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2 J. Theor. Phys.as possible resonanes for surfae gratings (orrugations). The main di�ulty in getting morede�nite results in this problem resides in modelling onveniently the surfae roughness, suh as toarrive at mathematially operational approahes.[9℄We present here a model of inhomogeneous surfae roughness, i.e. a surfae whose elasti proper-ties di�er from the ones of the semi-in�nite (half-spae) �uid bulk, in ontrast with a homogeneoussurfae roughness whih has the same elasti properties as the bulk. In general, a surfae, espe-ially a rough one, ats like a soure for sattered waves. We devise here a theoretial-perturbationsheme for treating the wave equation for longitudinal (sound) waves proapagating in a semi-in�nite solid with a rough surfae. The peturbation parameter is the roughness funtion, i.e. thedeviation of the surfae from a plane. It is shown that the sattered waves appear in the �rst-orderapproximation for a �xed surfae, while for a free surfae they appear only in the seond-orderapproximation. Two kinds of sattered waves are identi�ed: waves loalized (and propagatingonly) on the surfae (two-dimensional waves) and waves re�eted bak in the �uid. In some ases,the latter waves may get on�ned to the surfae (damped, rough-surfae waves). For a homoge-neous roughness only the waves loalized on the surfae survive. The re�etion oe�ients (andthe energy arried on by these waves) are alulated and various harateristis like slowness,attenuation or possible resonane phenomena are disussed.2 Fluid with a rough surfaeWe onsider a semi-in�nite (half-spae) homogeneous, isotropi, ideal �uid, extending boundlesslyalong the r = (x, y) diretions and limited along the z-diretion by a surfae z = h(r), where
h(r) > 0 is a funtion to be further spei�ed (roughness funtion). The �uid oupies the region
z < h(r). A small displaement �eld u(r, z, t) (where t denotes the time) gives rise to a densityimbalane δn = −ndivu in the �uid density n, a loal hange of volume δV = V divu and a loalhange of pressure δp, depending on the equation of state of the �uid; for an adiabati hange,
δp = (∂p/∂n)Sδn = −n(∂p/∂n)Sdivu, where S denotes the entropy. As it is well known,[10℄ suha �uid supports longitudinal waves (sound), desribed by the equation of motion

1

c2
ü − grad · divu = 0 , (1)where c is the sound veloity. Indeed, by taking the div in equation (1), we get the wave equationfor free waves propagating with veloity c. The displaement �eld is subjeted to the ondition

curlu = 0. Therefore, it is onvenient to introdue the potential funtion Φ = divu (proportionalto the pressure) and write equation (1) as
1

c2
Φ̈ − ∆Φ = 0 . (2)For a semi-in�nite �uid with a surfae desribed by equation z = h(r) and extending in the region

z < h(r), the potential Φ an be written as
Φ = ϕ(r, z, t)θ[h(r) − z] , (3)where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtion. We assume that themagnitude of the roughness funtion h(r) is small in omparison with the relevant wavelengths ofthe elasti disturbanes propagating in the �uid, so that we may write

Φ ≃ Φ0 + δΦ0 , (4)



J. Theor. Phys. 3where
Φ0 = ϕθ(−z) , δΦ0 = h(r)ϕδ(z) +

1

2
h2(r)ϕδ

′

(z) + ... , (5)where δ(z) is the Dira funtion (and the prime means di�erentiation with respet to the variable
z). The spei� onditions of validity for this approximation will be disussed on the �nal results.We assume that the potential ϕ satis�es the wave equation

1

c2
ϕ̈ − ∆ϕ = 0 (6)with spei� boundary onditions at z = 0. This equation desribes the inident and (speularly)re�eted waves propagating in a �uid with a plane surfae z = 0. It is easy to see that for a �xedsurfae ∂ϕ/∂z|z=0

= 0, so that we have the plane waves
ϕ = 2ϕ0 cos κ0z · e−iωt+ik0r , (7)where ω is the frequeny, k0 is the in-plane wavevetor and κ0 =

√

ω2/c2 − k2
0. In this ase wean limit ourselves to the �rst order in h in the seond equation (5), and get

δΦ0 = 2h(r)ϕ0δ(z)e−iωt+ik0r . (8)For a free surfae ϕ|z=0
= 0, so we have

ϕ = 2iϕ0 sin κ0z · e−iωt+ik0r ; (9)in this ase, the �rst-order ontribution to the seond equation (5) is vanishing and we get
δΦ0 = −ih2(r)κ0ϕ0δ(z)e−iωt+ik0r . (10)We an see that δΦ0 ats as a soure-term (a fore) loalized on the surfae, whih an generatesattered waves. We denote the potential funtion assoiated with these waves byΦ1; it satis�esthe wave equation

1

c2
Φ̈1 − ∆Φ1 = f , (11)where the fore f is given by

f =
1

c2
δΦ̈0 − ∆δΦ0 . (12)Equation (11) is merely a re-writing of the wave equation for δΦ0. The fore f is the di�erenebetween the inertial fore δΦ̈0/c

2 and the elasti fore ∆δΦ0; it represents the distint way thesurfae follows the wave motion in omparison with the bulk. For loalized waves equation (11)has the solution Φ1 = δΦ0. Another solutions are given by the waves sattered bak in the �uidby the surfae roughness, i.e. waves generated in equation (11) by the soure term f (a partiularsolution of equation (11)). We generalize this model of surfae roughness by introduing a di�erent"sound" veloity c in equation (12). The fore is then written as
f =

1

c2
δΦ̈0 − ∆δΦ0 . (13)Suh a generalization amounts to assuming that the elasti properties of the �uid loalized on therough surfae are di�erent than the elasti properties of the �uid bulk, i.e. the surfae roughnessis inhomogeneous in omparison with the bulk. This may orrespond either to a surfae whosephysial properties have been hanged, or to a �uid homogeneous everywhere, inluding its roughsurfae. Indeed, in the latter ase, it is preisely the spatial variations of the rough surfae



4 J. Theor. Phys.whih a�et its elasti properties, viewed as a homogeneous medium, and render it, in fat, arough surfae whih is inhomogeneous with respet to the bulk. It is onvenient to introdue theparameter η = 1 − c2/c2 for desribing the inhomogeneous roughness. A homogeneous roughnessorresponds to η = 0.Obviously, aording to equations (4) and (5), the sheme of alulation put forwad here is aperturbation-theoretial sheme, with the roughness funtion h(r) as the perturbation parameter.We limit ourselves here to the �rst relevant orders of the perturbation theory. We an see thatfor a �xed surfae the �rst-order approximation is su�ient for getting sattered waves, while fora free surfae we have to go to the seond-order approximation. This implies already a doublesattering by the surfae roughness. Higher-orders of the perturbation theory will give multiplesattering.3 Waves sattered by the rough surfaeWe use the potential δΦ0 given by equations (8) and (10) to ompute the fore given by equation(13). The alulations are easily performed for one Fourier omponent h(q)eiqrof the roughnessfuntion h(r), orresponding to the wavevetor q (for simpliity we drop the argument q in h(q)).For a �xed surfae, making use of equation (8), we get
f = −2hϕ0

[

κ2δ(z) + δ
′′

(z)
]

e−iωt+ikr , (14)where k = k0 + q and κ =
√

ω2/c2 − k2. The solution of equation (11) is of the form Φ1 =

ϕ1(z)θ(−z)e−iωt+ikr, so that equation (11) beomes
∂2ϕ1

∂z2
+ κ2ϕ1 =

∂ϕ1

∂z

∣

∣

∣

∣

∣

z=0

δ(z) + ϕ1|z=0
δ
′

(z) + 2hϕ0

[

κ2δ(z) + δ
′′

(z)
]

, (15)where κ =
√

ω2/c2 − k2. We note that k =
√

k2
0 + 2k0q + q2 and κ =

√

κ2
0 − 2k0q − q2. Theombination of the wavevetors k0 and q in k = k0 +q is the soure of diretional e�ets, inludedboth in k and κ. As it is well-known, the Green funtion of equation (15) (one-dimensionalHelmholtz equation) is

G(z − z′) =
1

2iκ
eiκ|z−z′| , (16)so that the solution of equation (15) is given by

ϕ1(z) =
∫

dz′S(z′)G(z − z′) , (17)where the soure S denotes the rhs of equation (15). The alulations are straightforward. We geta loalized solution ϕ1l = 2hϕ0δ(z), whih orresponds to δΦ0 given by equation (8), as expeted,and a wave re�eted bak in the �uid, given by
ϕ1r = −

ihϕ0

2κ
(κ2 − κ2)e−iκz , (18)or

Φ1r = iη
hϕ0ω

2

2c2κ
e−iωt+ikr−iκz (19)(for z < 0).



J. Theor. Phys. 5Likewise, for a free surfae, making use of equation (10), we get a loalized wave
Φ1l = −ih2ϕ0κ0δ(z)e−iωt+ikr , (20)whih oinides with δΦ0 given by equation (10), and a re�eted wave
Φ1r = η

h2ϕ0κ0ω
2

4c2κ
e−iωt+ikr−iκz , (21)where

h2 =
∫

drh2(r)e−iqr (22)(whih depends on q) is the Fourier transform of the roughness funtion squared (the integrationis performed in equation (22) over the unit area).From the results derived above we an say, qualitativey, that the perturbation-theoretial shemeof alulation is valid for the magnitude of the roughness funtion muh smaller than the relevantwavelengths. For instane, from equation (19) we have hω2/c2κ ≪ 1, or h ≪ λ cos θr, where
λ is the wavelength of the sattered wave and θr is its re�etion angle. From equation (21),we an see that the waves sattered by a free surfae is a seond-order e�et, implying multiple(double) sattering, within this approximation, as expeted. For the sattered waves loalizedon the surfae, we may represent the δ-funtion as extending over a distane of the order of
hm = maxh(r), and the perturbation-theory riterion is satis�ed for h(r) ≪ hm, where h(r) is theaverage of the roughness funtion (the roughness funtion should have a few "spikes" only). For aonstant roughness funtion (q = 0), the riterion of series expansion is not satis�ed for loalizedwaves, while the sattered waves are re�eted bak along the original Φ0-waves; this partiularase should be inluded in the original formulation of the problem for the Φ0-waves.It is also worth noting that we have waves Φ1r sattered bak in the �uid only for an inhomogeneousroughness (η 6= 0); for a homogeneous roughness we have only the waves Φ1l loalized on thesurfae.4 Disussion and onluding remarksThe loalized waves Φ1l have the general form of the inoming wave e−iωt+ik0rmodulated by theroughness funtion h(r) (for a �xed surfae) or h2(r) (for a free surfae). If q is a harateristiwavevetor of these roughness funtions and k = k0 + q, the veloity of the loalized waves isgiven by cs = ω/k = ck0/k sin θ, where θ is the inidene angle of the inoming wave. Thediretional e�ets are learly seen from the presene of k ==

√

k2
0 + 2k0q + q2 in the denominatorof this relation. It is worth noting that for q = ±k0, i.e. for roughness funtions (h(r) or h2(r))modulated with the same wavelength as the original Φ0-wave, there appear sattered waves withhalf the wavelength of the original Φ0-waves (wavevetor 2k0) and, in addition, the whole surfaesu�ers a vibration (independent of the oordinate r), orresponding to k = 0, a harateristiresonane phenomenon. The waves orresponding to the wavevetor 2k0 have a veloity ω/2k0,whih is twie as small as the original veloity on the surfae. This is indiative of the slownessphenomenon, assoiated with rough surfaes.The q = ±k0 resonane phenomenon is exhibited also by the waves sattered bak in the �uid.Another resonane phenomenon may appear for ±2k0q + q2 = 0, whih is the well-known Laue-Bragg ondition for the X-rays di�ration in rystalline bodies (or surfae gratings).[11℄ In this



6 J. Theor. Phys.ase k = k0, κ = κ0, and for k0 and q antiparallel the sattered waves propagate in oppositediretion with respet to the original inident Φ0-waves.A worth noting ase orresponds to q ≫ k0, when the wavevetor κ may beome purely imaginary(κ ≃ −q) and the sattered waves are on�ned to the surfae. Aording to equations (19) and(21), the re�eted waves are now damped (∼ eqz) and their amplitudes are proportional to theroughness funtions h(r) or h2(r). These surfae waves are generated by the rough surfae; theymay be alled rough-surfae waves.As it is well-known,[10℄ the sound propagation in �uids is also desribed by means of anotherpotential funtion Ψ, de�ned by δp = −ρ∂Ψ/∂t and v = u̇ = gradΨ, where ρ is the (mass) densityand v is the �uid veloity. Then, Euler's equation ρ∂v/∂t + gradδp = 0 is satis�ed identially,and the ontinuity equation ∂δρ/∂t+ρdivv = 0 beomes the wave equation ∂2Ψ/∂t2 − c2∆Ψ = 0,through δp = (∂p/∂ρ)Sδρ, with the sound veloity given by c2 = (∂p/∂ρ)S . The onnetionbetween the two potential funtion Ψ and Φ is simple. It is given by
δp = −ρ∂Ψ/∂t = (∂p/∂ρ)Sδρ = −ρ(∂p/∂ρ)Sdivu = −ρc2Φ , (23)or

∂Ψ

∂t
= c2Φ ; (24)for a monohromati wave Ψ = (ic2/ω)Φ. Aording to equation (1), the energy density (per unitmass) arried on by the longitudinal waves in a �uid is given by

e =
1

2
u̇2 +

1

2
c2Φ2 =

1

2

c4

ω2
(gradΦ)2 +

1

2
c2Φ2 , (25)where equation (24) is used for a monohromati wave. For a plane wave, equation (25) gives

e = c2Φ2.As it is well known, the energy of the inident wave is transferred to the re�eted waves. In thepresent ase, it is transferred both to the speularly re�eted waves as well as to the satteredwaves, inluding the waves loalized on the surfae and the waves sattered bak in the �uid.Within our approximation, in the limit h → 0, equation (25) gives the main ontribution
el ≃

2c4

ω2
h2ϕ2

0δ
′2(z) (26)for waves loalized on a �xed surfae and

el ≃
c4

2ω2
h2

2ϕ
2

0κ
2

0δ
′2(z) (27)for waves loalized on a free surfae. We an see that the loalized waves an store an appreiableenergy, espeially for a �xed surfae, arising from the omponent of the �uid veloity perpendiularto the surfae. Indeed, taking approximately δ

′2

(z) ≃ 1/h4
m (and δ(z) ≃ 1/hm), we get the ratio ofthe energy density stored on a �xed surfae (equation (26)) to the energy density of the inidentwave of the order of≃ h2λ2/h4

m, whih may ahieve large values even for h/hm ≪ 1, for wavelengths
λ muh longer than the extension hm of the surfae roughness. This result re�ets the large kinetienergy of the �uid partiles ating upon a �xed surfae.Using equations (19) and (21), we an alulate the re�etion oe�ients of the sattered waves(the ratio of their amplitude to the amplitude ϕ0 of the inident wave): R = iηhω2/2c2κ fora �xed surfae and R = ηh2κ0ω

2/4c2κ for a free surfae. It is worth noting the diretionality



J. Theor. Phys. 7e�ets exhibited by these re�etion oe�ients, through κ appearing in the denominator. Theenergy density arried on by the sattered waves is the square of these re�etion oe�ients.We an see that the total amount of energy arried on di�usively by the waves sattered by thesurfae roughness implies sums of the form ∑

q |h(q)|2 /κ2(q), or ∑

q |h2(q)|2 /κ2(q), where h(q)and h2(q) are the Fourrier transform of the roughness funtion h(r) and, respetively, h2(r) and
κ(q) =

√

κ2
0 − 2k0q − q2. In order to maximize this energy, it is neessary, apart from partiularases of gratings (one, or a few wavevetors q), to inlude as many Fourier omponents as possible,i.e. the surfae should be as "rough" as possible in order to have a good attenuation, a reasonablyexpeted result.Finally, it is worth noting that we should "renormalize" the amplitudes of the re�eted original

Φ0-waves suh as to inlude (aomodate) the sattered waves in the boundary onditions (aproedure spei� to theoretial-perturbation alulations).In onlusion, we may say that we have introdued a model of inhomogeneous surfae roughnessfor a semi-in�nite (half-spae) homogeneous, isotropi, ideal �uid and solved the wave equationfor the waves sattered by this surfae roughness in the �rst, relevant orders of approximationwith respet to the roughness magnitude. For a �xed surfae, the sattered waves appear in the�rst-order aproximation, while for a free surfae they appear in the seond-order approximation.The sattered waves are of two kinds: waves loalized (and propagating only) on the surfae(two-dimensional waves) and sattered waves re�eted bak in the �uid by the surfae roughness.In some ases, the latter waves may beome on�ned to the surfae (rough-surfae waves). There�eted waves are absent for a homogeneous roughness, where there exist only loalized waves.A similar model for surfae roughness an also be employed for elasti waves in solid bodiesor eletromagneti waves, as well as for small inhomogeneities distributed in the �uid volume(satterers). These subjets are left for a forthoming investigation.Aknowledgments. The author is indebted to his olleagues in the Department of Seismology,Institute of Earth's Physis, Magurele-Buharest, for many enlightening disussions, and to themembers of the Laboratory of Theoretial Physis, Magurele-Buharest, for a throughout analysisof this work. This work was partially supported by the Romanian Government Researh grantPN-RU-3/0072/22/2011.Referenes[3℄ D. L. Johnson, T. J. Plona and H. Kojima, "Probing porous media with �rst and seondsound. II. Aousti properties of watersaturated porous media", J. Appl. Phys. 76 115-125(1994).[2℄ F. Padilla, M. de Billy and G. Quentin, "Theoretial and experimental studies of surfaewaves on solid-�uid interfaes when the value of the �uid sound veloity is loated betweenthe shear and the longitudinal ones in the solid", J. Aoust. So. Am. 106 666-673 ((1999).[1℄ J.-Z. Wu and J.-M. Wu, "Interation between a solid surfae and a visous ompressible �ow�eld", J. Fluid Meh. 254 183-211 (1993).[4℄ B. Zhang and S. N. Chandler-Wilde, "Aousti sattering by an inhomogeneous layer on arigid plate", SIAM J. Appl. Math. 58 1931-1950 (1998).
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