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attering of longitudinal waves by a rough surfa
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s,Magurele-Bu
harest MG-6, POBox MG-35, Romaniaemail: afelix�theory.nipne.roAbstra
tA model of inhomogeneous rough surfa
e is introdu
ed for a semi-in�nite ideal �uid anda perturbation-theoreti
al s
heme is devised, with the roughness fun
tion as a peturbationparameter, for 
omputing the waves s
attered by the surfa
e roughness. The waves s
atteredby the rough surfa
e are both waves lo
alized (and propagating only) on the surfa
e (two-dimensional waves) and waves re�e
ted ba
k in the �uid. They exhibit dire
tional e�e
ts,slowness, attenuation or resonan
e phenomena, depending on the spatial 
hara
teristi
s ofthe roughness fun
tion. The re�e
tion 
oe�
ients and the energy 
arried on by these wavesare 
al
ulated both for �xed and free surfa
es. In some 
ases, the surfa
e roughness maygenerate waves 
on�ned to the surfa
e (damped, rough-surfa
e waves).Key words: ideal �uids, rough surfa
e, s
attered waves, lo
alized wavesPACS: 43.20.Fn; 43.30.Gv; 43.30.Hw; 43.20.El; 43.20.Bi; 47.35.Rs; 02.30.JrHighlights: A model of inhomogeneous rough surfa
e is introdu
ed for a semi-in�nite ideal �uid.A theoreti
al-perturbation s
heme with the roughness fun
tion as a perturbation parameter is putforward in order to 
ompute the waves (sound) s
attered by the rough surfa
e. The amplitude ofthe s
attered waves di�ers for a �xed or free surfa
e. S
attered waves lo
alized (and propagatingonly) on the surfa
e are identi�ed (two-dimensional waves), as well as (damped) surfa
e waves
reated by the surfa
e roughness. Dire
tional 
hara
ter, slowness and attenuation are dis
ussed,as well as possible resonan
e phenomena.1 Introdu
tionThe e�e
t of a rough, solid surfa
e on the �uid dynami
s, in parti
ular the waves (sound) s
atteredby the surfa
e roughness, enjoys a great deal of interest. The intera
tion between a solid wall andthe �uid �ow, as well as the a
tion of a solid interfa
e on the �uid dynami
s have been emphasizedre
ently.[1, 2℄ A rough surfa
e shares, to some extent, the properties of a porous medium.[3℄The surfa
e roughness was modelled as an inhomogeneous �uid layer on a rigid plate and thes
attering of a
ousti
 waves was 
onsidered within a radiative regime by means of 
oupled integralequations.[4℄ A great deal of insight into the s
attering me
hanism by rough surfa
es has beena
hieved[5℄ by means of Biot's theory and its re
ent developments.[6℄-[8℄ The general 
hara
teristi
sof the waves s
attered by a rough surfa
e are dire
tional e�e
ts, slowness and attenuation, as well
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es for surfa
e gratings (
orrugations). The main di�
ulty in getting morede�nite results in this problem resides in modelling 
onveniently the surfa
e roughness, su
h as toarrive at mathemati
ally operational approa
hes.[9℄We present here a model of inhomogeneous surfa
e roughness, i.e. a surfa
e whose elasti
 proper-ties di�er from the ones of the semi-in�nite (half-spa
e) �uid bulk, in 
ontrast with a homogeneoussurfa
e roughness whi
h has the same elasti
 properties as the bulk. In general, a surfa
e, espe-
ially a rough one, a
ts like a sour
e for s
attered waves. We devise here a theoreti
al-perturbations
heme for treating the wave equation for longitudinal (sound) waves proapagating in a semi-in�nite solid with a rough surfa
e. The peturbation parameter is the roughness fun
tion, i.e. thedeviation of the surfa
e from a plane. It is shown that the s
attered waves appear in the �rst-orderapproximation for a �xed surfa
e, while for a free surfa
e they appear only in the se
ond-orderapproximation. Two kinds of s
attered waves are identi�ed: waves lo
alized (and propagatingonly) on the surfa
e (two-dimensional waves) and waves re�e
ted ba
k in the �uid. In some 
ases,the latter waves may get 
on�ned to the surfa
e (damped, rough-surfa
e waves). For a homoge-neous roughness only the waves lo
alized on the surfa
e survive. The re�e
tion 
oe�
ients (andthe energy 
arried on by these waves) are 
al
ulated and various 
hara
teristi
s like slowness,attenuation or possible resonan
e phenomena are dis
ussed.2 Fluid with a rough surfa
eWe 
onsider a semi-in�nite (half-spa
e) homogeneous, isotropi
, ideal �uid, extending boundlesslyalong the r = (x, y) dire
tions and limited along the z-dire
tion by a surfa
e z = h(r), where
h(r) > 0 is a fun
tion to be further spe
i�ed (roughness fun
tion). The �uid o

upies the region
z < h(r). A small displa
ement �eld u(r, z, t) (where t denotes the time) gives rise to a densityimbalan
e δn = −ndivu in the �uid density n, a lo
al 
hange of volume δV = V divu and a lo
al
hange of pressure δp, depending on the equation of state of the �uid; for an adiabati
 
hange,
δp = (∂p/∂n)Sδn = −n(∂p/∂n)Sdivu, where S denotes the entropy. As it is well known,[10℄ su
ha �uid supports longitudinal waves (sound), des
ribed by the equation of motion

1

c2
ü − grad · divu = 0 , (1)where c is the sound velo
ity. Indeed, by taking the div in equation (1), we get the wave equationfor free waves propagating with velo
ity c. The displa
ement �eld is subje
ted to the 
ondition

curlu = 0. Therefore, it is 
onvenient to introdu
e the potential fun
tion Φ = divu (proportionalto the pressure) and write equation (1) as
1

c2
Φ̈ − ∆Φ = 0 . (2)For a semi-in�nite �uid with a surfa
e des
ribed by equation z = h(r) and extending in the region

z < h(r), the potential Φ 
an be written as
Φ = ϕ(r, z, t)θ[h(r) − z] , (3)where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step fun
tion. We assume that themagnitude of the roughness fun
tion h(r) is small in 
omparison with the relevant wavelengths ofthe elasti
 disturban
es propagating in the �uid, so that we may write

Φ ≃ Φ0 + δΦ0 , (4)
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Φ0 = ϕθ(−z) , δΦ0 = h(r)ϕδ(z) +

1

2
h2(r)ϕδ

′

(z) + ... , (5)where δ(z) is the Dira
 fun
tion (and the prime means di�erentiation with respe
t to the variable
z). The spe
i�
 
onditions of validity for this approximation will be dis
ussed on the �nal results.We assume that the potential ϕ satis�es the wave equation

1

c2
ϕ̈ − ∆ϕ = 0 (6)with spe
i�
 boundary 
onditions at z = 0. This equation des
ribes the in
ident and (spe
ularly)re�e
ted waves propagating in a �uid with a plane surfa
e z = 0. It is easy to see that for a �xedsurfa
e ∂ϕ/∂z|z=0

= 0, so that we have the plane waves
ϕ = 2ϕ0 cos κ0z · e−iωt+ik0r , (7)where ω is the frequen
y, k0 is the in-plane waveve
tor and κ0 =

√

ω2/c2 − k2
0. In this 
ase we
an limit ourselves to the �rst order in h in the se
ond equation (5), and get

δΦ0 = 2h(r)ϕ0δ(z)e−iωt+ik0r . (8)For a free surfa
e ϕ|z=0
= 0, so we have

ϕ = 2iϕ0 sin κ0z · e−iωt+ik0r ; (9)in this 
ase, the �rst-order 
ontribution to the se
ond equation (5) is vanishing and we get
δΦ0 = −ih2(r)κ0ϕ0δ(z)e−iωt+ik0r . (10)We 
an see that δΦ0 a
ts as a sour
e-term (a for
e) lo
alized on the surfa
e, whi
h 
an generates
attered waves. We denote the potential fun
tion asso
iated with these waves byΦ1; it satis�esthe wave equation

1

c2
Φ̈1 − ∆Φ1 = f , (11)where the for
e f is given by

f =
1

c2
δΦ̈0 − ∆δΦ0 . (12)Equation (11) is merely a re-writing of the wave equation for δΦ0. The for
e f is the di�eren
ebetween the inertial for
e δΦ̈0/c

2 and the elasti
 for
e ∆δΦ0; it represents the distin
t way thesurfa
e follows the wave motion in 
omparison with the bulk. For lo
alized waves equation (11)has the solution Φ1 = δΦ0. Another solutions are given by the waves s
attered ba
k in the �uidby the surfa
e roughness, i.e. waves generated in equation (11) by the sour
e term f (a parti
ularsolution of equation (11)). We generalize this model of surfa
e roughness by introdu
ing a di�erent"sound" velo
ity c in equation (12). The for
e is then written as
f =

1

c2
δΦ̈0 − ∆δΦ0 . (13)Su
h a generalization amounts to assuming that the elasti
 properties of the �uid lo
alized on therough surfa
e are di�erent than the elasti
 properties of the �uid bulk, i.e. the surfa
e roughnessis inhomogeneous in 
omparison with the bulk. This may 
orrespond either to a surfa
e whosephysi
al properties have been 
hanged, or to a �uid homogeneous everywhere, in
luding its roughsurfa
e. Indeed, in the latter 
ase, it is pre
isely the spatial variations of the rough surfa
e
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h a�e
t its elasti
 properties, viewed as a homogeneous medium, and render it, in fa
t, arough surfa
e whi
h is inhomogeneous with respe
t to the bulk. It is 
onvenient to introdu
e theparameter η = 1 − c2/c2 for des
ribing the inhomogeneous roughness. A homogeneous roughness
orresponds to η = 0.Obviously, a

ording to equations (4) and (5), the s
heme of 
al
ulation put forwad here is aperturbation-theoreti
al s
heme, with the roughness fun
tion h(r) as the perturbation parameter.We limit ourselves here to the �rst relevant orders of the perturbation theory. We 
an see thatfor a �xed surfa
e the �rst-order approximation is su�
ient for getting s
attered waves, while fora free surfa
e we have to go to the se
ond-order approximation. This implies already a doubles
attering by the surfa
e roughness. Higher-orders of the perturbation theory will give multiples
attering.3 Waves s
attered by the rough surfa
eWe use the potential δΦ0 given by equations (8) and (10) to 
ompute the for
e given by equation(13). The 
al
ulations are easily performed for one Fourier 
omponent h(q)eiqrof the roughnessfun
tion h(r), 
orresponding to the waveve
tor q (for simpli
ity we drop the argument q in h(q)).For a �xed surfa
e, making use of equation (8), we get
f = −2hϕ0

[

κ2δ(z) + δ
′′

(z)
]

e−iωt+ikr , (14)where k = k0 + q and κ =
√

ω2/c2 − k2. The solution of equation (11) is of the form Φ1 =

ϕ1(z)θ(−z)e−iωt+ikr, so that equation (11) be
omes
∂2ϕ1

∂z2
+ κ2ϕ1 =

∂ϕ1

∂z

∣

∣

∣

∣

∣

z=0

δ(z) + ϕ1|z=0
δ
′

(z) + 2hϕ0

[

κ2δ(z) + δ
′′

(z)
]

, (15)where κ =
√

ω2/c2 − k2. We note that k =
√

k2
0 + 2k0q + q2 and κ =

√

κ2
0 − 2k0q − q2. The
ombination of the waveve
tors k0 and q in k = k0 +q is the sour
e of dire
tional e�e
ts, in
ludedboth in k and κ. As it is well-known, the Green fun
tion of equation (15) (one-dimensionalHelmholtz equation) is

G(z − z′) =
1

2iκ
eiκ|z−z′| , (16)so that the solution of equation (15) is given by

ϕ1(z) =
∫

dz′S(z′)G(z − z′) , (17)where the sour
e S denotes the rhs of equation (15). The 
al
ulations are straightforward. We geta lo
alized solution ϕ1l = 2hϕ0δ(z), whi
h 
orresponds to δΦ0 given by equation (8), as expe
ted,and a wave re�e
ted ba
k in the �uid, given by
ϕ1r = −

ihϕ0

2κ
(κ2 − κ2)e−iκz , (18)or

Φ1r = iη
hϕ0ω

2

2c2κ
e−iωt+ikr−iκz (19)(for z < 0).
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e, making use of equation (10), we get a lo
alized wave
Φ1l = −ih2ϕ0κ0δ(z)e−iωt+ikr , (20)whi
h 
oin
ides with δΦ0 given by equation (10), and a re�e
ted wave
Φ1r = η

h2ϕ0κ0ω
2

4c2κ
e−iωt+ikr−iκz , (21)where

h2 =
∫

drh2(r)e−iqr (22)(whi
h depends on q) is the Fourier transform of the roughness fun
tion squared (the integrationis performed in equation (22) over the unit area).From the results derived above we 
an say, qualitativey, that the perturbation-theoreti
al s
hemeof 
al
ulation is valid for the magnitude of the roughness fun
tion mu
h smaller than the relevantwavelengths. For instan
e, from equation (19) we have hω2/c2κ ≪ 1, or h ≪ λ cos θr, where
λ is the wavelength of the s
attered wave and θr is its re�e
tion angle. From equation (21),we 
an see that the waves s
attered by a free surfa
e is a se
ond-order e�e
t, implying multiple(double) s
attering, within this approximation, as expe
ted. For the s
attered waves lo
alizedon the surfa
e, we may represent the δ-fun
tion as extending over a distan
e of the order of
hm = maxh(r), and the perturbation-theory 
riterion is satis�ed for h(r) ≪ hm, where h(r) is theaverage of the roughness fun
tion (the roughness fun
tion should have a few "spikes" only). For a
onstant roughness fun
tion (q = 0), the 
riterion of series expansion is not satis�ed for lo
alizedwaves, while the s
attered waves are re�e
ted ba
k along the original Φ0-waves; this parti
ular
ase should be in
luded in the original formulation of the problem for the Φ0-waves.It is also worth noting that we have waves Φ1r s
attered ba
k in the �uid only for an inhomogeneousroughness (η 6= 0); for a homogeneous roughness we have only the waves Φ1l lo
alized on thesurfa
e.4 Dis
ussion and 
on
luding remarksThe lo
alized waves Φ1l have the general form of the in
oming wave e−iωt+ik0rmodulated by theroughness fun
tion h(r) (for a �xed surfa
e) or h2(r) (for a free surfa
e). If q is a 
hara
teristi
waveve
tor of these roughness fun
tions and k = k0 + q, the velo
ity of the lo
alized waves isgiven by cs = ω/k = ck0/k sin θ, where θ is the in
iden
e angle of the in
oming wave. Thedire
tional e�e
ts are 
learly seen from the presen
e of k ==

√

k2
0 + 2k0q + q2 in the denominatorof this relation. It is worth noting that for q = ±k0, i.e. for roughness fun
tions (h(r) or h2(r))modulated with the same wavelength as the original Φ0-wave, there appear s
attered waves withhalf the wavelength of the original Φ0-waves (waveve
tor 2k0) and, in addition, the whole surfa
esu�ers a vibration (independent of the 
oordinate r), 
orresponding to k = 0, a 
hara
teristi
resonan
e phenomenon. The waves 
orresponding to the waveve
tor 2k0 have a velo
ity ω/2k0,whi
h is twi
e as small as the original velo
ity on the surfa
e. This is indi
ative of the slownessphenomenon, asso
iated with rough surfa
es.The q = ±k0 resonan
e phenomenon is exhibited also by the waves s
attered ba
k in the �uid.Another resonan
e phenomenon may appear for ±2k0q + q2 = 0, whi
h is the well-known Laue-Bragg 
ondition for the X-rays di�ra
tion in 
rystalline bodies (or surfa
e gratings).[11℄ In this
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ase k = k0, κ = κ0, and for k0 and q antiparallel the s
attered waves propagate in oppositedire
tion with respe
t to the original in
ident Φ0-waves.A worth noting 
ase 
orresponds to q ≫ k0, when the waveve
tor κ may be
ome purely imaginary(κ ≃ −q) and the s
attered waves are 
on�ned to the surfa
e. A

ording to equations (19) and(21), the re�e
ted waves are now damped (∼ eqz) and their amplitudes are proportional to theroughness fun
tions h(r) or h2(r). These surfa
e waves are generated by the rough surfa
e; theymay be 
alled rough-surfa
e waves.As it is well-known,[10℄ the sound propagation in �uids is also des
ribed by means of anotherpotential fun
tion Ψ, de�ned by δp = −ρ∂Ψ/∂t and v = u̇ = gradΨ, where ρ is the (mass) densityand v is the �uid velo
ity. Then, Euler's equation ρ∂v/∂t + gradδp = 0 is satis�ed identi
ally,and the 
ontinuity equation ∂δρ/∂t+ρdivv = 0 be
omes the wave equation ∂2Ψ/∂t2 − c2∆Ψ = 0,through δp = (∂p/∂ρ)Sδρ, with the sound velo
ity given by c2 = (∂p/∂ρ)S . The 
onne
tionbetween the two potential fun
tion Ψ and Φ is simple. It is given by
δp = −ρ∂Ψ/∂t = (∂p/∂ρ)Sδρ = −ρ(∂p/∂ρ)Sdivu = −ρc2Φ , (23)or

∂Ψ

∂t
= c2Φ ; (24)for a mono
hromati
 wave Ψ = (ic2/ω)Φ. A

ording to equation (1), the energy density (per unitmass) 
arried on by the longitudinal waves in a �uid is given by

e =
1

2
u̇2 +

1

2
c2Φ2 =

1

2

c4

ω2
(gradΦ)2 +

1

2
c2Φ2 , (25)where equation (24) is used for a mono
hromati
 wave. For a plane wave, equation (25) gives

e = c2Φ2.As it is well known, the energy of the in
ident wave is transferred to the re�e
ted waves. In thepresent 
ase, it is transferred both to the spe
ularly re�e
ted waves as well as to the s
atteredwaves, in
luding the waves lo
alized on the surfa
e and the waves s
attered ba
k in the �uid.Within our approximation, in the limit h → 0, equation (25) gives the main 
ontribution
el ≃

2c4

ω2
h2ϕ2

0δ
′2(z) (26)for waves lo
alized on a �xed surfa
e and

el ≃
c4

2ω2
h2

2ϕ
2

0κ
2

0δ
′2(z) (27)for waves lo
alized on a free surfa
e. We 
an see that the lo
alized waves 
an store an appre
iableenergy, espe
ially for a �xed surfa
e, arising from the 
omponent of the �uid velo
ity perpendi
ularto the surfa
e. Indeed, taking approximately δ

′2

(z) ≃ 1/h4
m (and δ(z) ≃ 1/hm), we get the ratio ofthe energy density stored on a �xed surfa
e (equation (26)) to the energy density of the in
identwave of the order of≃ h2λ2/h4

m, whi
h may a
hieve large values even for h/hm ≪ 1, for wavelengths
λ mu
h longer than the extension hm of the surfa
e roughness. This result re�e
ts the large kineti
energy of the �uid parti
les a
ting upon a �xed surfa
e.Using equations (19) and (21), we 
an 
al
ulate the re�e
tion 
oe�
ients of the s
attered waves(the ratio of their amplitude to the amplitude ϕ0 of the in
ident wave): R = iηhω2/2c2κ fora �xed surfa
e and R = ηh2κ0ω

2/4c2κ for a free surfa
e. It is worth noting the dire
tionality
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ts exhibited by these re�e
tion 
oe�
ients, through κ appearing in the denominator. Theenergy density 
arried on by the s
attered waves is the square of these re�e
tion 
oe�
ients.We 
an see that the total amount of energy 
arried on di�usively by the waves s
attered by thesurfa
e roughness implies sums of the form ∑

q |h(q)|2 /κ2(q), or ∑

q |h2(q)|2 /κ2(q), where h(q)and h2(q) are the Fourrier transform of the roughness fun
tion h(r) and, respe
ti
vely, h2(r) and
κ(q) =

√

κ2
0 − 2k0q − q2. In order to maximize this energy, it is ne
essary, apart from parti
ular
ases of gratings (one, or a few waveve
tors q), to in
lude as many Fourier 
omponents as possible,i.e. the surfa
e should be as "rough" as possible in order to have a good attenuation, a reasonablyexpe
ted result.Finally, it is worth noting that we should "renormalize" the amplitudes of the re�e
ted original

Φ0-waves su
h as to in
lude (a

omodate) the s
attered waves in the boundary 
onditions (apro
edure spe
i�
 to theoreti
al-perturbation 
al
ulations).In 
on
lusion, we may say that we have introdu
ed a model of inhomogeneous surfa
e roughnessfor a semi-in�nite (half-spa
e) homogeneous, isotropi
, ideal �uid and solved the wave equationfor the waves s
attered by this surfa
e roughness in the �rst, relevant orders of approximationwith respe
t to the roughness magnitude. For a �xed surfa
e, the s
attered waves appear in the�rst-order aproximation, while for a free surfa
e they appear in the se
ond-order approximation.The s
attered waves are of two kinds: waves lo
alized (and propagating only) on the surfa
e(two-dimensional waves) and s
attered waves re�e
ted ba
k in the �uid by the surfa
e roughness.In some 
ases, the latter waves may be
ome 
on�ned to the surfa
e (rough-surfa
e waves). There�e
ted waves are absent for a homogeneous roughness, where there exist only lo
alized waves.A similar model for surfa
e roughness 
an also be employed for elasti
 waves in solid bodiesor ele
tromagneti
 waves, as well as for small inhomogeneities distributed in the �uid volume(s
atterers). These subje
ts are left for a forth
oming investigation.A
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