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Abstract

A model of inhomogeneous rough surface is introduced for a semi-infinite ideal fluid and
a perturbation-theoretical scheme is devised, with the roughness function as a peturbation
parameter, for computing the waves scattered by the surface roughness. The waves scattered
by the rough surface are both waves localized (and propagating only) on the surface (two-
dimensional waves) and waves reflected back in the fluid. They exhibit directional effects,
slowness, attenuation or resonance phenomena, depending on the spatial characteristics of
the roughness function. The reflection coefficients and the energy carried on by these waves
are calculated both for fixed and free surfaces. In some cases, the surface roughness may
generate waves confined to the surface (damped, rough-surface waves).
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Highlights: A model of inhomogeneous rough surface is introduced for a semi-infinite ideal fluid.
A theoretical-perturbation scheme with the roughness function as a perturbation parameter is put
forward in order to compute the waves (sound) scattered by the rough surface. The amplitude of
the scattered waves differs for a fixed or free surface. Scattered waves localized (and propagating
only) on the surface are identified (two-dimensional waves), as well as (damped) surface waves
created by the surface roughness. Directional character, slowness and attenuation are discussed,
as well as possible resonance phenomena.

1 Introduction

The effect of a rough, solid surface on the fluid dynamics, in particular the waves (sound) scattered
by the surface roughness, enjoys a great deal of interest. The interaction between a solid wall and
the fluid flow, as well as the action of a solid interface on the fluid dynamics have been emphasized
recently.[1, 2] A rough surface shares, to some extent, the properties of a porous medium.|3]
The surface roughness was modelled as an inhomogeneous fluid layer on a rigid plate and the
scattering of acoustic waves was considered within a radiative regime by means of coupled integral
equations.[4] A great deal of insight into the scattering mechanism by rough surfaces has been
achieved|5] by means of Biot’s theory and its recent developments.|6]-|8] The general characteristics
of the waves scattered by a rough surface are directional effects, slowness and attenuation, as well



as possible resonances for surface gratings (corrugations). The main difficulty in getting more
definite results in this problem resides in modelling conveniently the surface roughness, such as to
arrive at mathematically operational approaches.|9]

We present here a model of inhomogeneous surface roughness, 7.e. a surface whose elastic proper-
ties differ from the ones of the semi-infinite (half-space) fluid bulk, in contrast with a homogeneous
surface roughness which has the same elastic properties as the bulk. In general, a surface, espe-
cially a rough one, acts like a source for scattered waves. We devise here a theoretical-perturbation
scheme for treating the wave equation for longitudinal (sound) waves proapagating in a semi-
infinite solid with a rough surface. The peturbation parameter is the roughness function, i.e. the
deviation of the surface from a plane. It is shown that the scattered waves appear in the first-order
approximation for a fixed surface, while for a free surface they appear only in the second-order
approximation. Two kinds of scattered waves are identified: waves localized (and propagating
only) on the surface (two-dimensional waves) and waves reflected back in the fluid. In some cases,
the latter waves may get confined to the surface (damped, rough-surface waves). For a homoge-
neous roughness only the waves localized on the surface survive. The reflection coefficients (and
the energy carried on by these waves) are calculated and various characteristics like slowness,
attenuation or possible resonance phenomena are discussed.

2 Fluid with a rough surface

We consider a semi-infinite (half-space) homogeneous, isotropic, ideal fluid, extending boundlessly
along the r = (z, y) directions and limited along the z-direction by a surface z = h(r), where
h(r) > 0 is a function to be further specified (roughness function). The fluid occupies the region
z < h(r). A small displacement field u(r, z, t) (where ¢ denotes the time) gives rise to a density
imbalance on = —ndivu in the fluid density n, a local change of volume 6V = Vdivu and a local
change of pressure dp, depending on the equation of state of the fluid; for an adiabatic change,
dp = (Op/On)sén = —n(0dp/On)sdivu, where S denotes the entropy. As it is well known,[10] such
a fluid supports longitudinal waves (sound), described by the equation of motion

1. .
S grad - diva =0 , (1)

where c is the sound velocity. Indeed, by taking the div in equation (1), we get the wave equation
for free waves propagating with velocity c¢. The displacement field is subjected to the condition
curlu = 0. Therefore, it is convenient to introduce the potential function ® = divu (proportional
to the pressure) and write equation (1) as

1

c2

d—AD=0. (2)
For a semi-infinite fluid with a surface described by equation z = h(r) and extending in the region
z < h(r), the potential ® can be written as

® = o(r, 2, )0[h(r) — 2] , (3)

where 6(z) = 1 for z > 0 and 6(z) = 0 for z < 0 is the step function. We assume that the
magnitude of the roughness function A(r) is small in comparison with the relevant wavelengths of
the elastic disturbances propagating in the fluid, so that we may write

q)ﬁq)o—l-(;q)o s (4)



where

¢0=¢m—@,5®0=hQMﬁ@)+%h%ﬂ¢5@)+”., (5)

where 0(2) is the Dirac function (and the prime means differentiation with respect to the variable
z). The specific conditions of validity for this approximation will be discussed on the final results.
We assume that the potential ¢ satisfies the wave equation

1.
gw—As@ZO (6)

with specific boundary conditions at z = 0. This equation describes the incident and (specularly)
reflected waves propagating in a fluid with a plane surface z = 0. It is easy to see that for a fixed
surface J¢/0z|,_, = 0, so that we have the plane waves

© = 2 COS Koz - e witikor (7)
where w is the frequency, kg is the in-plane wavevector and ro = y/w?/c? — kZ. In this case we
can limit ourselves to the first order in A in the second equation (5), and get

5Py = 2h(r)pod(z)e Witikor (8)

For a free surface ¢| _, =0, so we have

o —iwttikor |
¢ = 2ipg sin Koz - e WHTHOT 9)

in this case, the first-order contribution to the second equation (5) is vanishing and we get
5By = —ih?(r)Kopod(z)e  Witikor (10)

We can see that @, acts as a source-term (a force) localized on the surface, which can generate
scattered waves. We denote the potential function associated with these waves by®; it satisfies

the wave equation
1

c2

O — APy = [, (11)

where the force f is given by
1 .
c

Equation (11) is merely a re-writing of the wave equation for 6®y. The force f is the difference
between the inertial force 5, /c* and the elastic force Ad®g; it represents the distinct way the
surface follows the wave motion in comparison with the bulk. For localized waves equation (11)
has the solution ®; = d®y. Another solutions are given by the waves scattered back in the fluid
by the surface roughness, i.e. waves generated in equation (11) by the source term f (a particular
solution of equation (11)). We generalize this model of surface roughness by introducing a different
"sound" velocity € in equation (12). The force is then written as

C

Such a generalization amounts to assuming that the elastic properties of the fluid localized on the
rough surface are different than the elastic properties of the fluid bulk, 7.e. the surface roughness
is inhomogeneous in comparison with the bulk. This may correspond either to a surface whose
physical properties have been changed, or to a fluid homogeneous everywhere, including its rough
surface. Indeed, in the latter case, it is precisely the spatial variations of the rough surface



which affect its elastic properties, viewed as a homogeneous medium, and render it, in fact, a
rough surface which is inhomogeneous with respect to the bulk. It is convenient to introduce the
parameter n = 1 — ¢?/c® for describing the inhomogeneous roughness. A homogeneous roughness
corresponds to n = 0.

Obviously, according to equations (4) and (5), the scheme of calculation put forwad here is a
perturbation-theoretical scheme, with the roughness function h(r) as the perturbation parameter.
We limit ourselves here to the first relevant orders of the perturbation theory. We can see that
for a fixed surface the first-order approximation is sufficient for getting scattered waves, while for
a free surface we have to go to the second-order approximation. This implies already a double
scattering by the surface roughness. Higher-orders of the perturbation theory will give multiple
scattering.

3 Wayves scattered by the rough surface

We use the potential 0Py given by equations (8) and (10) to compute the force given by equation
(13). The calculations are easily performed for one Fourier component h(q)e@of the roughness
function h(r), corresponding to the wavevector q (for simplicity we drop the argument q in h(q)).
For a fixed surface, making use of equation (8), we get

f = —2hy, [E%(z) + 6//(2)} g iwttikr (14)

where k = ko + q and & = /w?/e®> — k2. The solution of equation (11) is of the form ®; =
©1(2)0(—2)e kT 5o that equation (11) becomes
0”1 2 Iy

T RO = 5
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3(2) + 1], 0 (2) + 2hepo [F2(2) + 0" (2)] (15)

z=0

where k = /w?/c® — k2. We note that k = \/kg +2koq + ¢* and Kk = \/ﬁg — 2koq — ¢2. The
combination of the wavevectors kg and q in k = kg +q is the source of directional effects, included
both in k and k. As it is well-known, the Green function of equation (15) (one-dimensional
Helmholtz equation) is X
Y N e 7 ey
G(z—2) = 55 € , (16)
so that the solution of equation (15) is given by

v1(z) = /dz/S(z’)G(z -2, (17)

where the source S denotes the rhs of equation (15). The calculations are straightforward. We get
a localized solution ¢y, = 2hpyd(2), which corresponds to d®, given by equation (8), as expected,
and a wave reflected back in the fluid, given by

Zh —tkZ
O = — ;:O (R* — k?)e , (18)
or b 9
. W —iwt+ikr—ikz
Dy, = in—g—e Tk (19)

(for z < 0).



Likewise, for a free surface, making use of equation (10), we get a localized wave
Dy = —ihyporod(z)e T (20)

which coincides with d®, given by equation (10), and a reflected wave

h2900’£0w2 —iwt+ikr—ikz
i ==, ’ 21)
where
hy = /OZI‘hQ(r)e”'qr (22)

(which depends on q) is the Fourier transform of the roughness function squared (the integration
is performed in equation (22) over the unit area).

From the results derived above we can say, qualitativey, that the perturbation-theoretical scheme
of calculation is valid for the magnitude of the roughness function much smaller than the relevant
wavelengths. For instance, from equation (19) we have hw?/c’k < 1, or h < Acos#,, where
A is the wavelength of the scattered wave and 6, is its reflection angle. From equation (21),
we can see that the waves scattered by a free surface is a second-order effect, implying multiple
(double) scattering, within this approximation, as expected. For the scattered waves localized
on the surface, we may represent the J-function as extending over a distance of the order of
h,, = max h(r), and the perturbation-theory criterion is satisfied for h(r) < h,,, where h(r) is the
average of the roughness function (the roughness function should have a few "spikes" only). For a
constant roughness function (q = 0), the criterion of series expansion is not satisfied for localized
waves, while the scattered waves are reflected back along the original ®y-waves; this particular
case should be included in the original formulation of the problem for the ®4-waves.

It is also worth noting that we have waves ®4, scattered back in the fluid only for an inhomogeneous
roughness (n # 0); for a homogeneous roughness we have only the waves ®;; localized on the
surface.

4 Discussion and concluding remarks

The localized waves ®;; have the general form of the incoming wave e~ *&ormodulated by the
roughness function h(r) (for a fixed surface) or h%(r) (for a free surface). If q is a characteristic
wavevector of these roughness functions and k = kg + q, the velocity of the localized waves is
given by ¢; = w/k = cko/ksinf, where 6 is the incidence angle of the incoming wave. The

directional effects are clearly seen from the presence of k == \/ k3 + 2koq + ¢2 in the denominator
of this relation. It is worth noting that for q = +ko, i.e. for roughness functions (h(r) or h?(r))
modulated with the same wavelength as the original ®y-wave, there appear scattered waves with
half the wavelength of the original ®g-waves (wavevector 2kg) and, in addition, the whole surface
suffers a vibration (independent of the coordinate r), corresponding to k = 0, a characteristic
resonance phenomenon. The waves corresponding to the wavevector 2ky have a velocity w/2ky,
which is twice as small as the original velocity on the surface. This is indicative of the slowness
phenomenon, associated with rough surfaces.

The q = £k( resonance phenomenon is exhibited also by the waves scattered back in the fluid.
Another resonance phenomenon may appear for £2koq + ¢ = 0, which is the well-known Laue-
Bragg condition for the X-rays diffraction in crystalline bodies (or surface gratings).[11] In this



case k = ko, kK = Ko, and for ko and q antiparallel the scattered waves propagate in opposite
direction with respect to the original incident ®y-waves.

A worth noting case corresponds to ¢ > ky, when the wavevector x may become purely imaginary
(k >~ —q) and the scattered waves are confined to the surface. According to equations (19) and
(21), the reflected waves are now damped (~ €?*) and their amplitudes are proportional to the
roughness functions h(r) or h*(r). These surface waves are generated by the rough surface; they
may be called rough-surface waves.

As it is well-known,|[10] the sound propagation in fluids is also described by means of another
potential function ¥, defined by ép = —pdV¥ /0t and v = 0 = gradV¥, where p is the (mass) density
and v is the fluid velocity. Then, Euler’s equation pdv /ot + graddp = 0 is satisfied identically,
and the continuity equation ddp/dt + pdivv = 0 becomes the wave equation 0*W /9t — *AV = 0,
through dp = (9p/0dp)sdp, with the sound velocity given by ¢ = (9p/dp)s. The connection
between the two potential function ¥ and & is simple. It is given by

op = —pdW /0t = (Op/Ip)sdp = —p(dp/dp)sdiva = —pc*® (23)
or 3\1/
- = 2 .
BT P (24)

for a monochromatic wave ¥ = (ic? /w)®. According to equation (1), the energy density (per unit
mass) carried on by the longitudinal waves in a fluid is given by

1 1 1ct 1
e = 5112 -+ §C2Q)2 = 5%(9T@d@)2 + §C2q)2 ) (25)

where equation (24) is used for a monochromatic wave. For a plane wave, equation (25) gives
22
e =c"o°.

As it is well known, the energy of the incident wave is transferred to the reflected waves. In the
present case, it is transferred both to the specularly reflected waves as well as to the scattered
waves, including the waves localized on the surface and the waves scattered back in the fluid.
Within our approximation, in the limit A — 0, equation (25) gives the main contribution

264 ’
v = 2R ) (26)

for waves localized on a fixed surface and

4

1 = o5 hptRgs ™ (2) (27)
for waves localized on a free surface. We can see that the localized waves can store an appreciable
energy, especially for a fixed surface, arising from the component of the fluid velocity perpendicular
to the surface. Indeed, taking approximately 0" (z) ~ 1/h3 (and §(z) ~ 1/h,,), we get the ratio of
the energy density stored on a fixed surface (equation (26)) to the energy density of the incident
wave of the order of ~ h?\?/h? | which may achieve large values even for h/h,, < 1, for wavelengths
A much longer than the extension h,, of the surface roughness. This result reflects the large kinetic
energy of the fluid particles acting upon a fixed surface.

Using equations (19) and (21), we can calculate the reflection coefficients of the scattered waves
(the ratio of their amplitude to the amplitude g of the incident wave): R = inhw?/2c¢%k for
a fixed surface and R = nhorow?/4c’k for a free surface. It is worth noting the directionality



effects exhibited by these reflection coefficients, through s appearing in the denominator. The
energy density carried on by the scattered waves is the square of these reflection coefficients.
We can see that the total amount of energy carried on diffusively by the waves scattered by the
surface roughness implies sums of the form >, Ih(q)]* /K2(q), or > lha(q)|” /k%(q), where h(q)
and hy(q) are the Fourrier transform of the roughness function i(r) and, respecticvely, h*(r) and

k(q) = \/ k3 — 2koq — ¢%. In order to maximize this energy, it is necessary, apart from particular
cases of gratings (one, or a few wavevectors q), to include as many Fourier components as possible,
i.e. the surface should be as "rough" as possible in order to have a good attenuation, a reasonably
expected result.

Finally, it is worth noting that we should "renormalize" the amplitudes of the reflected original
dp-waves such as to include (accomodate) the scattered waves in the boundary conditions (a
procedure specific to theoretical-perturbation calculations).

In conclusion, we may say that we have introduced a model of inhomogeneous surface roughness
for a semi-infinite (half-space) homogeneous, isotropic, ideal fluid and solved the wave equation
for the waves scattered by this surface roughness in the first, relevant orders of approximation
with respect to the roughness magnitude. For a fixed surface, the scattered waves appear in the
first-order aproximation, while for a free surface they appear in the second-order approximation.
The scattered waves are of two kinds: waves localized (and propagating only) on the surface
(two-dimensional waves) and scattered waves reflected back in the fluid by the surface roughness.
In some cases, the latter waves may become confined to the surface (rough-surface waves). The
reflected waves are absent for a homogeneous roughness, where there exist only localized waves.

A similar model for surface roughness can also be employed for elastic waves in solid bodies
or electromagnetic waves, as well as for small inhomogeneities distributed in the fluid volume
(scatterers). These subjects are left for a forthcoming investigation.
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