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Abstract

We derive the elastic waves propagating in a semi-infinite isotropic solid body (half-space)
with a rough (corrugated) surface. The model assumes a surface roughness with distinct
elastic characteristics than the bulk (inhomogeneous roughness). A perturbation-theoretical
scheme is devised for a small roughness (in comparison with the relevant elastic disturbances
propagating in the body), and the elastic waves equations are solved in the first-order ap-
proximation. It is shown that elastic waves propagating in the bulk generate a localized force
acting on the surface, as a consequence of the surface roughness. This force causes both
scattered waves localized (and propagating only) on the surface (two-dimensional waves) and
scattered waves reflected back in the body. In general, the waves scattered back in the body
are both trasverse and longitudinal, irrespective of the original wave acting upon the body
surface. The waves localized on the surface, as well as the transverse and longitudinal waves
scattered back in the body by the surface roughness are derived, and the effect of both the
geometric and elastic characteristics of the surface roughness is discussed. Directional effects,
wave slowness and attenuation by diffusive scattering, or possible resonance effects are also
discussed. For an enhanced roughness damped waves confined to the surface are identified
(rough-surface waves).

Key words: surface roughness, elastic waves scattering, surface localized waves
PACS: 43.20.Bi; 46.40.Cd; 46.65.+g; 91.30.Cd; 62.30.+d

Highlights: Analytical model for including the surface roughness in the analysis of elastic waves
scattering. New method for the propagation of elastic waves in semi-infinite solids, based on
coupled integral equations. Solution of these equations for a semi-infinite isotropic solid with
a rough surface. Scattered waves reflected back in the body by the surface roughness. Waves
scattered by the roughness and localized (and propagating only) on the surface (two-dimensional
waves). Damped waves, confined to the surface, generated by the surfece roughness (rough-surface
waves).

1 Introduction

Recently, there is a great deal of interest in the role played by the surface roughness (corruga-
tion) in a large variety of physical phenomena, ranging from mechanical properties of the elastic



bodies,[1, 2] to hydrodynamical flow of microfluids,|3] dispersive properties of surface plasmon-
polariton in nanoplasmonics,|4] terahertz-waves generation[5] or electronic microstructures.|[6, 7]
Giant corrugations have been found on the graphite surface by scanning tunneling microscopy,
due to the elastic deformations induced by atomic forces between tip and surface.[10]| Periodic
surface corrugation plays a central role in enhanced, or suppreseed, optical transmission in the
subwavelength regime,[9] or in highly-directional optical emission.[10] An appreciable reduction in
the thermal conductance has been assigned to the phonon scattering by the surface roughness.|[11]
Stick-slip instability responsible for earthquakes has been studied, as well as the associated radi-
ation of seismic surface waves.[12] It has been recognized that elastic waves propagation effects
may play a central role in the surface roughness of the cracks propagating in heterogeneous me-
dia, like aluminium alloys, ceramics or rock.[13, 14] The main difficulty in getting more definite
results in this problem resides in modelling conveniently the surface roughness such as to arrive
at mathematically operational approaches.[15]

We introduce here a model of inhomogeneous surface roughness, whose elastic characteristics are,
in general, distinct than the ones of the underlying (isotropic) elastic half-space (semi-infinite
solid). Tt is shown that the elastic waves propagating in the semi-infinite body (incident on and
reflected specularly by the surface) generate a force localized on the surface roughness, which is
responsible for the scattered waves. The scattered waves are of two kinds: localized (and propa-
gating only) on the surface (two-dimensional waves), and waves scattered back in the body. For an
enhanced roughness the waves scattered back in the body may get confined to the surface (damped,
rough-surface waves). Light diffusely scattered by a randomly rough surface has been studied both
experimentally and theoretically, with emphasis on multiple scattering.[16] The method employed
in the present paper is based on a perturbation-theoretical scheme, and the resulting coupled
integral equations are solved in the first approximation with respect to the roughness magnitude.
Multiple scattering is expected to occur in higher-order approximations. Forward and backward
scattering of elastic waves have also been reported in corrugated waveguides.[17| Great insight
has been obtained previously in the coupling of the surface (Rayleigh) waves to periodic corruga-
tion (grating),|[18]-[20| especialy as regards the wave attenuation, slowing and leaking (outgoing
increasing wave), corroborated with band gaps and stop bands, by using non-perturbational tech-
niques. In addition to such results, we show here that the surface roughness may cause localized
waves, propagating only on the surface, which may store a certain amount of energy, due to
the localization effects. Attenuation of crustal waves across the Alpine range has been reported,
which might be associated with the localization of energy in the surface-roughness region.|21] The
method presented here can be extended to electromagnetic waves, or fluid waves, propagating in
a semi-infinite body with a rough surface. It was employed recently to analyze the elastic waves
produced by localized forces in semi-infinite solids.|[22]

2 Elastic body with a rough surface

We consider an isotropic elastic body extended boundlessly along the directions r = (z,y) and
limited along the z-direction by a free surface z = h(r), where A(r) > 0 is a function to be further
specified (roughness function). The body, which may also be termed a sem-infinite solid (with a
rough, corrugated surface), occupies the region z < h(r) (i.e. an elastic half-space with a rough
surface). It is convenient to write the well-known equation for free elastic waves in an isotropic
body|23] as
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—u— Au=m-grad-diva , (1)
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where u(r, z, t) is the displacement field, ¢ denotes the time, v, is the velocity of the transverse
waves, m = vf/v? — 1 > 1/3 (actually 1)[23] and v; is the velocity of the longitudinal waves.
Indeed, equation (1) gives the free transverse waves (divu = 0) propagating with velocity v; and
the free longitudinal waves (curlu = 0) propagating with velocity v;.

For a semi-infinite body with a surface described by equation z = h(r) and extending in the region
z < h(r) the displacement field can be written as

u = (v, w)f[h(r) = 2)] , (2)

where v lies in the (z,y)-plane, w is directed along the z-axis and 6 is the step function (0(z) =0
for = < 0, 6(z) = 1 for z > 0). The roughness of the surface (deviation from a plane) is given
by the magnitude of the function h(r), which we assume to be very small in comparison with the
relevant wavelengths along the z-directions of the elastic disturbances propagating in the body.
Consequently, we may use the first-order approximation

u = (v, w)[f(=2) + h(r)s(z)] (3)

for equation (2), where §(z) is the Dirac function. This is the usual approximation employed
in the perturbation-theoretical approaches.|[24]-|26] The specific conditions of validity for this
approximation will be discussed on the final results.

We write such a displacement field as

u=uy+9dug , (4)
where
uy = (vo, wo)0(—2), dug = (vo, wo)|,_ohd(2) , (5)
and assume that ug satisfies the wave equation (1)
L. .
— 1y — Aug = m - grad - divug (6)
Ut

with specific boundary conditions at z = 0. This equation describes incident and (specularly)
reflected waves propagating in a semi-infinite solid with a plane surface z = 0. We can see that
duy generates a source-term localized on the surface (a force), which can produce scattered waves.
We denote the displacement field associated with these scattered waves by uy; it satisfies the wave
equation

1 f
— U — Auy =m - grad - divay + — (7)
(oh Ui
where the force is given by
f 1. :
— = — 0y — Adug — m - grad - divou . (8)
Ui Ut

Equations (7) and (8) represent merely a different way of re-writing the wave equation for a semi-
infinite solid with a surface roughness. For waves localized on the surface the solution of equation
(7) is u; = dug. Another solutions are given by the waves scattered back in the body by the surface
roughness, i.e. waves generated in equation (12) by the source term f (a particular solution of
equation (7)). We generalize this model of surface roughness by assuming that the roughness is
inhomogeneous, i.e. it is a homogeneous elastic medium with different elastic characteristics than
the plane-surface half-space bulk (for instance, different density and elastic constants). Therefore,



we introduce distinct velocities 7;; and denote all the changed parameters with an overbar (for
instance, m = 07 /U7 — 1). The force is given in this case by

f 1
— = =0y — Adug —m - grad - divouy (9)
v T

The results are expressed conveniently by using the relative differences 7,; = 1 — vzl /621. The

displacement field u; given by equation (7) can be written as u; = (v, w)f(—=z).

We might say that, in the presence of a displacement field uy, the roughness of the surface
generates a force f, localized on the surface and of the same order of magnitude as the roughness
h (8ug ~ hd(z)). This force is the difference between the inertial force 511y /7 and the elastic force
Adug + m - grad - divdug; it represents the distinct way the surface follows the elastic motion in
comparison with the bulk. Equation (6) gives the free incident and reflected waves propagating
in a half-space with a plane surface, while equation (7) gives the scattered waves produced by the
roughness of the surface, as a consequence of the source term f/v?2.

It is worth noting that such a model of inhomogeneous surface may correspond either to a surface
whose physical properties have been changed, or to a solid which is homogeneous everywhere,
including its rough surface. Indeed, in the latter case, it is precisely the spatial variations of the
rough surface which affect its elastic properties, viewed as a homogeneous medium, and render it,
in fact, a rough surface which is inhomogeneous with respect to the bulk.

The above perturbation-theoretical scheme can also be writen in a different way, by recasting
equation (1) into an equation involving the velocity v; of the longitudial waves and the parameter
n=1—v?/v} =m/(1+m). Then, equations (6) - (8) become

%ﬁo — Aug = n(—Aug + grad - divuy) ,

_ (10)
Ly — Auy = n(—Auy + grad - divuy) + & |
¢ i
where _
f 1
5= ﬁcﬁio — (1 —=m)Aduy — 7 - grad - divduy . (11)
i i

We solve equation (7) and the second equation (10) for the scattered transverse and, respectively,
longitudinal waves by using the Green function method.

3 Plane surface

As it is well known, the elementary solutions of equation (6), or the first equation (10), (homoge-
neous elastic waves equation) for a half-space with a plane surface are transverse and longitudinal
plane waves of the form

Uy = (ezl:moz’ e:l:ifcgz)e—iwt—l—ikor 7 (12)

where both incident (+rg, 4+#p) and reflected (—rg, —k,) waves are included, w is the frequency
and kg is the in-plane wavevector. For divuy = 0 we get the transverse waves, propagating
with the velocity v; (w = v, Ko, where Ko = (ko, ko)), with the z-component of the wavevector

ko = yJw?/vi — k3. For curlug = 0 we get the longitudinal waves (through curl - curlug =
—Aug+grad-divay = 0), propagating with the velocity v; and the z-component of the wavevector

Ko = \Jw2/v} — k3 (w = v K, and K = (ko, sy)). The transverse waves have two polarizations,



one in the propagating plane (the (kg, xo)-plane), called the p-wave (parallel wave), another
perpendicular to the propagating plane, called the s-wave (from the German "senkrecht", which
means "perpendicular"). Linear combinations of the plane waves given by equation (12) are
subject to conditions imposed on the surface (e.g., free or fixed surface).

We derive here these free waves propagating in a half-space with a plane surface by a different
method, which will be used subsequently in deriving the solutions for the scattered waves (equation

(7) and the second equation (10)). In order to simplify the notations we omit here the subscript
0.

The solution of equation (6) is written as

u = [v(2), w(2)] 0(—z)e Witkr (13)
Introducing this u in equation (6) and leaving aside the exponential factor e & we get,
Pu
@ + Kku = S s (14)
where k? = w?/v? — k* and the source S has the components
Sy = —tmk (ikv + g—f) 0(—2)+
+ (5], Fimkwl._y) 0(2) + v|._ 6 (2) |
(15)

S, =-—-m {z’kg—‘z’ + ‘32;2”} O(—=z) +imkv| _,0(z)+

+(14m) |9

@)+ w8 (2)]

We can see that the source S, which collects all the contributions from m-gradu and the derivatives

of §(—z) in Au, acts as an "external force" in equation (14). As it is well known, the particular
solution of equation (14) is given by

mazfm@@—wmm, (16)

where

Gl2) = —— el (17)

2iK
is the Green function for equation (14) (Green function of the one-dimensional Helmholtz equa-
tion). Making use of the notations v; = vk/k and vy = vk, /k, where k| is a vector perpendicular
to k and of the same magnitude k, equations (15)-(17) lead to

é 8’02 —iKZ 1 —iKZ
=g e Gl (1)
2k 0z | _, 2 “lz
and o . / | /
vy = =1 [0 gty (") el F T — D10 galyp (o) el —
_i % - —iKZ __ % vl’z:O 6—1‘57; 7
(19)
(1 + m)w = _”21_:% fo dzlvl(zl)em\z—z’\ + % fO dz/w(zl)em\z—z’\_
_i ?9_1; 2=0 - % w|,_g e




Equation (18) corresponds to the s-wave. It is easy to see that the particular solution given

by equation (18) is identically vanishing. Therefore, we are left with the free s-waves given by

equation (12), as expected (~ eimzefithrikr)‘

Let us take the second derivative of equations (19) with respect to z and use the identity

5—:2 /dz'f(z')emk_z,' = —RQ/dZ’f(z’)ei“‘z_zl‘ + 2ikf(z) (20)

for any arbitrary function f(z). We get

%2;’21 + K2, = —imk (z’km + %—fj) ,
(21)
882;2” + K*w = —m% (ik’vl + %—ls) .

We can see that for div(vy, w) = 0, i.e. for ikv; + Ow/0z = 0, we get the free p-waves (k =

Vw2 /v — k2), according to equation (12) (~ eFinzewitikr) = Gimilarly, for curlu = 0, i.e. for
ikw — 0vy /0z = 0, equations (21) become
(1+m) Z8s) 4 (k2 — mk?) (v, w) =0 , (22)
or, making use of m = v} /v? — 1,
0 )
T | k2o, w) =0 23

/ . . . .y . .
where £ = /w?/v? — k2, i.e. free longitudinal waves ~ etz witikr,

The longitudinal waves can also be obtained by noting that the coupled equations (19) imply the
relationship

0 )
% —ikw = Ce " | (24)
where 5 5
1 U1 . 1 . ]f w
=— | = —ik — - —— 2
=g (G| ()L e
We use this relationship in one of equations (21), and get
9%, o imek in
ﬁ—km 1)1:—1+m06 : (26)

The particular solution of this equation is vanishing identically, and we are left with free longitu-
dinal waves. Indeed, equation (24) with C' = 0 corresponds to curl(v,, w) = 0.

The p-waves are obtained in a similar way, by starting with the first equation (10). Using u given
by an equation similar with equation (13) we get

. /2 2 .
in(k =+ k 0 L 7 Ovg L 1 L
(1 —=n)vy = %/ d2'vy (2 )™ lz—2"| _ o B i E 5 U2‘z:06 ik 2 (27)
z=0
and
L o 4/
(1= mur = 8 [0 ety ()6 1+=1 — 1k & 10 gty (1) le='
i du —ik'z 1 ik 2
_W EZ:() _Evl‘z:oe 9
(28)
. ! . .
w= —5—5% [0 dz"vy (2)ei =21 4 % [0 dz2'w(2)eimla==1—
__t Ow —ik'z _ 1 ’ —ir' 2
21{/ 0z 2=0 2 w z=0 € .




It is easy to see, by taking the second derivative with respect to z, that equation (27) gives the
free s-waves. Similarly, by taking the second derivative with respect to z, equations (28) become

82’2 + T = —an%—ls 5
(29)
22 + (1= n)r*w = —ink%
(where we have used the identity 2 4+ nk? = (1 —n)s?). On the other hand, from equations (28),
we get easily the relationship

8@1 I€2 Cl ik 2
E + Z—w ﬁe s (30)
where "
/ 1 (0v, ik 1 Kk Ow
== Al - -2 . 31
<8z+ kw>‘20+2<mvl+k8>> . (31)
Making use of this relationship in equations (29) we get
0*w mk
O —tK Z 32
072 Rw 1-n ¢ (32)

and a similar equation for vy. It is easy to see that the particular solution of equation (3
identically vanishing, so we are left with the free p-waves. Indeed, equation (30) with C’
corresponds to div(vy, w) = 0.

2%

4 Scattered waves

We consider now a bulk incident transverse wave and reflected transverse and longtudinal waves
given by

= (l,lél) 1KQ2 + u( )6 1KQ2 + ugi'))e—moz) e—iwt—f—ikor (33)

(for z < 0), where the amplitudes ul satisfy the corresponding conditions of transverse and,
respectively, longitudinal waves. For instance, in the representation ug = (v, wy) we have
kov(()m) + ﬁowél’Q) = 0 (including w( 2 — 0 for the s-waves) and mov(()?’)ko/ko + kow(()?’) =0. In
addition, the wave given by equation (33) must satisfy the conditions at the surface. For instance,
for a fixed surface we have uy|,_, = 0, while for a free surface, we impose the Condition 0;. =0,

where o;; is the stress tensor (i = z, y, z). All these conditions fix the amplitudes uO 12 ), up to the
incidence angle and the amplitude of the incident wave, in terms of the reflection coefficients and
reflection angles, ultimately in terms of the wave velocities v;;.[23|For an incident s-wave we have
only a reflected s-wave (u63) = 0), while for an incident p-wave we have both p- and longitudinal
waves. A similar situation occurs for an incident longitudinal wave, with k¢ and /@6 interchanged
in equation (33). The displacement duy given by equation (5) implies uy for z = 0, so that we
may represent this localized contribution of the uyp-wave as

O)e—iwt—i—ikor ’ (34)

u0|z 0 — (VO,
where v, wy include contributions corresponding to various polarizations.

First, we are interested in solving equation (7) for the scattered waves, with the force f/v? gen-
erated by the free waves ug, as given by equation (9). We consider a Fourier component of the
form

h(r) = he'™ (35)



for the roughness function, where h is an amplitude (depending on ¢) and q denotes a charac-
teristic wavevector (in final results the contribution ¢ — —q must be included). The localized
displacement duy given by equation (5) can be written as

Sug = h(vo, wo)e 5 (2) (36)

where k = ko + q. Making use of this displacement dug, the force f/v? given by equation (9) can
be computed straightforwardly. Leaving aside the exponential factor e ™“'** it is given by

fap _ _p, [E2v05(z) +vod (2) — mk(kvg)d(z) + imkwoé/(z)} ;

(%

=+ |

(37)
% =—h {EQwoé(z) + wod (2) 4 imkvod (2) + mwO(S”(z)} ,
where
R =\Jw?/v? — k? (38)
and

K:\/WQ/UtQ—k2=\/I£(2)—2k0q—q2 . (39)

We add the contributions arising from this force (via the Green function of equation (14)) to
the rhs of equations (18) and (19) and solve these equations by the procedure described in the
previous section. For instance, equation (18) becomes

1 , ih ,
-5 Ua|,_ge " — %(EQ — K )vgee " + huged(2) . (40)

1 602
Vg = —— ——
2 2k 0z

—1KZ

z=0

The displacement vy given above includes the localized wave
vy = hwggd(2)e Witk (41)

which is a scattered wave propagating only on the surface (two-dimensional wave). The remaining
contribution to equation (40) (terms without §(z)) represents scattered waves reflected back in the
body. We denote this contribution by vs,. Taking the second derivative with respect to z in equa-
tion (40) and using the self-consistency condition imposed by this equation on the displacement
on the surface, we get immediately the solution

Vg = —%(_2 — kH)vgee
This is an s-wave, scattered back in the body by the surface roughness. We can see that it
is the distinct elastic parameters of the surface roughness that ensure this scattering (through
2 — k2 = —w?n/vi# 0). The occurrence of the wavevector k = ko + q in equation (42) is
indicative of the selective reflection phenomenon, associated with corrugated surfaces, and in
general, of directional effects.

—iwt+ikr—ikz ) (42)

In likewise manner we get the equations for v; and w with the force terms given by equation (37).
We get the amplitudes for localized waves

1+m
= hvg10 =h
V11 Vo1 (Z) , W 1tm

wpd(2) . (43)

Equations (21) and (24) remain the same, but the constant C' given by equation (25) (entering
the relationship (24)) becomes now

]_ 81)1 .

1 k0 h
2=0 " 2 (mvl - Ec(%}) Lo - ﬁ(# — £%) (Kvoy + kwp) - (44)



Following the same procedure as described in the previous section we get the scattered waves
vy = —Zh (l€ - KJZ)(HJU(H + kwo)efithrikrfmz — ihnt(KUOI + kwo)efithrikrfmz (45)

and w, = kvy,./k. We can see that this represent a p-wave (div(vy,, w,) = 0, i.e. kvy,. — kw, = 0).

We turn now to the second equation (10) with the force given by

fow — _py (1= )Rvod(2) + (1 = M)vod” (2) — Tk (kvo)(2) + imkwod(2)]

v

(46)
L = = [(1 = m)Rwed(2) + (1 — M)wed” (2) + imkvod' (2) + wed” (2)] -
1
By using the procedure described in the previous section we get a localized displacement
1—-m
v, = hl vod(2) , w; = hwyd(z) . (47)
-n

We can see, by comparing equations (41), (43) and (47) that the inhomogeneous roughness affects
the localized waves in different ways. For the scattered waves reflected back in the body, equations
(29) and (30) from the previous section remain unchanged, but the constant C’ given by equation
(31) (entering the relationship (30)) becomes

, Ovy K2
¢==3 (az *T“’)

We get straightforwardly the reflected waves

1 Kk Ow h —
+3 <m vy + ?3_>’ By - ﬁ(ﬁ’Q — 1?)(kvor — K'wg) . (48)

z=0

vik

. . ., 17 B . .y
vy = —ih ( . K/Q)(k?}(n o /i/wo)efzthrzkrfm z _ _hnl(kU01 . /i/wo)efzthrzkrfm z (49)
4w K 4
and w, = —~k'vy, /k. We can see that this scattered wave is a longitudinal wave (curl(vy,, w,) =0,

i.e. —k'vy, = kw,).

According to equations (42), (45) and (49), within the present model of surface roughness we get
waves scattered back in the body only for a rough surface with elastic characteristics different
from those of the body (inhomogeneous roughness, 1;; # 0). For a homogeneous roughness, i.e.
for n,; = 0, we get only scattered waves localized on the surface, given by

w, = dug = h(r)(vo, wo)e “HHTS(z) (50)

as expected.

5 Discussion

The localized waves have the general form of the incoming wave e~“!*ormodulated by the rough-

ness function h(r). If q is a characteristic wavevector of this roughness function and k = kq + q,
the velocity of the localized waves is given by vy = w/k = vy ko/ksin 0, where 6 is the incidence
angle of the incoming (transverse or longitudinal) wave. The directional effects are clearly seen

from the presence of k == \/kg + 2koq + ¢? in the denominator of this relation. It is worth not-
ing that for q = +kg, 7.e. for a surface roughness modulated with the same wavelength as the
original ug-wave, there appear scattered waves with half the wavelength of the original uy-waves



(wavevector 2kg) and the whole surface suffers a vibration (independent of the coordinate r), a
characteristic resonance phenomenon (k = 0). The waves corresponding to the wavevector 2k,
have a velocity w/2kg, which is twice as small as the original velocity on the surface. This is
indicative of the slowness phenomenon, associated with rough surfaces.

The q = *+k( resonance phenomenon is exhibited also by the waves scattererd back in the body.
Another resonance phenomenon may appear for £2koq + ¢ = 0, which is the well-known Laue-
Bragg condition for the X-rays diffraction in crystalline bodies.[27] In this case, k = ko, k = Ko
and k' = Iﬁz) and we can see that the scattered transverse (longitudinal) waves are generated only
by the transverse (longitudinal) part in the original up-waves, as expected, due to the presence
of the factors kvg; + kwy and kvg; — K'wy in equations (45) and, respectively, (49). For ko and q
antiparallel the scattered wave propagates in opposite direction with respect to the incident wave.

The results given above hold also for purely imaginary values of the wavevectors k or &', when
the scattered waves become confined to the surface (surface waves), a situation which may oc-
cur especially for high values of the magnitude ¢ of the characteristic wavevectors q (q > ko).
According to equations (42), (45) and (49), the scattered waves are now damped (~ e%) and
their amplitudes are proportional to the roughness function h(r). It is worth noting that these
rough-surface waves are generated by the surface roughness.

As it is well known, the energy of the incident wave is transferred to the reflected waves. In
the present case, it is transferred both to the reflected waves as well as to the scattered waves,
including the waves localized on the surface and the waves scattered back in the body. According
to equations (42), (45) and (49) the energy density of the scattered waves reflected back in the body
is proportional to (h/)\)?, where X is a characteristic "wavelength" of these waves (projection of
the wavelength A on the surface, or on the direction perpendicular to the surface, or combinations
of these). It folows that the validity criterion for our perturbation-theretical scheme is h < .
In the limit of small roughness (h — 0), the energy of the scattering waves (their amplitude) is
vanishing. It is worth estimating the energy of the waves localized on the surface. For simplicity,
we consider a homogeneous roughness, with the localized waves given by

(vi, wy) = h(vo, wo)d(z)e Witk (51)

(according to equation (50)) and choose the wavevector k directed along the z-axis. The validity
condition for these waves is obtained by assuming that the surface roughness extends over a
distance of the order of h,, = max h(r) and use the repreesntation 6(z) =~ 1/h,, for the J-function.
Then, the perturbation calculations are valid for h < h,,, where h is the average (mean value)
of the roughness function A(r). This means that the surface roughness should has but only a few
spikes. As it is well known, the (elastic) energy density (per unit mass) can be expressed as

1

Elp= U?(U?j - U?z) + 5“12%% ) (52)
where u;; = (1/2)(0u;/0x; + Ou;/0x;) is the strain tensor. In our case, we use for computing
this strain tensor the displacement given by equation (51). The strain tensor includes factors
proportional to §(z) and 0'(z), and the energy density includes factors proportional to §%(z) and
§'2(2). The leading contribution come from §'(z) -terms:

2

h /
Elp = T (oivE +uPud)o?(2) | (53

giving a surface energy (per unit mass)~ h,,€/p. Making use of the representation & 2(z) ~ 1/h% |
this surface energy is proportional to h%/h3 , while the corresponding energy of the incident wave



goes like h,,/A\?; the ratio of the two quantities is of the order of h?A%/h}. We can see that
that this ratio may acquire large values, even for h < h,, (perturbation criterion satisfied), for
A > h,,. Therefore, the surface waves may store an appreciable amount of energy, as a result
of their localization. This phenomenon is related to the discontinuites experienced by the strain
tensor along the direction perpendicular to the surface.

6 Particular cases and concluding remarks

From equations (42), (45) and (49) we can get the reflection coefficients, related to the energy,
of the waves scattered back in the body. Their general characteristic is the directionality effects.
The derivation of these coefficients is complicated in the general case, where we should fix the
amplitudes of the original ug-waves according to the nature of these waves and the boundary
conditions. Another complication arises from the fact that we should "renormalize" the amplitudes
of the reflected original up-waves such as to include (accomodate) the scattered waves in the
boundary conditions (a procedure specific to theoretical-perturbation calculations). We limit
ourselves here to give the reflection coefficients for a few particular cases.

First, one of the simplest case is an original s-wave, described by
uy = 2(0, ug, 0) cos Koz - e Wiikor (54)

where kg is directed along the z-axis. Making use of equation (52), the energy density (per unit
mass) of the incident wave in equation (54) is & /p = w?ug. We must compute the projections vg; o
of the amplitude of this wave on k = kg + q and k. Introducing the angle o between q and ko,
we get vy = 2upgsin a/k and voy = 2ug(ko + g cos ) /k (and, of course, wy = 0). We can see, from
equations (42), (45) and (49), that an incident s-wave produce both s- and p- scattered transverse
waves as well as a scattered longidudinal wave, due to the surface roughness. Making use of these
equations we compute easily the amplitudes of these waves and get the reflection coefficients

hw?

hwq . hwq .
R, = ntm(ko +qcosa), R, = m4vtk sina, R = mm sina . (55)

The energy density carried on by these waves is given by & /& = Rip,l. We stress upon the
complicated direction-dependence (angle «) of these reflection coefficients, included both in x and

k. The formulae given by equations (55) become more simple for normal incidence (ko = 0).

For normal incidence there is another simple case concerning longitudinal waves described by

uy = 2(0, 0, ug) cos kyz - et (56)
where s, = w/v;. The energy density per unit mass of this incident wave is Ey/p = w?u2.
According to equations (42), (45) and (49), the scattered waves in this case area p-wave and a
longidudinal wave. Their reflection coefficients are much more simple now,

hwq hwk'

R,=n——, R =
P m4vt/<c L= 4u,q

(57)

The squares of these coefficients give the fraction of energy carried on by these waves.

It is worth stressing that all the above formulae are valid only for , k, ¢ # 0 (non-vanishing
denominators).



We can see from the above particular cases, as well as from the general equations (42), (45) and
(49)), that the total amount of energy carried on diffusively by the waves scattered by the surface
roughness implies sums of the form 3, |h(q)|” f(q), where h(q) is the Fourier transform of the
roughness function A(r) and f(q) are specific functions corresponding to the waves’ nature (factors
implying k, k, ', etc). Qualitatively, in order to maximize this energy, it is necessary, apart from
particular cases of gratings (one, or a few wavevectors q), to include as many Fourier components
as possible, i.e. the surface should be as rough as possible in order to have a good attenuation, a
reasonably expected result.

In conclusion, we may say that we have introduced a model of inhomogeneous surface roughness
for a semi-infinite isotropic elastic body and solved the wave equations for the elastic waves
scattered by this surface roughness in the first-order approximation with respect to the roughness
magnitude. The scattered waves are of two kinds: waves localized (and propagating only) on
the surface, given by equations (43) and (47), and scattered waves reflected back in the body by
the surface roughness, both transverse, as given by equations (42) and (45), and longitudinal, as
given by equation (49). The latter may become confined to the surface (damped, rough-surface
waves) for an enhanced roughness (large wavevectors ¢). The reflected waves are absent for a
homogeneous roughness (1;; = 0), where only the localized waves survive.

Acknowledgments. The author is indebted to his colleagues in the Department of Seismology,
Institute of Earth’s Physics, Magurele-Bucharest, for many enlightening discussions, and to the
members of the Laboratory of Theoretical Physics, Magurele-Bucharest, for a throughout analysis
of this work. This work was partially supported by the Romanian Government Research grant
PN-RU-3/0072/22/2011.

References

[1] L. Afferrante, M. Ciavarella, M. Dell’Orco and G. Demello, "Rolling cylinder on an elastic
half-plane with harmonic oscilllations in normal force and rotational speed. Part 1I: Energy

dissipation receptances and example calculations of corrugation in the short-pitch range",
Int. J. Mech. Sciences 53 100-1007 (2011).

[2] P. T. Torstensson, J. C. O. Nielsen and L. Baeza, "Dynamic train-track interaction at high
vehicle speed - Modelling of wheelset dynamics and wheel rotation", J. Sound& Vibration 330
5309-5321 (2011).

[3] A. M. I. Mohamed, R. Hoettiba and A. M. Saif, "The effect of the corrugation rib angle of
attack on the fluid flow and heat transfer characteristics inside corrugated ribbed passage",
J. HeatTranser 133 081901 (2011) (1-10).

[4] M. Cuevas and R. A. Depine, "Dispersive characterisics of surface plasmon polaritons on
negative refractive index gratings", Optics Commun. 284 5242-5247 (2011).

[5] V. A. Namiot and L. Yu. Schurova, "On the generation of electromagnetic waves in the
terahertz frequency range", Phys. Let. A375 2759-2766 (2011).

[6] A.A.Shokri and ZH. Ebrahiminejad, "Spin-dependent tunneling through double-barier quan-
tum wells with random corrugation interfacial roughness", Physica E43 1579-1584 (2011).

[7] O.V.Sedelnikova, L. G. Bulusheva and A. V. Okotrub, "Ab initio study of dielectric response
of rippled graphene", J. Chem. Phys. 134 244707 (2011) (1-5).



[8] J. M. Soler, A. M. Baro and N. Garcia, "Interatomic forces in scanning tunneling microscopy:
Giant corrugations of the graphite surface", Phys. Rev. Lett. 57 444-447 (1986).

[9] H. Lezec and T. Thio, "Diffracted evanescent wave mode for enhanced and suppressed optical
transmission through subwavelength hole arrays", Optics Express 12 3629-3651 (2004).

[10] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen, "Theory
of highly-directional emission from a single subwavelength aperture surrounded by surface
corrugations", Phys. Rev. Let. 90 167401 (2003) (1-4).

[11] D. H. Santamore and M. C. Cross, "Effect of surface roughness on the universal thermal
conductance", Phys. Rev. B63 184306 ((2001) (1-6).

[12] P. Mora and D. Place, "Simulation of the frictional stick-slip instability", Pure and Apl.
Geophys. 143 61-87 (1994).

[13] S. Ramanathan, D. Ertas and D. S. Fisher, "Quasistatic crack propagation in heterogeneous
media", Phys.Rev. Lett. 79 873-876 (1997).

[14] E. Bouchaud, J. P. Bouchaud, D. S. Fisher, S. Ramanathan and J. R. Rice, "Can crack front
waves explain the roughness of cracks?", J. Mech. Phys. Solids 50 1703-1725 (2002).

[15] See, for instance, A. Meier, T. Arens, S. N. Chandler-Wilde and A. Kirsch, "A Nystrom
method for a class of integral equations on the real line with application to scattering by
diffraction gratings and rough surfaces", J. Int. Eqs.&Appls. 12 281-321 (2000).

[16] M. E. Knotts, T. R. Michel nad K. A. O’Donnell, "Comparison of theory and experiment in
light scattering from a randomly rough surface", J. Opt. Soc. Am. A10 928-941 (1993).

[17] S. Banerjee and T. Kundu, "Elastic waves propagation in sinusoidally corrugated waveg-
uides", J. Acoust. Soc. Am. 119 2006-2017 (2006).

[18] R. F. Wallis, D. L. Mills and A. A. Maradudin, "Attenuation of Rayleigh waves by point
defects", Phys. Rev. B19 3981-3995 (1979).

[19] N. E. Glass, R. Loudon and A. A. Maradudin, "Propagation of Rayleigh surface waves across
a large amplitude grating", Phys. Rev. B24 6843-6861 (1981)

[20] N. E. Glass and A. A. Maradudin, "Leaky surface-elastic waves on both flat and strongly
corrugated surfaces for isotropic, non-dissipative media", J. Appl. Phys. 54 796-805 (1983).

[21] M. Campillo, B. Feignier, M. Bouchon and N. Bethoux, "Attenuation of crustal waves across
the Alpine range", J. Geophys. Res. 98 1987-1996 (1993).

[22] B. F. Apostol, "Elastic waves in a semi-infinite body", Phys. Lett. A374 1601-1607 (2010).

[23] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of Elasticity,
Elsevier, Oxford, 2002.

[24] F. Gilbert and L. Knopoff, "Seismic scattering from topographic irregularities", J. Geophys.
Res. 65 3437-3444 (1960).

[25] J. A. Ogilvy, "Wave scattering from rough surfaces", Reps. Progr. Phys. 50 1553-1608 (1987)
and references therein.



[26] A. A. Maradudin and D. L. Mills, "The attenuation of Rayleigh surface waves by surface
roughness", Ann. Phys. 100 262-309 (1976).

[27] C. Kittel, Introduction to Solid State Physics, Wiley, NJ, 2005.

© J. Theor. Phys. 2011, apoma@theorl.theory.nipne.ro



