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tWe derive the elasti
 waves propagating in a semi-in�nite isotropi
 solid body (half-spa
e)with a rough (
orrugated) surfa
e. The model assumes a surfa
e roughness with distin
telasti
 
hara
teristi
s than the bulk (inhomogeneous roughness). A perturbation-theoreti
als
heme is devised for a small roughness (in 
omparison with the relevant elasti
 disturban
espropagating in the body), and the elasti
 waves equations are solved in the �rst-order ap-proximation. It is shown that elasti
 waves propagating in the bulk generate a lo
alized for
ea
ting on the surfa
e, as a 
onsequen
e of the surfa
e roughness. This for
e 
auses boths
attered waves lo
alized (and propagating only) on the surfa
e (two-dimensional waves) ands
attered waves re�e
ted ba
k in the body. In general, the waves s
attered ba
k in the bodyare both trasverse and longitudinal, irrespe
tive of the original wave a
ting upon the bodysurfa
e. The waves lo
alized on the surfa
e, as well as the transverse and longitudinal wavess
attered ba
k in the body by the surfa
e roughness are derived, and the e�e
t of both thegeometri
 and elasti
 
hara
teristi
s of the surfa
e roughness is dis
ussed. Dire
tional e�e
ts,wave slowness and attenuation by di�usive s
attering, or possible resonan
e e�e
ts are alsodis
ussed. For an enhan
ed roughness damped waves 
on�ned to the surfa
e are identi�ed(rough-surfa
e waves).Key words: surfa
e roughness, elasti
 waves s
attering, surfa
e lo
alized wavesPACS: 43.20.Bi; 46.40.Cd; 46.65.+g; 91.30.Cd; 62.30.+dHighlights: Analyti
al model for in
luding the surfa
e roughness in the analysis of elasti
 wavess
attering. New method for the propagation of elasti
 waves in semi-in�nite solids, based on
oupled integral equations. Solution of these equations for a semi-in�nite isotropi
 solid witha rough surfa
e. S
attered waves re�e
ted ba
k in the body by the surfa
e roughness. Wavess
attered by the roughness and lo
alized (and propagating only) on the surfa
e (two-dimensionalwaves). Damped waves, 
on�ned to the surfa
e, generated by the surfe
e roughness (rough-surfa
ewaves).1 Introdu
tionRe
ently, there is a great deal of interest in the role played by the surfa
e roughness (
orruga-tion) in a large variety of physi
al phenomena, ranging from me
hani
al properties of the elasti




2 J. Theor. Phys.bodies,[1, 2℄ to hydrodynami
al �ow of mi
ro�uids,[3℄ dispersive properties of surfa
e plasmon-polariton in nanoplasmoni
s,[4℄ terahertz-waves generation[5℄ or ele
troni
 mi
rostru
tures.[6, 7℄Giant 
orrugations have been found on the graphite surfa
e by s
anning tunneling mi
ros
opy,due to the elasti
 deformations indu
ed by atomi
 for
es between tip and surfa
e.[10℄ Periodi
surfa
e 
orrugation plays a 
entral role in enhan
ed, or suppreseed, opti
al transmission in thesubwavelength regime,[9℄ or in highly-dire
tional opti
al emission.[10℄ An appre
iable redu
tion inthe thermal 
ondu
tan
e has been assigned to the phonon s
attering by the surfa
e roughness.[11℄Sti
k-slip instability responsible for earthquakes has been studied, as well as the asso
iated radi-ation of seismi
 surfa
e waves.[12℄ It has been re
ognized that elasti
 waves propagation e�e
tsmay play a 
entral role in the surfa
e roughness of the 
ra
ks propagating in heterogeneous me-dia, like aluminium alloys, 
erami
s or ro
k.[13, 14℄ The main di�
ulty in getting more de�niteresults in this problem resides in modelling 
onveniently the surfa
e roughness su
h as to arriveat mathemati
ally operational approa
hes.[15℄We introdu
e here a model of inhomogeneous surfa
e roughness, whose elasti
 
hara
teristi
s are,in general, distin
t than the ones of the underlying (isotropi
) elasti
 half-spa
e (semi-in�nitesolid). It is shown that the elasti
 waves propagating in the semi-in�nite body (in
ident on andre�e
ted spe
ularly by the surfa
e) generate a for
e lo
alized on the surfa
e roughness, whi
h isresponsible for the s
attered waves. The s
attered waves are of two kinds: lo
alized (and propa-gating only) on the surfa
e (two-dimensional waves), and waves s
attered ba
k in the body. For anenhan
ed roughness the waves s
attered ba
k in the body may get 
on�ned to the surfa
e (damped,rough-surfa
e waves). Light di�usely s
attered by a randomly rough surfa
e has been studied bothexperimentally and theoreti
ally, with emphasis on multiple s
attering.[16℄ The method employedin the present paper is based on a perturbation-theoreti
al s
heme, and the resulting 
oupledintegral equations are solved in the �rst approximation with respe
t to the roughness magnitude.Multiple s
attering is expe
ted to o

ur in higher-order approximations. Forward and ba
kwards
attering of elasti
 waves have also been reported in 
orrugated waveguides.[17℄ Great insighthas been obtained previously in the 
oupling of the surfa
e (Rayleigh) waves to periodi
 
orruga-tion (grating),[18℄-[20℄ espe
ialy as regards the wave attenuation, slowing and leaking (outgoingin
reasing wave), 
orroborated with band gaps and stop bands, by using non-perturbational te
h-niques. In addition to su
h results, we show here that the surfa
e roughness may 
ause lo
alizedwaves, propagating only on the surfa
e, whi
h may store a 
ertain amount of energy, due tothe lo
alization e�e
ts. Attenuation of 
rustal waves a
ross the Alpine range has been reported,whi
h might be asso
iated with the lo
alization of energy in the surfa
e-roughness region.[21℄ Themethod presented here 
an be extended to ele
tromagneti
 waves, or �uid waves, propagating ina semi-in�nite body with a rough surfa
e. It was employed re
ently to analyze the elasti
 wavesprodu
ed by lo
alized for
es in semi-in�nite solids.[22℄2 Elasti
 body with a rough surfa
eWe 
onsider an isotropi
 elasti
 body extended boundlessly along the dire
tions r = (x, y) andlimited along the z-dire
tion by a free surfa
e z = h(r), where h(r) > 0 is a fun
tion to be furtherspe
i�ed (roughness fun
tion). The body, whi
h may also be termed a sem-in�nite solid (with arough, 
orrugated surfa
e), o

upies the region z < h(r) (i.e. an elasti
 half-spa
e with a roughsurfa
e). It is 
onvenient to write the well-known equation for free elasti
 waves in an isotropi
body[23℄ as
1

v2
t

ü− ∆u = m · grad · divu , (1)



J. Theor. Phys. 3where u(r, z, t) is the displa
ement �eld, t denotes the time, vt is the velo
ity of the transversewaves, m = v2
l /v

2
t − 1 > 1/3 (a
tually 1)[23℄ and vl is the velo
ity of the longitudinal waves.Indeed, equation (1) gives the free transverse waves (divu = 0) propagating with velo
ity vt andthe free longitudinal waves (curlu = 0) propagating with velo
ity vl.For a semi-in�nite body with a surfa
e des
ribed by equation z = h(r) and extending in the region

z < h(r) the displa
ement �eld 
an be written as
u = (v, w)θ[h(r) − z)] , (2)where v lies in the (x, y)-plane, w is dire
ted along the z-axis and θ is the step fun
tion (θ(z) = 0for z < 0, θ(z) = 1 for z > 0). The roughness of the surfa
e (deviation from a plane) is givenby the magnitude of the fun
tion h(r), whi
h we assume to be very small in 
omparison with therelevant wavelengths along the z-dire
tions of the elasti
 disturban
es propagating in the body.Consequently, we may use the �rst-order approximation

u = (v, w)[θ(−z) + h(r)δ(z)] (3)for equation (2), where δ(z) is the Dira
 fun
tion. This is the usual approximation employedin the perturbation-theoreti
al approa
hes.[24℄-[26℄ The spe
i�
 
onditions of validity for thisapproximation will be dis
ussed on the �nal results.We write su
h a displa
ement �eld as
u = u0 + δu0 , (4)where

u0 = (v0, w0)θ(−z) , δu0 = (v0, w0)|z=0 hδ(z) , (5)and assume that u0 satis�es the wave equation (1)
1

v2
t

ü0 − ∆u0 = m · grad · divu0 (6)with spe
i�
 boundary 
onditions at z = 0. This equation des
ribes in
ident and (spe
ularly)re�e
ted waves propagating in a semi-in�nite solid with a plane surfa
e z = 0. We 
an see that
δu0 generates a sour
e-term lo
alized on the surfa
e (a for
e), whi
h 
an produ
e s
attered waves.We denote the displa
ement �eld asso
iated with these s
attered waves by u1; it satis�es the waveequation

1

v2
t

ü1 − ∆u1 = m · grad · divu1 +
f

v2
t

, (7)where the for
e is given by
f

v2
t

=
1

v2
t

δü0 − ∆δu0 − m · grad · divδu0 . (8)Equations (7) and (8) represent merely a di�erent way of re-writing the wave equation for a semi-in�nite solid with a surfa
e roughness. For waves lo
alized on the surfa
e the solution of equation(7) is u1 = δu0. Another solutions are given by the waves s
attered ba
k in the body by the surfa
eroughness, i.e. waves generated in equation (12) by the sour
e term f (a parti
ular solution ofequation (7)). We generalize this model of surfa
e roughness by assuming that the roughness isinhomogeneous, i.e. it is a homogeneous elasti
 medium with di�erent elasti
 
hara
teristi
s thanthe plane-surfa
e half-spa
e bulk (for instan
e, di�erent density and elasti
 
onstants). Therefore,



4 J. Theor. Phys.we introdu
e distin
t velo
ities vt,l and denote all the 
hanged parameters with an overbar (forinstan
e, m = v2
l /v

2
t − 1). The for
e is given in this 
ase by

f

v2
t

=
1

v2
t

δü0 − ∆δu0 − m · grad · divδu0 , (9)The results are expressed 
onveniently by using the relative di�eren
es ηt,l = 1 − v2
t,l/v

2
t,l. Thedispla
ement �eld u1 given by equation (7) 
an be written as u1 = (v, w)θ(−z).We might say that, in the presen
e of a displa
ement �eld u0, the roughness of the surfa
egenerates a for
e f , lo
alized on the surfa
e and of the same order of magnitude as the roughness

h (δu0 ∼ hδ(z)). This for
e is the di�eren
e between the inertial for
e δü0/v
2
t and the elasti
 for
e

∆δu0 + m · grad · divδu0; it represents the distin
t way the surfa
e follows the elasti
 motion in
omparison with the bulk. Equation (6) gives the free in
ident and re�e
ted waves propagatingin a half-spa
e with a plane surfa
e, while equation (7) gives the s
attered waves produ
ed by theroughness of the surfa
e, as a 
onsequen
e of the sour
e term f/v2
t .It is worth noting that su
h a model of inhomogeneous surfa
e may 
orrespond either to a surfa
ewhose physi
al properties have been 
hanged, or to a solid whi
h is homogeneous everywhere,in
luding its rough surfa
e. Indeed, in the latter 
ase, it is pre
isely the spatial variations of therough surfa
e whi
h a�e
t its elasti
 properties, viewed as a homogeneous medium, and render it,in fa
t, a rough surfa
e whi
h is inhomogeneous with respe
t to the bulk.The above perturbation-theoreti
al s
heme 
an also be writen in a di�erent way, by re
astingequation (1) into an equation involving the velo
ity vl of the longitudial waves and the parameter

n = 1 − v2
t /v

2
l = m/(1 + m). Then, equations (6) - (8) be
ome

1
v2

l

ü0 − ∆u0 = n(−∆u0 + grad · divu0) ,

1
v2

l

ü1 − ∆u1 = n(−∆u1 + grad · divu1) + f
v2

l

,

(10)where
f

v2
l

=
1

v2
l

δü0 − (1 − n)∆δu0 − n · grad · divδu0 . (11)We solve equation (7) and the se
ond equation (10) for the s
attered transverse and, respe
tively,longitudinal waves by using the Green fun
tion method.3 Plane surfa
eAs it is well known, the elementary solutions of equation (6), or the �rst equation (10), (homoge-neous elasti
 waves equation) for a half-spa
e with a plane surfa
e are transverse and longitudinalplane waves of the form
u0 = (e±iκ0z, e±iκ

′

0z)e−iωt+ik0r , (12)where both in
ident (+κ0, +κ
′

0) and re�e
ted (−κ0, −κ
′

0) waves are in
luded, ω is the frequen
yand k0 is the in-plane waveve
tor. For divu0 = 0 we get the transverse waves, propagatingwith the velo
ity vt (ω = vtK0, where K0 = (k0, κ0)), with the z-
omponent of the waveve
tor
κ0 =

√

ω2/v2
t − k2

0. For curlu0 = 0 we get the longitudinal waves (through curl · curlu0 =
−∆u0 +grad ·divu0 = 0), propagating with the velo
ity vl and the z-
omponent of the waveve
tor
κ

′

0 =
√

ω2/v2
l − k2

0 (ω = vlK
′

0 and K
′

0 = (k0, κ
′

0)). The transverse waves have two polarizations,



J. Theor. Phys. 5one in the propagating plane (the (k0, κ0)-plane), 
alled the p-wave (parallel wave), anotherperpendi
ular to the propagating plane, 
alled the s-wave (from the German "senkre
ht", whi
hmeans "perpendi
ular"). Linear 
ombinations of the plane waves given by equation (12) aresubje
t to 
onditions imposed on the surfa
e (e.g., free or �xed surfa
e).We derive here these free waves propagating in a half-spa
e with a plane surfa
e by a di�erentmethod, whi
h will be used subsequently in deriving the solutions for the s
attered waves (equation(7) and the se
ond equation (10)). In order to simplify the notations we omit here the subs
ript
0.The solution of equation (6) is written as

u = [v(z), w(z)] θ(−z)e−iωt+ikr . (13)Introdu
ing this u in equation (6) and leaving aside the exponential fa
tor e−iωt+ikr we get
∂2u

∂z2
+ κ2u = S , (14)where κ2 = ω2/v2

t − k2 and the sour
e S has the 
omponents
S(x,y) = −imk

(

ikv + ∂w
∂z

)

θ(−z)+

+
(

∂v
∂z

∣

∣

∣

z=0
+ imk w|z=0

)

δ(z) + v|z=0 δ
′

(z) ,

Sz = −m
[

ik∂v
∂z

+ ∂2w
∂z2

]

θ(−z) + im kv|z=0 δ(z)+

+(1 + m)
[

∂w
∂z

∣

∣

∣

z=0
δ(z) + w|z=0 δ

′

(z)
]

.

(15)
We 
an see that the sour
e S, whi
h 
olle
ts all the 
ontributions from m·gradu and the derivativesof θ(−z) in ∆u, a
ts as an "external for
e" in equation (14). As it is well known, the parti
ularsolution of equation (14) is given by

u(z) =
∫

dz′G(z − z′)S(z′) , (16)where
G(z) =

1

2iκ
eiκ|z| (17)is the Green fun
tion for equation (14) (Green fun
tion of the one-dimensional Helmholtz equa-tion). Making use of the notations v1 = vk/k and v2 = vk⊥/k, where k⊥is a ve
tor perpendi
ularto k and of the same magnitude k, equations (15)-(17) lead to

v2 = −
i

2κ

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκz −
1

2
v2|z=0 e−iκz (18)and

v1 = − imk2

2κ

∫ 0 dz′v1(z
′)eiκ|z−z′| − mk

2κ
∂
∂z

∫ 0 dz′w(z′)eiκ|z−z′|−

− i
2κ

∂v1

∂z

∣

∣

∣

z=0
e−iκz − 1

2
v1|z=0 e−iκz ,

(1 + m)w = −mk
2κ

∂
∂z

∫ 0 dz′v1(z
′)eiκ|z−z′| + imκ

2

∫ 0 dz′w(z′)eiκ|z−z′|−

− i
2κ

∂w
∂z

∣

∣

∣

z=0
e−iκz − 1

2
w|z=0 e−iκz .

(19)



6 J. Theor. Phys.Equation (18) 
orresponds to the s-wave. It is easy to see that the parti
ular solution givenby equation (18) is identi
ally vanishing. Therefore, we are left with the free s-waves given byequation (12), as expe
ted (∼ e±iκze−iωt+ikr).Let us take the se
ond derivative of equations (19) with respe
t to z and use the identity
∂2

∂z2

∫

dz′f(z′)eiκ|z−z′| = −κ2
∫

dz′f(z′)eiκ|z−z′| + 2iκf(z) (20)for any arbitrary fun
tion f(z). We get
∂2v1

∂z2 + κ2v1 = −imk
(

ikv1 + ∂w
∂z

)

,

∂2w
∂z2 + κ2w = −m ∂

∂z

(

ikv1 + ∂w
∂z

)

.

(21)We 
an see that for div(v1, w) = 0, i.e. for ikv1 + ∂w/∂z = 0, we get the free p-waves (κ =
√

ω2/v2
t − k2), a

ording to equation (12) (∼ e±iκze−iωt+ikr). Similarly, for curlu = 0, i.e. for

ikw − ∂v1/∂z = 0, equations (21) be
ome
(1 + m)∂2(v1, w)

∂z2 + (κ2 − mk2)(v1, w) = 0 , (22)or, making use of m = v2
l /v

2
t − 1,

∂2(v1, w)

∂z2
+ κ

′2(v1, w) = 0 , (23)where κ
′

=
√

ω2/v2
l − k2, i.e. free longitudinal waves ∼ e±iκ′ze−iωt+ikr.The longitudinal waves 
an also be obtained by noting that the 
oupled equations (19) imply therelationship

∂v1

∂z
− ikw = Ce−iκz , (24)where

C = −
1

2

(

∂v1

∂z
− ikw

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκv1 −
k

κ

∂w

∂z

)∣

∣

∣

∣

∣

z=0

. (25)We use this relationship in one of equations (21), and get
∂2v1

∂z2
+ κ

′2v1 = −
imκ

1 + m
Ce−iκz . (26)The parti
ular solution of this equation is vanishing identi
ally, and we are left with free longitu-dinal waves. Indeed, equation (24) with C = 0 
orresponds to curl(v1, w) = 0.The p-waves are obtained in a similar way, by starting with the �rst equation (10). Using u givenby an equation similar with equation (13) we get

(1 − n)v2 =
in(κ

′2 + k2)

2κ′

∫ 0

dz′v2(z
′)eiκ

′
|z−z′| −

i

2κ′

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκ
′
z −

1

2
v2|z=0 e−iκ

′
z (27)and

(1 − n)v1 = inκ
′

2

∫ 0 dz′v1(z
′)eiκ

′
|z−z′| − nk

2κ
′

∂
∂z

∫ 0 dz′w(z′)eiκ
′
|z−z′|−

− i

2κ
′

∂v1

∂z

∣

∣

∣

z=0
e−iκ

′
z − 1

2
v1|z=0 e−iκ

′
z ,

w = − nk

2κ
′

∂
∂z

∫ 0 dz′v1(z
′)eiκ

′
|z−z′| + ink2

2κ
′

∫ 0 dz′w(z′)eiκ|z−z′|−

− i

2κ
′

∂w
∂z

∣

∣

∣

z=0
e−iκ

′
z − 1

2
w|z=0 e−iκ

′
z .

(28)



J. Theor. Phys. 7It is easy to see, by taking the se
ond derivative with respe
t to z, that equation (27) gives thefree s-waves. Similarly, by taking the se
ond derivative with respe
t to z, equations (28) be
ome
∂2v1

∂z2 + κ
′2

1−n
v1 = −ink ∂w

∂z
,

∂2w
∂z2 + (1 − n)κ2w = −ink ∂v1

∂z

(29)(where we have used the identity κ
′2 +nk2 = (1−n)κ2). On the other hand, from equations (28),we get easily the relationship
∂v1

∂z
+ i

κ2

k
w =

C
′

1 − n
e−iκ

′
z , (30)where

C
′

= −
1

2

(

∂v1

∂z
+

iκ
′2

k
w

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκ
′

v1 +
κ

′

k

∂w

∂z

)∣

∣

∣

∣

∣

z=0

. (31)Making use of this relationship in equations (29) we get
∂2w

∂z2
+ κ2w = −

ink

1 − n
C

′

e−iκ
′
z (32)and a similar equation for v1. It is easy to see that the parti
ular solution of equation (32) isidenti
ally vanishing, so we are left with the free p-waves. Indeed, equation (30) with C

′

= 0
orresponds to div(v1, w) = 0.4 S
attered wavesWe 
onsider now a bulk in
ident transverse wave and re�e
ted transverse and longtudinal wavesgiven by
u0 =

(

u
(1)
0 eiκ0z + u

(2)
0 e−iκ0z + u

(3)
0 e−iκ

′

0z

)

e−iωt+ik0r (33)(for z < 0), where the amplitudes u
(1,2,3)
0 satisfy the 
orresponding 
onditions of transverse and,respe
tively, longitudinal waves. For instan
e, in the representation u0 = (v0, w0) we have

k0v
(1,2)
0 ± κ0w

(1,2)
0 = 0 (in
luding w

(1,2)
0 = 0 for the s-waves) and κ0v

(3)
0 k0/k0 + k0w

(3)
0 = 0. Inaddition, the wave given by equation (33) must satisfy the 
onditions at the surfa
e. For instan
e,for a �xed surfa
e we have u0|z=0 = 0, while for a free surfa
e, we impose the 
ondition σiz = 0,where σij is the stress tensor (i = x, y, z). All these 
onditions �x the amplitudes u

(1,2,3)
0 , up to thein
iden
e angle and the amplitude of the in
ident wave, in terms of the re�e
tion 
oe�
ients andre�e
tion angles, ultimately in terms of the wave velo
ities vt,l.[23℄For an in
ident s-wave we haveonly a re�e
ted s-wave (u(3)

0 = 0), while for an in
ident p-wave we have both p- and longitudinalwaves. A similar situation o

urs for an in
ident longitudinal wave, with κ0 and κ
′

0 inter
hangedin equation (33). The displa
ement δu0 given by equation (5) implies u0 for z = 0, so that wemay represent this lo
alized 
ontribution of the u0-wave as
u0|z=0 = (v0, w0)e

−iωt+ik0r , (34)where v0, w0 in
lude 
ontributions 
orresponding to various polarizations.First, we are interested in solving equation (7) for the s
attered waves, with the for
e f/v2
t gen-erated by the free waves u0, as given by equation (9). We 
onsider a Fourier 
omponent of theform

h(r) = heiqr (35)



8 J. Theor. Phys.for the roughness fun
tion, where h is an amplitude (depending on q) and q denotes a 
hara
-teristi
 waveve
tor (in �nal results the 
ontribution q → −q must be in
luded). The lo
alizeddispla
ement δu0 given by equation (5) 
an be written as
δu0 = h(v0, w0)e

−iωt+ikrδ(z) , (36)where k = k0 + q. Making use of this displa
ement δu0, the for
e f/v2
t given by equation (9) 
anbe 
omputed straightforwardly. Leaving aside the exponential fa
tor e−iωt+ikr, it is given by

f (x,y)

v2
t

= −h
[

κ2v0δ(z) + v0δ
′′

(z) − mk(kv0)δ(z) + imkw0δ
′

(z)
]

,

fz

v2
t

= −h
[

κ2w0δ(z) + w0δ
′′

(z) + imkv0δ
′

(z) + mw0δ
′′

(z)
]

,

(37)where
κ =

√

ω2/v2
t − k2 (38)and

κ =
√

ω2/v2
t − k2 =

√

κ2
0 − 2k0q − q2 . (39)We add the 
ontributions arising from this for
e (via the Green fun
tion of equation (14)) tothe rhs of equations (18) and (19) and solve these equations by the pro
edure des
ribed in theprevious se
tion. For instan
e, equation (18) be
omes

v2 = −
i

2κ

∂v2

∂z

∣

∣

∣

∣

∣

z=0

e−iκz −
1

2
v2|z=0 e−iκz −

ih

2κ
(κ2 − κ2)v02e

−iκz + hv02δ(z) . (40)The displa
ement v2 given above in
ludes the lo
alized wave
v2l = hv02δ(z)e−iωt+ikr , (41)whi
h is a s
attered wave propagating only on the surfa
e (two-dimensional wave). The remaining
ontribution to equation (40) (terms without δ(z)) represents s
attered waves re�e
ted ba
k in thebody. We denote this 
ontribution by v2r. Taking the se
ond derivative with respe
t to z in equa-tion (40) and using the self-
onsisten
y 
ondition imposed by this equation on the displa
ementon the surfa
e, we get immediately the solution

v2r = −
ih

4κ
(κ2 − κ2)v02e

−iωt+ikr−iκz . (42)This is an s-wave, s
attered ba
k in the body by the surfa
e roughness. We 
an see that itis the distin
t elasti
 parameters of the surfa
e roughness that ensure this s
attering (through
κ2 − κ2 = −ω2ηt/v

2
t 6= 0). The o

urren
e of the waveve
tor k = k0 + q in equation (42) isindi
ative of the sele
tive re�e
tion phenomenon, asso
iated with 
orrugated surfa
es, and ingeneral, of dire
tional e�e
ts.In likewise manner we get the equations for v1 and w with the for
e terms given by equation (37).We get the amplitudes for lo
alized waves

v1l = hv01δ(z) , wl = h
1 + m

1 + m
w0δ(z) . (43)Equations (21) and (24) remain the same, but the 
onstant C given by equation (25) (enteringthe relationship (24)) be
omes now

C = −
1

2

(

∂v1

∂z
− ikw

)
∣

∣

∣

∣

∣

z=0

+
1

2

(

iκv1 −
k

κ

∂w

∂z

)
∣

∣

∣

∣

∣

z=0

−
h

2κ
(κ2 − κ2)(κv01 + kw0) . (44)
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edure as des
ribed in the previous se
tion we get the s
attered waves
v1r = −ih

v2
t

4ω2 (κ
2 − κ2)(κv01 + kw0)e

−iωt+ikr−iκz = i
4
hηt(κv01 + kw0)e

−iωt+ikr−iκz (45)and wr = kv1r/κ. We 
an see that this represent a p-wave (div(v1r, wr) = 0, i.e. kv1r − κwr = 0).We turn now to the se
ond equation (10) with the for
e given by
f (x,y)

v2
l

= −h
[

(1 − n)κ2v0δ(z) + (1 − n)v0δ
′′

(z) − nk(kv0)δ(z) + inkw0δ
′

(z)
]

,

fz

v2
l

= −h
[

(1 − n)κ2w0δ(z) + (1 − n)w0δ
′′

(z) + inkv0δ
′

(z) + nw0δ
′′

(z)
]

.

(46)By using the pro
edure des
ribed in the previous se
tion we get a lo
alized displa
ement
vl = h

1 − n

1 − n
v0δ(z) , wl = hw0δ(z) . (47)We 
an see, by 
omparing equations (41), (43) and (47) that the inhomogeneous roughness a�e
tsthe lo
alized waves in di�erent ways. For the s
attered waves re�e
ted ba
k in the body, equations(29) and (30) from the previous se
tion remain un
hanged, but the 
onstant C

′ given by equation(31) (entering the relationship (30)) be
omes
C

′

= −
1

2

(

∂v1

∂z
+

iκ
′2

k
w

)∣

∣

∣

∣

∣

z=0

+
1

2

(

iκ
′

v1 +
κ

′

k

∂w

∂z

)∣

∣

∣

∣

∣

z=0

−
h

2k
(κ′2 − κ′2)(kv01 − κ′w0) . (48)We get straightforwardly the re�e
ted waves

v1r = −ih
v2

l k

4ω2κ′
(κ′2 − κ′2)(kv01 − κ′w0)e

−iωt+ikr−iκ′z =
i

4
hηl(kv01 − κ′w0)e

−iωt+ikr−iκ′z (49)and wr = −κ′v1r/k. We 
an see that this s
attered wave is a longitudinal wave (curl(v1r, wr) = 0,i.e. −κ′v1r = kwr).A

ording to equations (42), (45) and (49), within the present model of surfa
e roughness we getwaves s
attered ba
k in the body only for a rough surfa
e with elasti
 
hara
teristi
s di�erentfrom those of the body (inhomogeneous roughness, ηt,l 6= 0). For a homogeneous roughness, i.e.for ηt,l = 0, we get only s
attered waves lo
alized on the surfa
e, given by
ul = δu0 = h(r)(v0, w0)e

−iωt+ik0rδ(z) , (50)as expe
ted.5 Dis
ussionThe lo
alized waves have the general form of the in
oming wave e−iωt+ik0rmodulated by the rough-ness fun
tion h(r). If q is a 
hara
teristi
 waveve
tor of this roughness fun
tion and k = k0 + q,the velo
ity of the lo
alized waves is given by vs = ω/k = vt,lk0/k sin θ, where θ is the in
iden
eangle of the in
oming (transverse or longitudinal) wave. The dire
tional e�e
ts are 
learly seenfrom the presen
e of k ==
√

k2
0 + 2k0q + q2 in the denominator of this relation. It is worth not-ing that for q = ±k0, i.e. for a surfa
e roughness modulated with the same wavelength as theoriginal u0-wave, there appear s
attered waves with half the wavelength of the original u0-waves
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tor 2k0) and the whole surfa
e su�ers a vibration (independent of the 
oordinate r), a
hara
teristi
 resonan
e phenomenon (k = 0). The waves 
orresponding to the waveve
tor 2k0have a velo
ity ω/2k0, whi
h is twi
e as small as the original velo
ity on the surfa
e. This isindi
ative of the slowness phenomenon, asso
iated with rough surfa
es.The q = ±k0 resonan
e phenomenon is exhibited also by the waves s
attererd ba
k in the body.Another resonan
e phenomenon may appear for ±2k0q + q2 = 0, whi
h is the well-known Laue-Bragg 
ondition for the X-rays di�ra
tion in 
rystalline bodies.[27℄ In this 
ase, k = k0, κ = κ0and κ
′

= κ
′

0 and we 
an see that the s
attered transverse (longitudinal) waves are generated onlyby the transverse (longitudinal) part in the original u0-waves, as expe
ted, due to the presen
eof the fa
tors κv01 + kw0 and kv01 − κ′w0 in equations (45) and, respe
tively, (49). For k0 and qantiparallel the s
attered wave propagates in opposite dire
tion with respe
t to the in
ident wave.The results given above hold also for purely imaginary values of the waveve
tors κ or κ
′ , whenthe s
attered waves be
ome 
on�ned to the surfa
e (surfa
e waves), a situation whi
h may o
-
ur espe
ially for high values of the magnitude q of the 
hara
teristi
 waveve
tors q (q ≫ k0).A

ording to equations (42), (45) and (49), the s
attered waves are now damped (∼ eqz) andtheir amplitudes are proportional to the roughness fun
tion h(r). It is worth noting that theserough-surfa
e waves are generated by the surfa
e roughness.As it is well known, the energy of the in
ident wave is transferred to the re�e
ted waves. Inthe present 
ase, it is transferred both to the re�e
ted waves as well as to the s
attered waves,in
luding the waves lo
alized on the surfa
e and the waves s
attered ba
k in the body. A

ordingto equations (42), (45) and (49) the energy density of the s
attered waves re�e
ted ba
k in the bodyis proportional to (h/λ)2, where λ is a 
hara
teristi
 "wavelength" of these waves (proje
tion ofthe wavelength λ on the surfa
e, or on the dire
tion perpendi
ular to the surfa
e, or 
ombinationsof these). It folows that the validity 
riterion for our perturbation-thereti
al s
heme is h ≪ λ.In the limit of small roughness (h → 0), the energy of the s
attering waves (their amplitude) isvanishing. It is worth estimating the energy of the waves lo
alized on the surfa
e. For simpli
ity,we 
onsider a homogeneous roughness, with the lo
alized waves given by

(vl, wl) = h(v0, w0)δ(z)e−iωt+ikr (51)(a

ording to equation (50)) and 
hoose the waveve
tor k dire
ted along the x-axis. The validity
ondition for these waves is obtained by assuming that the surfa
e roughness extends over adistan
e of the order of hm = maxh(r) and use the repreesntation δ(z) ≃ 1/hm for the δ-fun
tion.Then, the perturbation 
al
ulations are valid for h ≪ hm, where h is the average (mean value)of the roughness fun
tion h(r). This means that the surfa
e roughness should has but only a fewspikes. As it is well known, the (elasti
) energy density (per unit mass) 
an be expressed as
E/ρ = v2

t (u
2
ij − u2

ii) +
1

2
v2

l u
2
ii , (52)where uij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the strain tensor. In our 
ase, we use for 
omputingthis strain tensor the displa
ement given by equation (51). The strain tensor in
ludes fa
torsproportional to δ(z) and δ

′

(z), and the energy density in
ludes fa
tors proportional to δ2(z) and
δ
′2(z). The leading 
ontribution 
ome from δ

′2(z) -terms:
E/ρ =

h2

2
(v2

t v
2
0 + v2

l w
2
0)δ

′2(z) , (53)giving a surfa
e energy (per unit mass)∼ hmE/ρ. Making use of the representation δ
′2(z) ≃ 1/h4

m,this surfa
e energy is proportional to h2/h3
m, while the 
orresponding energy of the in
ident wave
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m. We 
an see thatthat this ratio may a
quire large values, even for h ≪ hm (perturbation 
riterion satis�ed), for

λ ≫ hm. Therefore, the surfa
e waves may store an appre
iable amount of energy, as a resultof their lo
alization. This phenomenon is related to the dis
ontinuites experien
ed by the straintensor along the dire
tion perpendi
ular to the surfa
e.6 Parti
ular 
ases and 
on
luding remarksFrom equations (42), (45) and (49) we 
an get the re�e
tion 
oe�
ients, related to the energy,of the waves s
attered ba
k in the body. Their general 
hara
teristi
 is the dire
tionality e�e
ts.The derivation of these 
oe�
ients is 
ompli
ated in the general 
ase, where we should �x theamplitudes of the original u0-waves a

ording to the nature of these waves and the boundary
onditions. Another 
ompli
ation arises from the fa
t that we should "renormalize" the amplitudesof the re�e
ted original u0-waves su
h as to in
lude (a

omodate) the s
attered waves in theboundary 
onditions (a pro
edure spe
i�
 to theoreti
al-perturbation 
al
ulations). We limitourselves here to give the re�e
tion 
oe�
ients for a few parti
ular 
ases.First, one of the simplest 
ase is an original s-wave, des
ribed by
u0 = 2(0, u0, 0) cosκ0z · e−iωt+ik0r , (54)where k0 is dire
ted along the x-axis. Making use of equation (52), the energy density (per unitmass) of the in
ident wave in equation (54) is E0/ρ = ω2u2

0. We must 
ompute the proje
tions v01,2of the amplitude of this wave on k = k0 + q and k⊥. Introdu
ing the angle α between q and k0,we get v01 = 2u0q sin α/k and v02 = 2u0(k0 + q cos α)/k (and, of 
ourse, w0 = 0). We 
an see, fromequations (42), (45) and (49), that an in
ident s-wave produ
e both s- and p- s
attered transversewaves as well as a s
attered longidudinal wave, due to the surfa
e roughness. Making use of theseequations we 
ompute easily the amplitudes of these waves and get the re�e
tion 
oe�
ients
Rs = ηt

hω2

4v2
t κk

(k0 + q cos α) , Rp = ηt

hωq

4vtk
sin α , Rl = ηl

hωq

4vlk
sin α . (55)The energy density 
arried on by these waves is given by Es,p,l/E0 = R2

s,p,l. We stress upon the
ompli
ated dire
tion-dependen
e (angle α) of these re�e
tion 
oe�
ients, in
luded both in κ and
k. The formulae given by equations (55) be
ome more simple for normal in
iden
e (k0 = 0).For normal in
iden
e there is another simple 
ase 
on
erning longitudinal waves des
ribed by

u0 = 2(0, 0, u0) cos κ
′

0z · e−iωt , (56)where κ
′

0 = ω/vl. The energy density per unit mass of this in
ident wave is E0/ρ = ω2u2
0.A

ording to equations (42), (45) and (49), the s
attered waves in this 
ase area p-wave and alongidudinal wave. Their re�e
tion 
oe�
ients are mu
h more simple now,

Rp = ηt

hωq

4vtκ
, Rl = ηl

hωκ
′

4vlq
. (57)The squares of these 
oe�
ients give the fra
tion of energy 
arried on by these waves.It is worth stressing that all the above formulae are valid only for κ, k, q 6= 0 (non-vanishingdenominators).
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an see from the above parti
ular 
ases, as well as from the general equations (42), (45) and(49)), that the total amount of energy 
arried on di�usively by the waves s
attered by the surfa
eroughness implies sums of the form ∑

q |h(q)|2 f(q), where h(q) is the Fourier transform of theroughness fun
tion h(r) and f(q) are spe
i�
 fun
tions 
orresponding to the waves' nature (fa
torsimplying k, κ, κ
′, et
). Qualitatively, in order to maximize this energy, it is ne
essary, apart fromparti
ular 
ases of gratings (one, or a few waveve
tors q), to in
lude as many Fourier 
omponentsas possible, i.e. the surfa
e should be as rough as possible in order to have a good attenuation, areasonably expe
ted result.In 
on
lusion, we may say that we have introdu
ed a model of inhomogeneous surfa
e roughnessfor a semi-in�nite isotropi
 elasti
 body and solved the wave equations for the elasti
 wavess
attered by this surfa
e roughness in the �rst-order approximation with respe
t to the roughnessmagnitude. The s
attered waves are of two kinds: waves lo
alized (and propagating only) onthe surfa
e, given by equations (43) and (47), and s
attered waves re�e
ted ba
k in the body bythe surfa
e roughness, both transverse, as given by equations (42) and (45), and longitudinal, asgiven by equation (49). The latter may be
ome 
on�ned to the surfa
e (damped, rough-surfa
ewaves) for an enhan
ed roughness (large waveve
tors q). The re�e
ted waves are absent for ahomogeneous roughness (ηt,l = 0), where only the lo
alized waves survive.A
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