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2 J. Theor. Phys.2 BakgroundWe onsider a homogeneous, isotropi, ideal �uid of in�nite extension. A small displaement �eld
u(r, t), where r denotes the position and t denotes the time, gives rise to a density imbalane
δn = −ndivu in the �uid density n, a loal hange of volume δV = V divu and a loal hangeof pressure δp, depending on the equation of state of the �uid; for an adiabati hange, δp =
(∂p/∂n)Sδn = −n(∂p/∂n)Sdivu, where S denotes the entropy. As it is well known,[1℄ suh a �uidsupports longitudinal waves (sound), desribed by the equation of motion

1

c2
ü − grad · divu = 0 , (1)where c is the sound veloity. Indeed, by taking the div in equation (1), we get the wave equationfor free waves propagating with veloity c. The displaement �eld is subjeted to the ondition

curlu = 0. Therefore, it is onvenient to introdue the potential funtion Φ = divu (proportionalto the pressure) and write equation (1) as
1

c2
Φ̈ − ∆Φ = 0 . (2)The sound propagation in �uids is also desribed by means of another potential funtion Ψ, de�nedby δp = −ρ∂Ψ/∂t and v = u̇ = gradΨ, where ρ is the (mass) density and v is the �uid veloity.[1℄Then, Euler's equation ρ∂v/∂t+gradδp = 0 (for small veloities v) is satis�ed identially, and theontinuity equation ∂δρ/∂t+ρdivv = 0 beomes the wave equation ∂2Ψ/∂t2−c2∆Ψ = 0, through

δp = (∂p/∂ρ)Sδρ, with the sound veloity given by c2 = (∂p/∂ρ)S . The onnetion between thetwo potential funtion Ψ and Φ is given by
δp = −ρ∂Ψ/∂t = (∂p/∂ρ)Sδρ = −ρ(∂p/∂ρ)Sdivu = −ρc2Φ , (3)or

∂Ψ

∂t
= c2Φ ; (4)for a monohromati wave Ψ = (ic2/ω)Φ. Aording to equation (1), the energy density (per unitmass) arried on by the longitudinal waves in a �uid is given by

e =
1

2
u̇2 +

1

2
c2Φ2 =

1

2

c4

ω2
(gradΦ)2 +

1

2
c2Φ2 , (5)where equation (4) is used for a monohromati wave. For a plane wave, equation (5) gives

e = c2Φ2.3 Small inhomogenitiesWe assume a small inhomogeneity (foreign body, impurity) in an ideal �uid, plaed at a �xedposition ri, of a mean radius hi (a satterer). For hi muh smaller than the relevant wavelengthsof the disturbanes propagating in the �uid we an write the potential funtion Φ as
Φ(r, t) = ϕ(r, t)θ(|r − ri| − hi) ≃ ϕ(r, t)θ(|r − ri|) − hiϕ(r, t)δ(|r − ri|) , (6)where θ(x) = 1 for x > 0, θ(x) = 0 for x < 0 is the step funtion and δ is the Dira funtion, or

Φ = ϕ + δΦ , δΦ = −hiϕ(ri, t)δ(|r − ri|) . (7)



J. Theor. Phys. 3The potential Φ satis�es the free wave equation (with spei� boundary onditions at the surfaeof the inhomogeneity). Aording to our deomposition given by equation (6) we an see that ϕsatis�es the free wave equation in the whole spae, while δΦ generates a soure-term (a fore),loalized on the inhomogenity, whih may give sattered waves. We introdue the potential Φ1for desribing these sattered waves. It should obey the wave equation
1

c2
Φ̈1 − ∆Φ1 = f , (8)where the fore f is given by

f =
1

c2
δΦ̈ − ∆δΦ . (9)Equation (8) is merely a re-writing of the wave equation for δΦ0. The fore f is the di�erenebetween the inertial fore δΦ̈/c2 and the elasti fore ∆δΦ; it represents the distint way theinhomogeneity responds to (follows) the wave motion in omparison with the �uid bulk. For wavesloalized on the inhomogeneity, equation (8) has the solution Φ1 = δΦ0. Another solutions aregiven by the waves sattered in the �uid by the inhomogeneity, i.e. waves generated in equation(8) by the soure term f (a partiular solution of equation (8)). We generalize this model ofinhomogeneity by introduing a di�erent "sound" veloity c in equation (9). The fore is thenwritten as

f =
1

c2
δΦ̈ − ∆δΦ . (10)Suh a generalization amounts to assuming that the elasti properties of the �uid loalized on theinhomogeneity are di�erent than the elasti properties of the �uid bulk. For instane, the spatialvariations of the satterer shape may a�et the elasti properties of the �uid in its neighbourhood.It is onvenient to introdue the parameter η = 1− c2/c2 for desribing suh an "inhomogeneous"satterer. A homogeneous satterer (i.e., the absene of the satterer) would orrespond to η = 0.A perfetly rigid satterer would have c → ∞ and η → 1.Obviously, aording to equations (6) and (7), the sheme of alulation put forwad here is aperturbation-theoretial sheme, with the mean radius hi as the perturbation parameter. In viewof the small magnitude of the mean radius hi, we limit ourselves here to the �rst order of theperturbation theory.We onsider an inident plane wave ϕ = ϕ0e
−iωt+ikr, where ω = ck. Then, the soure-termbeomes

δΦ = −hiϕ0δ(|r − ri|)e−iωt+ikri (11)and the fore given by equation (10) reads
f = hiϕ0

[

ω2

c2
δ(|r− ri|) − ∆δ(|r − ri|)

]

e−iωt+ikri , (12)or
f = −η

hiϕ0ω
2

c2
δ(|r − ri|)e−iωt+ikri + hiϕ0

[

ω2

c2
δ(|r − ri|) − ∆δ(|r − ri|)

]

e−iωt+ikri . (13)As it is well known, the solution of equation (8) is given by
Φ1(r, t) =

1

4π

∫

dr′
ei

ω

c
|r−r′|

|r− r′| f(r′, t) , (14)



4 J. Theor. Phys.with f given by equation (13). The seond term in the rhs of equation (13) an be integrated byparts in equation (14), and we get the laplaean applied to the Green funtion (spherial wave)of the Helmholtz equation. This way, we get the loalized waves
Φ1l = −hiϕ0

∫

dr′δ(r − r′)δ(|r′ − ri|) = −hiϕ0δ(|r − ri|) , (15)whih are preisely the loalized waves Φ1l = δΦ given by equation (11), as expeted (we leave asidethe exponential fator e−iωt+ikri). The �rst term in the rhs of equation (13) gives the satteredwaves
Φ1s = −η

hiϕ0ω
2

4πc2
e−iωt+ikri

∫

dr′
ei

ω

c
|r−r′|

|r − r′| δ(|r
′ − ri|) . (16)We assume that the δ-funtion in equation (16) extends over the small distane hi, i.e. δ(|r − ri|) ≃

1/hi for |r − ri| < hi. Then, the integral in equation (16) is evaluated easily. We get
Φ1s ≃ −η

viϕ0ω
2

4πc2
e−iωt+ikri

eik|r−ri|

|r − ri|
, (17)where vi is the (mean) volume of the satterer.We an see that the validity of the perturbation-theoretial sheme requires hi ≪ λ, where λ =

c/ω is the wavelength of the inident wave. Aording to equation (17), the satterer generatesspherial waves, the d�erential ross-setion being given by
dσ = η2 v2

i ω
4

(4π)2c4
dΩ , (18)where Ω denotes the solid angle. As it is well known, it is proportional to the square volume ofthe satterer and the fourth power of the frequeny. The energy �ux per unit mass) Γ = cer2dΩ(with the origin of the referene frame at ri) is given by

Γ = η2v2
i
ϕ2

0ω
4

(4π)2c
dΩ , (19)whih is to be ompared with the energy �ux c3ϕ2

0 per unit ross-setional area in the inidentwave (ross-setion). The sattered �eld given by equation (17) does not exhibit diretional e�ets,beause the �uid veloity v = (ic2/ω)gradδΦ in the soure-term given by equation (11) is isotropi.We an say that the sattered �eld given by equation (17) arises from a "monopole" satterer.There is another solution of the free waves equation in the presene of a small inhomogenity plaedat ri: it is given by Φ
′ ∼ δ(r−ri). Indeed, it satis�es trivially the free waves equation for any r 6= ri.This potential funtion should arry in front of the δ-funtion a fator proportional to the volume

vi. Sine 2πh2
i δ(r) = δ(r), it is easy to see that this fator is 3vi/2. Under the ation of an inidentwave Φ0 this solution hanges by an amount whih an be derived from ∂δΦ

′

∂t = vgradΦ
′

=
(3/2)vivgradδ(r−ri), where v = gradΨ0 is the veloity of the �uid partiles. For a monohromatiwave, making use of Ψ0 = (ic2/ω)Φ0, we get δΦ

′

= (3/2)vi(c
2/ω2)gradΦ0gradδ(r − ri), or, for aplane wave,

δΦ
′

=
3ivic

2ϕ0

2ω2
e−iωt+ikrikgradδ(r− ri) =

3iviϕ0

2k2
e−iωt+ikrikgradδ(r− ri) (20)(the multipliation should be done for omplex onjugate quantities). This hange in the potentialfuntion gives rise to a fore, similar with the fore given above by equation (12). Introdued in



J. Theor. Phys. 5equation (14), it generates a loalized wave equal to δΦ
′ , as expeted, and a sattered wave givenby

Φ
′

1s
= −iη

3viϕ0ω
2

8πc2
e−iωt+ikri

k

k2

∫

dr′
ei

ω

c
|r−r′|

|r − r′| gradδ(|r′ − ri|) , (21)or
Φ

′

1s
≃ η

3viϕ0ω

8πc
e−iωt+ikri

k(r − ri)

|r − ri|
eik|r−ri|

|r − ri|
(22)(leading approximation). We an see that these sattered waves exhibit diretional e�ets, asarising from a "dipole" satterer.The total sattered �eld is obtained by adding equations (17) and (22). We get

Φs = −η
viϕ0k

4π
(k − 3

2
kni)e

−iωt+ikri
eik|r−ri|

|r − ri|
, (23)where ni = (r − ri)/ |r − ri| is the unit vetor from the satterer to the observation point. Theross setion is given by

dσ = η2 v2
i ω

4

(4π)2c4
(1 − 3

2
cos θi)

2dΩ , (24)where θi is the angle between the diretion of propagation of the inident wave and the diretionof observation from the satterer. For a perfetly rigid satterer we may take c → ∞ and η → 1.It is worth noting that there is a sattering angle given by cos θ = 2/3 where the sattered �eld isvanishing. This is a well-known, lassial result for the sattering of sound.[1℄4 Disussion and onluding remarksFor a distribution of inhomogeneities equation (23) gives the sattered �eld
Φs = −η

ϕ0k

4π
e−iωt

∑

i

vi(k − 3

2
kni)e

ikri
eik|r−ri|

|r − ri|
. (25)Let us assume a uniform distribution of idential satterers (vi = v), with a density σ, and takethe origin as the observation point (r = 0). The summation in equation (25) beomes an integral,

Φs = −ησv
ϕ0k

2

4π
e−iωt

∫

dr(1 +
3

2
cos θ)eikr cos θ

eikr

r
, (26)where θ is the angle between the propagation vetor k and the position ri of the inhomogeneity.It is easy to see that the integral in equation (26) an be put in the form

∫

dr(1 +
3

2
cos θ)eikr cos θ

eikr

r
= − π

k2

∫ 1

−1
du

2 + 3u

(1 + u)2
, (27)where u = cos θ. We an see that this integral has a singularity for θ = π, arising from thebakward satterers (forward sattering). Indeed, we an see easily that for θi = π in equation(25) (a line of satterers), we get a logarithmi singularity. This is an example of oherent forwardsattering, orresponding to a vanishing phase kri+kri = 0 in equation (25), an expeted result fora uniform distribution of satterers without multiple sattering, whih is equivalent with a mean-�eld approah for a uniform medium. It is to be ompared with the sattering by one satterer(plaed at ri = 0), where the maximum of the sattered �eld lies in the bakward diretion.



6 J. Theor. Phys.This singularity arises from the fat that our approah does not inlude multiple sattering (forinstane, forward and bakward sattering).Equation (25) gives re�eted waves. Indeed, let us assume that we have a uniform distribution ofidential satterers in a half-spae de�ned by z > d. The sattered �eld given by equation (25)an be written as
Φs = −ηv

ϕ0k
2

4π
e−iωt+ikrI , (28)where

I = −1

2

∑

i

1

ri

eikri(1+cos θi) − 3i

2

∂

∂k

∑

i

1

r2
i

eikri(1+cos θi) . (29)The summation in equation (29) is peformed oevr the half-spae. It is onvenient to introdue
k = (k⊥, κ), where k⊥ is the wavevetor parallel to the surfae of the half-spae and κ is theomponent of the wavevetor perpendiular to this surfae. It is also onvenient to use ylindrialoordinates ri = (ri⊥, zi). The alulations are straightforward; they imply the known integral[7℄

∫

|z|
drJ0(k⊥

√
r2 − z2)eikr =

i

κ
eiκ|z| . (30)We get the leading ontribution to the sattered �eld

Φs ≃ ησv
ϕ0k

2

4κ2
e−iωt+ik⊥r⊥e−iκz , (31)whih is the re�eted �eld. The re�etion oe�ient (the ratio of the sattered amplitude to theamplitude of the inident wave) is R = ησvk2/4κ2.It is worth disussing a latiial distribution of idential satterers. The fore whih generates thesattered �eld in this ase ontains a fator whih has the latie periodiity. For instane, thisfore in equation (13) an be written as

−η
hϕ0ω

2

c2
eikr

∑

i

δ(|r − ri|)e−ik(r−ri) (32)(where the fator e−iωt is left aside). We an see that the summation over i is a periodi funtion of
r with the lattie periodiity. Therefore, it an be expanded in a Fourier series involving only thereiproal vetors g of the lattie. The sattered �eld given by equation (8) an also be expandedin a Fourier series of wavevetors k + g. We get the �nal result for the sattered �eld at largedistanes

Φs = ησvϕ0
eikr

8πr

∑

g

(k2 + 3kg)
∫

dr′ei(k−k
′
+g)r

′

, (33)where k
′

= kr/r is the wavevetor of the sattered wave and integration is performed over thesatterers sample. We an see that the wave exhibits di�ration spots, provided the well-knownLaue-Bragg di�ration ondition k−k
′

+g = 0 (g2 +2kg = 0) is satis�ed. The ross-setion for adi�ration spot is given by dσ = (π/8)(ησv)2V (k2+3kg)2dΩ, where V is the volume of the sample(ompare with equation (24)). It an also be written as dσ = (π/8)(ησvk2)2V (2 − 3 cos θ)2dΩ,where θ is the angle between k and k
′ .Finally, we may say that a new model of small inhomogeneities (satterers) in an ideal �uid hasbeen introdued here, whih allows for inluding the e�et the inhomogeneities may have on theelasti properties of the �uid (parameter η). The lassial results for one satterer have beenre-derived by a new method of solving the wave equation and the wave re�eted by a half-spae
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