (κ =
√

ω2/v2
t − k2), aording to equation (12) (∼ e±iκze−iωt+ikr). Similarly, for curlu = 0, i.e. for

ikw − ∂v1/∂z = 0, equations (21) beome
(1 + m)∂2(v1, w)

∂z2 + (κ2 − mk2)(v1, w) = 0 , (22)or, making use of m = v2
l /v

2
t − 1,

∂2(v1, w)

∂z2
+ κ

′2(v1, w) = 0 , (23)where κ
′

=
√

ω2/v2
l − k2, i.e. free longitudinal waves ∼ e±iκ′ze−iωt+ikr.The longitudinal waves an also be obtained by noting that the oupled equations (19) imply therelationship

∂v1

∂z
− ikw = Ce−iκz , (24)where

C = −
1

2

(

∂v1

∂z
− ikw

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκv1 −
k

κ

∂w

∂z

)∣

∣

∣

∣

∣

z=0

. (25)We use this relationship in one of equations (21), and get
∂2v1

∂z2
+ κ

′2v1 = −
imκ

1 + m
Ce−iκz . (26)The partiular solution of this equation is vanishing identially, and we are left with free longitu-dinal waves. Indeed, equation (24) with C = 0 orresponds to curl(v1, w) = 0.The p-waves are obtained in a similar way, by starting with the �rst equation (10). Using u givenby an equation similar with equation (13) we get

(1 − n)v2 =
in(κ

′2 + k2)

2κ′

∫ 0

dz′v2(z
′)eiκ

′
|z−z′| −

i

2κ′

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκ
′
z −

1

2
v2|z=0 e−iκ

′
z (27)and

(1 − n)v1 = inκ
′

2

∫ 0 dz′v1(z
′)eiκ

′
|z−z′| − nk

2κ
′

∂
∂z

∫ 0 dz′w(z′)eiκ
′
|z−z′|−

− i

2κ
′

∂v1

∂z

∣

∣

∣

z=0
e−iκ

′
z − 1

2
v1|z=0 e−iκ

′
z ,

w = − nk

2κ
′

∂
∂z

∫ 0 dz′v1(z
′)eiκ

′
|z−z′| + ink2

2κ
′

∫ 0 dz′w(z′)eiκ|z−z′|−

− i

2κ
′

∂w
∂z

∣

∣

∣

z=0
e−iκ

′
z − 1

2
w|z=0 e−iκ

′
z .

(28)



J. Theor. Phys. 7It is easy to see, by taking the seond derivative with respet to z, that equation (27) gives thefree s-waves. Similarly, by taking the seond derivative with respet to z, equations (28) beome
∂2v1

∂z2 + κ
′2

1−n
v1 = −ink ∂w

∂z
,

∂2w
∂z2 + (1 − n)κ2w = −ink ∂v1

∂z

(29)(where we have used the identity κ
′2 +nk2 = (1−n)κ2). On the other hand, from equations (28),we get easily the relationship
∂v1

∂z
+ i

κ2

k
w =

C
′

1 − n
e−iκ

′
z , (30)where

C
′

= −
1

2

(

∂v1

∂z
+

iκ
′2

k
w

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκ
′

v1 +
κ

′

k

∂w

∂z

)∣

∣

∣

∣

∣

z=0

. (31)Making use of this relationship in equations (29) we get
∂2w

∂z2
+ κ2w = −

ink

1 − n
C

′

e−iκ
′
z (32)and a similar equation for v1. It is easy to see that the partiular solution of equation (32) isidentially vanishing, so we are left with the free p-waves. Indeed, equation (30) with C

′

= 0orresponds to div(v1, w) = 0.4 Sattered wavesWe onsider now a bulk inident transverse wave and re�eted transverse and longtudinal wavesgiven by
u0 =

(

u
(1)
0 eiκ0z + u

(2)
0 e−iκ0z + u

(3)
0 e−iκ

′

0z

)

e−iωt+ik0r (33)(for z < 0), where the amplitudes u
(1,2,3)
0 satisfy the orresponding onditions of transverse and,respetively, longitudinal waves. For instane, in the representation u0 = (v0, w0) we have

k0v
(1,2)
0 ± κ0w

(1,2)
0 = 0 (inluding w

(1,2)
0 = 0 for the s-waves) and κ0v

(3)
0 k0/k0 + k0w

(3)
0 = 0. Inaddition, the wave given by equation (33) must satisfy the onditions at the surfae. For instane,for a �xed surfae we have u0|z=0 = 0, while for a free surfae, we impose the ondition σiz = 0,where σij is the stress tensor (i = x, y, z). All these onditions �x the amplitudes u

(1,2,3)
0 , up to theinidene angle and the amplitude of the inident wave, in terms of the re�etion oe�ients andre�etion angles, ultimately in terms of the wave veloities vt,l.[23℄For an inident s-wave we haveonly a re�eted s-wave (u(3)

0 = 0), while for an inident p-wave we have both p- and longitudinalwaves. A similar situation ours for an inident longitudinal wave, with κ0 and κ
′

0 interhangedin equation (33). The displaement δu0 given by equation (5) implies u0 for z = 0, so that wemay represent this loalized ontribution of the u0-wave as
u0|z=0 = (v0, w0)e

−iωt+ik0r , (34)where v0, w0 inlude ontributions orresponding to various polarizations.First, we are interested in solving equation (7) for the sattered waves, with the fore f/v2
t gen-erated by the free waves u0, as given by equation (9). We onsider a Fourier omponent of theform

h(r) = heiqr (35)



8 J. Theor. Phys.for the roughness funtion, where h is an amplitude (depending on q) and q denotes a hara-teristi wavevetor (in �nal results the ontribution q → −q must be inluded). The loalizeddisplaement δu0 given by equation (5) an be written as
δu0 = h(v0, w0)e

−iωt+ikrδ(z) , (36)where k = k0 + q. Making use of this displaement δu0, the fore f/v2
t given by equation (9) anbe omputed straightforwardly. Leaving aside the exponential fator e−iωt+ikr, it is given by

f (x,y)

v2
t

= −h
[

κ2v0δ(z) + v0δ
′′

(z) − mk(kv0)δ(z) + imkw0δ
′

(z)
]

,

fz

v2
t

= −h
[

κ2w0δ(z) + w0δ
′′

(z) + imkv0δ
′

(z) + mw0δ
′′

(z)
]

,

(37)where
κ =

√

ω2/v2
t − k2 (38)and

κ =
√

ω2/v2
t − k2 =

√

κ2
0 − 2k0q − q2 . (39)We add the ontributions arising from this fore (via the Green funtion of equation (14)) tothe rhs of equations (18) and (19) and solve these equations by the proedure desribed in theprevious setion. For instane, equation (18) beomes

v2 = −
i

2κ

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκz −
1

2
v2|z=0 e−iκz −

ih

2κ
(κ2 − κ2)v02e

−iκz + hv02δ(z) . (40)The displaement v2 given above inludes the loalized wave
v2l = hv02δ(z)e−iωt+ikr , (41)whih is a sattered wave propagating only on the surfae (two-dimensional wave). The remainingontribution to equation (40) (terms without δ(z)) represents sattered waves re�eted bak in thebody. We denote this ontribution by v2r. Taking the seond derivative with respet to z in equa-tion (40) and using the self-onsisteny ondition imposed by this equation on the displaementon the surfae, we get immediately the solution

v2r = −
ih

4κ
(κ2 − κ2)v02e

−iωt+ikr−iκz . (42)This is an s-wave, sattered bak in the body by the surfae roughness. We an see that itis the distint elasti parameters of the surfae roughness that ensure this sattering (through
κ2 − κ2 = −ω2ηt/v

2
t 6= 0). The ourrene of the wavevetor k = k0 + q in equation (42) isindiative of the seletive re�etion phenomenon, assoiated with orrugated surfaes, and ingeneral, of diretional e�ets.In likewise manner we get the equations for v1 and w with the fore terms given by equation (37).We get the amplitudes for loalized waves

v1l = hv01δ(z) , wl = h
1 + m

1 + m
w0δ(z) . (43)Equations (21) and (24) remain the same, but the onstant C given by equation (25) (enteringthe relationship (24)) beomes now

C = −
1

2

(

∂v1

∂z
− ikw

)
∣

∣

∣

∣

∣

z=0

+
1

2

(

iκv1 −
k

κ

∂w

∂z

)
∣

∣

∣

∣

∣

z=0

−
h

2κ
(κ2 − κ2)(κv01 + kw0) . (44)



J. Theor. Phys. 9Following the same proedure as desribed in the previous setion we get the sattered waves
v1r = −ih

v2
t

4ω2 (κ
2 − κ2)(κv01 + kw0)e

−iωt+ikr−iκz = i
4
hηt(κv01 + kw0)e

−iωt+ikr−iκz (45)and wr = kv1r/κ. We an see that this represent a p-wave (div(v1r, wr) = 0, i.e. kv1r − κwr = 0).We turn now to the seond equation (10) with the fore given by
f (x,y)

v2
l

= −h
[

(1 − n)κ2v0δ(z) + (1 − n)v0δ
′′

(z) − nk(kv0)δ(z) + inkw0δ
′

(z)
]

,

fz

v2
l

= −h
[

(1 − n)κ2w0δ(z) + (1 − n)w0δ
′′

(z) + inkv0δ
′

(z) + nw0δ
′′

(z)
]

.

(46)By using the proedure desribed in the previous setion we get a loalized displaement
vl = h

1 − n

1 − n
v0δ(z) , wl = hw0δ(z) . (47)We an see, by omparing equations (41), (43) and (47) that the inhomogeneous roughness a�etsthe loalized waves in di�erent ways. For the sattered waves re�eted bak in the body, equations(29) and (30) from the previous setion remain unhanged, but the onstant C

′ given by equation(31) (entering the relationship (30)) beomes
C

′

= −
1

2

(

∂v1

∂z
+

iκ
′2

k
w

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκ
′

v1 +
κ

′

k

∂w

∂z

)∣

∣

∣

∣

∣

z=0

−
h

2k
(κ′2 − κ′2)(kv01 − κ′w0) . (48)We get straightforwardly the re�eted waves

v1r = −ih
v2

l k

4ω2κ′
(κ′2 − κ′2)(kv01 − κ′w0)e

−iωt+ikr−iκ′z =
i

4
hηl(kv01 − κ′w0)e

−iωt+ikr−iκ′z (49)and wr = −κ′v1r/k. We an see that this sattered wave is a longitudinal wave (curl(v1r, wr) = 0,i.e. −κ′v1r = kwr).Aording to equations (42), (45) and (49), within the present model of surfae roughness we getwaves sattered bak in the body only for a rough surfae with elasti harateristis di�erentfrom those of the body (inhomogeneous roughness, ηt,l 6= 0). For a homogeneous roughness, i.e.for ηt,l = 0, we get only sattered waves loalized on the surfae, given by
ul = δu0 = h(r)(v0, w0)e

−iωt+ik0rδ(z) , (50)as expeted.5 DisussionThe loalized waves have the general form of the inoming wave e−iωt+ik0rmodulated by the rough-ness funtion h(r). If q is a harateristi wavevetor of this roughness funtion and k = k0 + q,the veloity of the loalized waves is given by vs = ω/k = vt,lk0/k sin θ, where θ is the inideneangle of the inoming (transverse or longitudinal) wave. The diretional e�ets are learly seenfrom the presene of k ==
√

k2
0 + 2k0q + q2 in the denominator of this relation. It is worth not-ing that for q = ±k0, i.e. for a surfae roughness modulated with the same wavelength as theoriginal u0-wave, there appear sattered waves with half the wavelength of the original u0-waves



10 J. Theor. Phys.(wavevetor 2k0) and the whole surfae su�ers a vibration (independent of the oordinate r), aharateristi resonane phenomenon (k = 0). The waves orresponding to the wavevetor 2k0have a veloity ω/2k0, whih is twie as small as the original veloity on the surfae. This isindiative of the slowness phenomenon, assoiated with rough surfaes.The q = ±k0 resonane phenomenon is exhibited also by the waves sattererd bak in the body.Another resonane phenomenon may appear for ±2k0q + q2 = 0, whih is the well-known Laue-Bragg ondition for the X-rays di�ration in rystalline bodies.[27℄ In this ase, k = k0, κ = κ0and κ
′

= κ
′

0 and we an see that the sattered transverse (longitudinal) waves are generated onlyby the transverse (longitudinal) part in the original u0-waves, as expeted, due to the preseneof the fators κv01 + kw0 and kv01 − κ′w0 in equations (45) and, respetively, (49). For k0 and qantiparallel the sattered wave propagates in opposite diretion with respet to the inident wave.The results given above hold also for purely imaginary values of the wavevetors κ or κ
′ , whenthe sattered waves beome on�ned to the surfae (surfae waves), a situation whih may o-ur espeially for high values of the magnitude q of the harateristi wavevetors q (q ≫ k0).Aording to equations (42), (45) and (49), the sattered waves are now damped (∼ eqz) andtheir amplitudes are proportional to the roughness funtion h(r). It is worth noting that theserough-surfae waves are generated by the surfae roughness.As it is well known, the energy of the inident wave is transferred to the re�eted waves. Inthe present ase, it is transferred both to the re�eted waves as well as to the sattered waves,inluding the waves loalized on the surfae and the waves sattered bak in the body. Aordingto equations (42), (45) and (49) the energy density of the sattered waves re�eted bak in the bodyis proportional to (h/λ)2, where λ is a harateristi "wavelength" of these waves (projetion ofthe wavelength λ on the surfae, or on the diretion perpendiular to the surfae, or ombinationsof these). It folows that the validity riterion for our perturbation-theretial sheme is h ≪ λ.In the limit of small roughness (h → 0), the energy of the sattering waves (their amplitude) isvanishing. It is worth estimating the energy of the waves loalized on the surfae. For simpliity,we onsider a homogeneous roughness, with the loalized waves given by

(vl, wl) = h(v0, w0)δ(z)e−iωt+ikr (51)(aording to equation (50)) and hoose the wavevetor k direted along the x-axis. The validityondition for these waves is obtained by assuming that the surfae roughness extends over adistane of the order of hm = maxh(r) and use the repreesntation δ(z) ≃ 1/hm for the δ-funtion.Then, the perturbation alulations are valid for h ≪ hm, where h is the average (mean value)of the roughness funtion h(r). This means that the surfae roughness should has but only a fewspikes. As it is well known, the (elasti) energy density (per unit mass) an be expressed as
E/ρ = v2

t (u
2
ij − u2

ii) +
1

2
v2

l u
2
ii , (52)where uij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the strain tensor. In our ase, we use for omputingthis strain tensor the displaement given by equation (51). The strain tensor inludes fatorsproportional to δ(z) and δ

′

(z), and the energy density inludes fators proportional to δ2(z) and
δ
′2(z). The leading ontribution ome from δ

′2(z) -terms:
E/ρ =

h2

2
(v2

t v
2
0 + v2

l w
2
0)δ

′2(z) , (53)giving a surfae energy (per unit mass)∼ hmE/ρ. Making use of the representation δ
′2(z) ≃ 1/h4

m,this surfae energy is proportional to h2/h3
m, while the orresponding energy of the inident wave



J. Theor. Phys. 11goes like hm/λ2; the ratio of the two quantities is of the order of h2λ2/h4
m. We an see thatthat this ratio may aquire large values, even for h ≪ hm (perturbation riterion satis�ed), for

λ ≫ hm. Therefore, the surfae waves may store an appreiable amount of energy, as a resultof their loalization. This phenomenon is related to the disontinuites experiened by the straintensor along the diretion perpendiular to the surfae.6 Partiular ases and onluding remarksFrom equations (42), (45) and (49) we an get the re�etion oe�ients, related to the energy,of the waves sattered bak in the body. Their general harateristi is the diretionality e�ets.The derivation of these oe�ients is ompliated in the general ase, where we should �x theamplitudes of the original u0-waves aording to the nature of these waves and the boundaryonditions. Another ompliation arises from the fat that we should "renormalize" the amplitudesof the re�eted original u0-waves suh as to inlude (aomodate) the sattered waves in theboundary onditions (a proedure spei� to theoretial-perturbation alulations). We limitourselves here to give the re�etion oe�ients for a few partiular ases.First, one of the simplest ase is an original s-wave, desribed by
u0 = 2(0, u0, 0) cosκ0z · e−iωt+ik0r , (54)where k0 is direted along the x-axis. Making use of equation (52), the energy density (per unitmass) of the inident wave in equation (54) is E0/ρ = ω2u2

0. We must ompute the projetions v01,2of the amplitude of this wave on k = k0 + q and k⊥. Introduing the angle α between q and k0,we get v01 = 2u0q sin α/k and v02 = 2u0(k0 + q cos α)/k (and, of ourse, w0 = 0). We an see, fromequations (42), (45) and (49), that an inident s-wave produe both s- and p- sattered transversewaves as well as a sattered longidudinal wave, due to the surfae roughness. Making use of theseequations we ompute easily the amplitudes of these waves and get the re�etion oe�ients
Rs = ηt

hω2

4v2
t κk

(k0 + q cos α) , Rp = ηt

hωq

4vtk
sin α , Rl = ηl

hωq

4vlk
sin α . (55)The energy density arried on by these waves is given by Es,p,l/E0 = R2

s,p,l. We stress upon theompliated diretion-dependene (angle α) of these re�etion oe�ients, inluded both in κ and
k. The formulae given by equations (55) beome more simple for normal inidene (k0 = 0).For normal inidene there is another simple ase onerning longitudinal waves desribed by

u0 = 2(0, 0, u0) cos κ
′

0z · e−iωt , (56)where κ
′

0 = ω/vl. The energy density per unit mass of this inident wave is E0/ρ = ω2u2
0.Aording to equations (42), (45) and (49), the sattered waves in this ase area p-wave and alongidudinal wave. Their re�etion oe�ients are muh more simple now,

Rp = ηt

hωq

4vtκ
, Rl = ηl

hωκ
′

4vlq
. (57)The squares of these oe�ients give the fration of energy arried on by these waves.It is worth stressing that all the above formulae are valid only for κ, k, q 6= 0 (non-vanishingdenominators).



12 J. Theor. Phys.We an see from the above partiular ases, as well as from the general equations (42), (45) and(49)), that the total amount of energy arried on di�usively by the waves sattered by the surfaeroughness implies sums of the form ∑

q |h(q)|2 f(q), where h(q) is the Fourier transform of theroughness funtion h(r) and f(q) are spei� funtions orresponding to the waves' nature (fatorsimplying k, κ, κ
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