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tThe 
lassi
al theory of s
attering of longitudinal waves (sound) by small inhomogeneities(s
atterers) in an ideal �uid is generalized to a distribution of s
atterers and su
h as toin
lude the e�e
t of the inhomogeneities on the elasti
 properties of the �uid. The results areobtained by a new method of solving the wave equation with spatial restri
tions (
aused bythe presen
e of the s
atterers), whi
h 
an also be applied to other types of inhomogeneities(like surfa
e roughness, for instan
e). A 
oherent forward s
attering is identi�ed for a uniformdistribution of s
atterers (pra
ti
ally equivalent with a mean-�eld approa
h), whi
h is dueto the fa
t that our approa
h does not in
lude multiple s
attering. The re�e
ted wave isobtained for a half-spa
e of uniformly distributed 
arriers, as well as the �eld di�ra
ted by aperfe
t latti
e of s
atterers.Key words: s
attering of sound; inhomogeneities; ideal �uid; re�e
ted and di�ra
ted longitudinalwavesPACS: 43.20.Fn; 43.20.El; 43.20.Bi; 47.35.Rs; 02.30.JrHighlights: A new model of inhomogeneities, in
luding their e�e
t on the elasti
 properties of theelasti
 medium. Longitudinal waves re�e
ted from a half-spa
e of uniformly distributed s
atterers.Longitudinal waves (sound) di�ra
ted by a perfe
t latti
e of s
atterers.1 Introdu
tionThe s
attering of longitudinal waves (sound) by small inhomogeneities (s
atterers) in an ideal �uidis a well-known subje
t (see, for instan
e, Ref. [1℄). We derive here these 
lassi
al results by anew method, whi
h allows a generalization. The generalization 
onsists in in
luding the e�e
t theinhomogeneities may have upon the elasti
 properties of the �uid lo
alized on them (parameter ηin this paper) and to get the s
attered �eld arising from any distribution of s
attering 
enters. Themethod 
an be applied also to other types of s
atterers (like, for instan
e, a surfa
e roughness).There is a great deal of interest today in s
attering of sound, espe
ially in random media (byusing Foldy's theory and its re
ent developments),[2℄-[4℄ and, in general, in 
omplex media, whereserious mathemati
al di�
ulties are en
ountered.[5℄ The main di�
ulty resides in formulating a
onvenient model of inhomogeneities, su
h as to allow for mathemati
ally operational approa
hes.Though it does not in
lude the multiple s
attering, the model put forward here leads to de�niteresults, su
h as the �eld re�e
ted by a half-spa
e of uniformly distributed s
atterers, or the �elddi�ra
ted by a perfe
t latti
e of s
atterers.
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kgroundWe 
onsider a homogeneous, isotropi
, ideal �uid of in�nite extension. A small displa
ement �eld
u(r, t), where r denotes the position and t denotes the time, gives rise to a density imbalan
e
δn = −ndivu in the �uid density n, a lo
al 
hange of volume δV = V divu and a lo
al 
hangeof pressure δp, depending on the equation of state of the �uid; for an adiabati
 
hange, δp =
(∂p/∂n)Sδn = −n(∂p/∂n)Sdivu, where S denotes the entropy. As it is well known,[1℄ su
h a �uidsupports longitudinal waves (sound), des
ribed by the equation of motion

1

c2
ü − grad · divu = 0 , (1)where c is the sound velo
ity. Indeed, by taking the div in equation (1), we get the wave equationfor free waves propagating with velo
ity c. The displa
ement �eld is subje
ted to the 
ondition

curlu = 0. Therefore, it is 
onvenient to introdu
e the potential fun
tion Φ = divu (proportionalto the pressure) and write equation (1) as
1

c2
Φ̈ − ∆Φ = 0 . (2)The sound propagation in �uids is also des
ribed by means of another potential fun
tion Ψ, de�nedby δp = −ρ∂Ψ/∂t and v = u̇ = gradΨ, where ρ is the (mass) density and v is the �uid velo
ity.[1℄Then, Euler's equation ρ∂v/∂t+gradδp = 0 (for small velo
ities v) is satis�ed identi
ally, and the
ontinuity equation ∂δρ/∂t+ρdivv = 0 be
omes the wave equation ∂2Ψ/∂t2−c2∆Ψ = 0, through

δp = (∂p/∂ρ)Sδρ, with the sound velo
ity given by c2 = (∂p/∂ρ)S . The 
onne
tion between thetwo potential fun
tion Ψ and Φ is given by
δp = −ρ∂Ψ/∂t = (∂p/∂ρ)Sδρ = −ρ(∂p/∂ρ)Sdivu = −ρc2Φ , (3)or

∂Ψ

∂t
= c2Φ ; (4)for a mono
hromati
 wave Ψ = (ic2/ω)Φ. A

ording to equation (1), the energy density (per unitmass) 
arried on by the longitudinal waves in a �uid is given by

e =
1

2
u̇2 +

1

2
c2Φ2 =

1

2

c4

ω2
(gradΦ)2 +

1

2
c2Φ2 , (5)where equation (4) is used for a mono
hromati
 wave. For a plane wave, equation (5) gives

e = c2Φ2.3 Small inhomogenitiesWe assume a small inhomogeneity (foreign body, impurity) in an ideal �uid, pla
ed at a �xedposition ri, of a mean radius hi (a s
atterer). For hi mu
h smaller than the relevant wavelengthsof the disturban
es propagating in the �uid we 
an write the potential fun
tion Φ as
Φ(r, t) = ϕ(r, t)θ(|r − ri| − hi) ≃ ϕ(r, t)θ(|r − ri|) − hiϕ(r, t)δ(|r − ri|) , (6)where θ(x) = 1 for x > 0, θ(x) = 0 for x < 0 is the step fun
tion and δ is the Dira
 fun
tion, or

Φ = ϕ + δΦ , δΦ = −hiϕ(ri, t)δ(|r − ri|) . (7)



J. Theor. Phys. 3The potential Φ satis�es the free wave equation (with spe
i�
 boundary 
onditions at the surfa
eof the inhomogeneity). A

ording to our de
omposition given by equation (6) we 
an see that ϕsatis�es the free wave equation in the whole spa
e, while δΦ generates a sour
e-term (a for
e),lo
alized on the inhomogenity, whi
h may give s
attered waves. We introdu
e the potential Φ1for des
ribing these s
attered waves. It should obey the wave equation
1

c2
Φ̈1 − ∆Φ1 = f , (8)where the for
e f is given by

f =
1

c2
δΦ̈ − ∆δΦ . (9)Equation (8) is merely a re-writing of the wave equation for δΦ0. The for
e f is the di�eren
ebetween the inertial for
e δΦ̈/c2 and the elasti
 for
e ∆δΦ; it represents the distin
t way theinhomogeneity responds to (follows) the wave motion in 
omparison with the �uid bulk. For waveslo
alized on the inhomogeneity, equation (8) has the solution Φ1 = δΦ0. Another solutions aregiven by the waves s
attered in the �uid by the inhomogeneity, i.e. waves generated in equation(8) by the sour
e term f (a parti
ular solution of equation (8)). We generalize this model ofinhomogeneity by introdu
ing a di�erent "sound" velo
ity c in equation (9). The for
e is thenwritten as

f =
1

c2
δΦ̈ − ∆δΦ . (10)Su
h a generalization amounts to assuming that the elasti
 properties of the �uid lo
alized on theinhomogeneity are di�erent than the elasti
 properties of the �uid bulk. For instan
e, the spatialvariations of the s
atterer shape may a�e
t the elasti
 properties of the �uid in its neighbourhood.It is 
onvenient to introdu
e the parameter η = 1− c2/c2 for des
ribing su
h an "inhomogeneous"s
atterer. A homogeneous s
atterer (i.e., the absen
e of the s
atterer) would 
orrespond to η = 0.A perfe
tly rigid s
atterer would have c → ∞ and η → 1.Obviously, a

ording to equations (6) and (7), the s
heme of 
al
ulation put forwad here is aperturbation-theoreti
al s
heme, with the mean radius hi as the perturbation parameter. In viewof the small magnitude of the mean radius hi, we limit ourselves here to the �rst order of theperturbation theory.We 
onsider an in
ident plane wave ϕ = ϕ0e
−iωt+ikr, where ω = ck. Then, the sour
e-termbe
omes

δΦ = −hiϕ0δ(|r − ri|)e−iωt+ikri (11)and the for
e given by equation (10) reads
f = hiϕ0

[

ω2

c2
δ(|r− ri|) − ∆δ(|r − ri|)

]

e−iωt+ikri , (12)or
f = −η

hiϕ0ω
2

c2
δ(|r − ri|)e−iωt+ikri + hiϕ0

[

ω2

c2
δ(|r − ri|) − ∆δ(|r − ri|)

]

e−iωt+ikri . (13)As it is well known, the solution of equation (8) is given by
Φ1(r, t) =

1

4π

∫

dr′
ei

ω

c
|r−r′|

|r− r′| f(r′, t) , (14)
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ond term in the rhs of equation (13) 
an be integrated byparts in equation (14), and we get the lapla
ean applied to the Green fun
tion (spheri
al wave)of the Helmholtz equation. This way, we get the lo
alized waves
Φ1l = −hiϕ0

∫

dr′δ(r − r′)δ(|r′ − ri|) = −hiϕ0δ(|r − ri|) , (15)whi
h are pre
isely the lo
alized waves Φ1l = δΦ given by equation (11), as expe
ted (we leave asidethe exponential fa
tor e−iωt+ikri). The �rst term in the rhs of equation (13) gives the s
atteredwaves
Φ1s = −η

hiϕ0ω
2

4πc2
e−iωt+ikri

∫

dr′
ei

ω

c
|r−r′|

|r − r′| δ(|r
′ − ri|) . (16)We assume that the δ-fun
tion in equation (16) extends over the small distan
e hi, i.e. δ(|r − ri|) ≃

1/hi for |r − ri| < hi. Then, the integral in equation (16) is evaluated easily. We get
Φ1s ≃ −η

viϕ0ω
2

4πc2
e−iωt+ikri

eik|r−ri|

|r − ri|
, (17)where vi is the (mean) volume of the s
atterer.We 
an see that the validity of the perturbation-theoreti
al s
heme requires hi ≪ λ, where λ =

c/ω is the wavelength of the in
ident wave. A

ording to equation (17), the s
atterer generatesspheri
al waves, the d�erential 
ross-se
tion being given by
dσ = η2 v2

i ω
4

(4π)2c4
dΩ , (18)where Ω denotes the solid angle. As it is well known, it is proportional to the square volume ofthe s
atterer and the fourth power of the frequen
y. The energy �ux per unit mass) Γ = cer2dΩ(with the origin of the referen
e frame at ri) is given by

Γ = η2v2
i
ϕ2

0ω
4

(4π)2c
dΩ , (19)whi
h is to be 
ompared with the energy �ux c3ϕ2

0 per unit 
ross-se
tional area in the in
identwave (
ross-se
tion). The s
attered �eld given by equation (17) does not exhibit dire
tional e�e
ts,be
ause the �uid velo
ity v = (ic2/ω)gradδΦ in the sour
e-term given by equation (11) is isotropi
.We 
an say that the s
attered �eld given by equation (17) arises from a "monopole" s
atterer.There is another solution of the free waves equation in the presen
e of a small inhomogenity pla
edat ri: it is given by Φ
′ ∼ δ(r−ri). Indeed, it satis�es trivially the free waves equation for any r 6= ri.This potential fun
tion should 
arry in front of the δ-fun
tion a fa
tor proportional to the volume

vi. Sin
e 2πh2
i δ(r) = δ(r), it is easy to see that this fa
tor is 3vi/2. Under the a
tion of an in
identwave Φ0 this solution 
hanges by an amount whi
h 
an be derived from ∂δΦ

′

∂t = vgradΦ
′

=
(3/2)vivgradδ(r−ri), where v = gradΨ0 is the velo
ity of the �uid parti
les. For a mono
hromati
wave, making use of Ψ0 = (ic2/ω)Φ0, we get δΦ

′

= (3/2)vi(c
2/ω2)gradΦ0gradδ(r − ri), or, for aplane wave,

δΦ
′

=
3ivic

2ϕ0

2ω2
e−iωt+ikrikgradδ(r− ri) =

3iviϕ0

2k2
e−iωt+ikrikgradδ(r− ri) (20)(the multipli
ation should be done for 
omplex 
onjugate quantities). This 
hange in the potentialfun
tion gives rise to a for
e, similar with the for
e given above by equation (12). Introdu
ed in
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alized wave equal to δΦ
′ , as expe
ted, and a s
attered wave givenby

Φ
′

1s
= −iη

3viϕ0ω
2

8πc2
e−iωt+ikri

k

k2

∫

dr′
ei

ω

c
|r−r′|

|r − r′| gradδ(|r′ − ri|) , (21)or
Φ

′

1s
≃ η

3viϕ0ω

8πc
e−iωt+ikri

k(r − ri)

|r − ri|
eik|r−ri|

|r − ri|
(22)(leading approximation). We 
an see that these s
attered waves exhibit dire
tional e�e
ts, asarising from a "dipole" s
atterer.The total s
attered �eld is obtained by adding equations (17) and (22). We get

Φs = −η
viϕ0k

4π
(k − 3

2
kni)e

−iωt+ikri
eik|r−ri|

|r − ri|
, (23)where ni = (r − ri)/ |r − ri| is the unit ve
tor from the s
atterer to the observation point. The
ross se
tion is given by

dσ = η2 v2
i ω

4

(4π)2c4
(1 − 3

2
cos θi)

2dΩ , (24)where θi is the angle between the dire
tion of propagation of the in
ident wave and the dire
tionof observation from the s
atterer. For a perfe
tly rigid s
atterer we may take c → ∞ and η → 1.It is worth noting that there is a s
attering angle given by cos θ = 2/3 where the s
attered �eld isvanishing. This is a well-known, 
lassi
al result for the s
attering of sound.[1℄4 Dis
ussion and 
on
luding remarksFor a distribution of inhomogeneities equation (23) gives the s
attered �eld
Φs = −η

ϕ0k

4π
e−iωt

∑

i

vi(k − 3

2
kni)e

ikri
eik|r−ri|

|r − ri|
. (25)Let us assume a uniform distribution of identi
al s
atterers (vi = v), with a density σ, and takethe origin as the observation point (r = 0). The summation in equation (25) be
omes an integral,

Φs = −ησv
ϕ0k

2

4π
e−iωt

∫

dr(1 +
3

2
cos θ)eikr cos θ

eikr

r
, (26)where θ is the angle between the propagation ve
tor k and the position ri of the inhomogeneity.It is easy to see that the integral in equation (26) 
an be put in the form

∫

dr(1 +
3

2
cos θ)eikr cos θ

eikr

r
= − π

k2

∫ 1

−1
du

2 + 3u

(1 + u)2
, (27)where u = cos θ. We 
an see that this integral has a singularity for θ = π, arising from theba
kward s
atterers (forward s
attering). Indeed, we 
an see easily that for θi = π in equation(25) (a line of s
atterers), we get a logarithmi
 singularity. This is an example of 
oherent forwards
attering, 
orresponding to a vanishing phase kri+kri = 0 in equation (25), an expe
ted result fora uniform distribution of s
atterers without multiple s
attering, whi
h is equivalent with a mean-�eld approa
h for a uniform medium. It is to be 
ompared with the s
attering by one s
atterer(pla
ed at ri = 0), where the maximum of the s
attered �eld lies in the ba
kward dire
tion.
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t that our approa
h does not in
lude multiple s
attering (forinstan
e, forward and ba
kward s
attering).Equation (25) gives re�e
ted waves. Indeed, let us assume that we have a uniform distribution ofidenti
al s
atterers in a half-spa
e de�ned by z > d. The s
attered �eld given by equation (25)
an be written as
Φs = −ηv

ϕ0k
2

4π
e−iωt+ikrI , (28)where

I = −1

2

∑

i

1

ri

eikri(1+cos θi) − 3i

2

∂

∂k

∑

i

1

r2
i

eikri(1+cos θi) . (29)The summation in equation (29) is peformed oevr the half-spa
e. It is 
onvenient to introdu
e
k = (k⊥, κ), where k⊥ is the waveve
tor parallel to the surfa
e of the half-spa
e and κ is the
omponent of the waveve
tor perpendi
ular to this surfa
e. It is also 
onvenient to use 
ylindri
al
oordinates ri = (ri⊥, zi). The 
al
ulations are straightforward; they imply the known integral[7℄

∫

|z|
drJ0(k⊥

√
r2 − z2)eikr =

i

κ
eiκ|z| . (30)We get the leading 
ontribution to the s
attered �eld

Φs ≃ ησv
ϕ0k

2

4κ2
e−iωt+ik⊥r⊥e−iκz , (31)whi
h is the re�e
ted �eld. The re�e
tion 
oe�
ient (the ratio of the s
attered amplitude to theamplitude of the in
ident wave) is R = ησvk2/4κ2.It is worth dis
ussing a lati
ial distribution of identi
al s
atterers. The for
e whi
h generates thes
attered �eld in this 
ase 
ontains a fa
tor whi
h has the lati
e periodi
ity. For instan
e, thisfor
e in equation (13) 
an be written as

−η
hϕ0ω

2

c2
eikr

∑

i

δ(|r − ri|)e−ik(r−ri) (32)(where the fa
tor e−iωt is left aside). We 
an see that the summation over i is a periodi
 fun
tion of
r with the latti
e periodi
ity. Therefore, it 
an be expanded in a Fourier series involving only there
ipro
al ve
tors g of the latti
e. The s
attered �eld given by equation (8) 
an also be expandedin a Fourier series of waveve
tors k + g. We get the �nal result for the s
attered �eld at largedistan
es

Φs = ησvϕ0
eikr

8πr

∑

g

(k2 + 3kg)
∫

dr′ei(k−k
′
+g)r

′

, (33)where k
′

= kr/r is the waveve
tor of the s
attered wave and integration is performed over thes
atterers sample. We 
an see that the wave exhibits di�ra
tion spots, provided the well-knownLaue-Bragg di�ra
tion 
ondition k−k
′

+g = 0 (g2 +2kg = 0) is satis�ed. The 
ross-se
tion for adi�ra
tion spot is given by dσ = (π/8)(ησv)2V (k2+3kg)2dΩ, where V is the volume of the sample(
ompare with equation (24)). It 
an also be written as dσ = (π/8)(ησvk2)2V (2 − 3 cos θ)2dΩ,where θ is the angle between k and k
′ .Finally, we may say that a new model of small inhomogeneities (s
atterers) in an ideal �uid hasbeen introdu
ed here, whi
h allows for in
luding the e�e
t the inhomogeneities may have on theelasti
 properties of the �uid (parameter η). The 
lassi
al results for one s
atterer have beenre-derived by a new method of solving the wave equation and the wave re�e
ted by a half-spa
e



J. Theor. Phys. 7of uniformly distributed s
atterers, as well as the wave di�ra
ted by a perfe
t latti
e of s
atterershave been derived. The model 
an be extended to other types of inhomogeneities, like, for instan
e,a rough surfa
e, and may also be useful in the 
omplex problem of multiple s
attering.A
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