Journal of Theoretical Physics

Founded and Edited by M. Apostol 206 (2011)

ISSN 1453-4428

On the molecular forces acting between macroscopic bodies
M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,
Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract

The eigenfrequencies are identified for two electromagnetically-coupled semi-infinite solids
with plane-parallel surfaces (two half-spaces) separated by a third, polarizable body. The
corresponding van der Waals-London and Casimir forces are calculated from the zero-point
energy (vacuum fluctuations) of the normal modes. It is shown how the results can be
extended to bodies of any shape, in particular to a sphere interacting with a half-space. The
calculations are performed by using the well-known Lorentz-Drude (plasma) model of (non-
magnetic) polarizable matter. The polarization degrees of freedom are explicitly introduced.
It is shown that the polarization dynamical variables for the two bodies are coupled through
the electromagnetic field, very similar with two infnite sets of coupled harmonic oscillators.
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1 Introduction

As it is well known, the molecular forces acting between atoms (molecules), known as van der
Waals-London and Casimir forces, have been derived originally by quantum-mechanical calcu-
lations in the non-retarded (small distance)[1]-[3] and, respectively, retarded (large distance)
regime[4| (see also Refs. [5, 6]). The force acting in the retarded regime between an atom and a
semi-infinite conductor (half-space) has also been derived by quantum-mechanical calculations,[4]
while the retarded force acting between two conducting half-spaces (Casimir force) has been origi-
nally derived by advancing arguments related to the zero-point energy (vacuum fluctuations) of the
electromagnetic field with suitable boundary conditions at the surfaces of the two half-spaces.|7]
On the other hand, it was realized that these molecular forces are related to the internal electri-
cal polarization of matter. The macroscopic bodies bring their own characteristics with respect
to the electrical polarization (like plasmons, polaritons, surface effects, etc), in comparison with
individual quantum particles.|8]-[12]

Molecular forces acting between macroscopic bodies, either conductors or dielectrics, have been
derived by the theory of the quantum-statistical electromagnetic fluctuations,[13]-[15] as well as
within the framework of the source theory.[16, 17| Both theories consider, on one hand, the polar-
ization as an external source, and estimate the response of the electromagnetic field to this source,



and, on the other hand, include polarization (via the dielectric function) in the electromagnetic
field, viewing the latter as a dynamical variable (coordinate). For this reason, there was never
clearly grasped which are the normal modes which fluctuate and bring the zero-point energy in
the molecular forces.

We describe here the polarization by a displacement field of the mobile charges in polarizable
matter and solve the coupled equations of motion of this field, interacting via the electromagnetic
field, for two semi-infinite solids with plane-parallel surfaces (two half-spaces) separated by a third,
polarizable body. The calculations are done by using the well-known Lorentz-Drude (plasma)
model of (non-magnetic) polarizable matter. We show that the polarizations of the two bodies
interact with each other via their electromagnetic field, very much alike two infinite sets of coupled
harmonic oscillators. The normal modes of the ensemble of the two bodies are identified and
the eigenfrequencies are computed. The force is derived from the zero-point energy (vacuum
fluctuations) of these normal modes. We compute the van der Waals-London and Casimir forces
for two half-spaces, either conductors or dielectrics, separated, in general, by a third polarizable
body. In view of the great deal of interest developed recently for the subject,[18]-[37] we show
here how to compute such forces between bodies of any shape, and give the result for the force
acting between a sphere and a half-space.

Some particular results concerning the derivation of the molecular forces along the lines described
above have been previously published.[38, 39] The method used here has also been previously
illustrated in Refs. [40, 41].

2 Matter polarization

We adopt a generic model of matter polarization consisting of identical mobile charges ¢, with mass
m and density n, moving in a rigid, neutralizing background of volume V. A small displacement
field u(R,t) in the position R of these charges gives, at the time ¢, a local density imbalance
on = —ndivu and a polarization charge density p = —ngdivu. We can see that P = nqu is the
polarization. Therefore, the displacement field u(R, t) is a representation for the polarization field
P(R.,t). The displacement field obeys the Newton law of motion

mii = ¢(E + Eg) — mw?u — myu (1)

where E is the polarization electric field generated by the polarization charges (and currents),
we is a characteristic frequency, v is a (small) damping factor and Eg is an external electric
field. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,|42]-[44] which
assumes a homogeneous, isotropic matter, without spatial dispersion, represented by a field of
harmonic oscillators of frequency w.. Taking the temporal Fourier transform of equation (1),
with E, = E 4+ Eq the total electric field, we get the electric susceptibility x(w) = P/FE; and the

dielectric function
w? —w? —w? w? — w?
ew)=1+dmy(w)= 57— L =L (2)
W —w; Fwy w?—wp+awy

where w, = y/4mng?/m is the plasma frequency. This is also well known as the Lydane-Sachs-
Teller dielectric function,[45] with the longitudinal frequency wy, = /w2 + w2 and the transverse
frequency wr = w.. The latter can be taken as the main absorption frequency of the substance.
The model can be generalized by including the spatial dispersion, several characteristic frequencies

w,, or by adding an external magnetic field, etc. It is worth noting the absence of the magnetic



part of the Lorentz force in equation (1), according to the non-relativistic motion of the slight
displacement u. It is easy to see that, apart from relativistic contributions, it would introduce
non-linearities in equation (1), which are beyond our assumption of a small displacement u. Using
spatial Fourier transforms, this approximation can be formulated as Ku(K) < 1, where K is the
wavevector.

In general, an additional displacement uy can be introduced in such a model, originating in external
causes, subjected to collisions and obeying a different, averaged equation of motion, muy = qE;T,
where 7 is a relaxation time; as it is well known, it gives rise to a density of "conduction" current
jo = nquy = (ng*t/m)E, and the conductivity ¢ = ng*r/m. We can see that it implies w. = 0
in equation (1), a condition which defines the conductors; for dielectrics, w. # 0. We leave aside
the conduction current j,. We also leave aside the small damping parameter v in the equation of
motion (1).

The displacement field u produces polarization charge and current densities given by
opP
p = —divP = —ngdivu , j = Fr nqu , (3)

which can be used to compute the electromagnetic potentials

O(R, 1) = [dRAREIS

(4)
A(R, t) — %de/j(Rlvt*‘R*R/VC)

IR-R/|

(subjected to the Lorenz gauge divA + (1/c¢)0®/0t = 0). These potentials give rise to the electric
field E in equation (1), whence we can get the displacement u. This way, we can compute the

electromagnetic fields of a polarizable body, subjected to the action of an external electromagnetic
field.

3 Half-space

For a half-space extending over the region z > d we take the polarization as
P =ng(u, u.)0(z — d) , (5)

where 6(z) = 0 for z < 0 and 0(z) = 1 for z > 0 is the step function. The polarization charge and
current densities are given by

p = —ng(diva + 22)0(z — d) — nqu.(d)é(z — d) , o

6

We use Fourier decompositions of the type
1 o
u(r, z;t) = P Z/dwu(k,z;w)e_w“kr , (7)
Kk

where R = (r, z), and may omit ocassionally the arguments k, w, writing simply u(z), or u.
The electromagnetic potentials given by equations (4) includes the "retarded" Coulomb potential
e'eR=R'l /1R — R/|, for which we use the well-known decomposition|[46]

6i)\|R_RI| i 1 ik(r—r') ik|z—2z'
ol K ®)



where A = w/c and kK = /A2 — k2. It is more convenient to compute first the vector potential A
and then derive the scalar potential ® from the gauge equation divA —iA® = 0. The calculations
are straightforward and we get the Fourier tranforms of the potentials
Dk, z;w) == 2 [* d/kuel==# 1 — 2mL % oty einlz=#
| (9)
Ak, zw) = ? fdoo d7'(u, u)el*

(where we have left aside the factor ng; it is restored in the final formulae). In order to compute
the electric field (E = {AA — grad®) it is convenient to refer the in-plane vectors (i.e., vectors
parallel with the surface of the half-space) to the vectors k and k; = e, x k, where e, is the unit
vector along the z-direction; for instance, we write

k k
u:u1k+u2 kL (10)

and a similar representation for the electric field parallel with the surface of the half-space. In
performing the calculations, it is worth paying attention to the derivative of the modulus function,
according to the equation

82 ; / ; /

We’“"z’z' = k%™ 1 20k6(2 — 7). (11)
z

We get the electric field

_ . oo g 1 ik|z—z'| _ 27rk‘ o ik|z—z \
E1—27Tmfd dz'ue fd dz'ue
9 . ,
Eg _ 2#;)\ fdoo dzlu2€m|z—z | ’ (12)

E, = —M@fd dz uyetrl==#1 4 2’”k f dz'u,e™ | — 4ru (2 — d) .

Making use of equations (12), we can check easily the equalities

OFE, : U,
=4 —d)—4 = - 1
P 7r< P ) 0(z —d) —dru,(z = d)o(z — d) (13)
which is an expression of Gauss’s law, and
)
ka—; +ik2E, = —AridNu0(z — d) | (14)

which reflects Faraday’s and Maxwell-Ampere’s equations. From equation (13), we can check the
transversality condition divE = 0 for the electric field outside the half-space (z < d).

We use now the equation of motion (1) (with v = 0) for Ey given by equation (12) and for the
combinations iku; + du,/0z and kdu,/0z + ik*u, in the region z > d. Taking into account that
divEy = 0 and kOFEy, /0z + ik*Ey, = 0 (for a plane wave) we get

aa =0, k%—km u, =0,
or
Put kPu=0, (15)
where -
K? =K — Ay (16)



The components u; o of the displacement field are given by u; o = ALge”"Z, where A; 5 are con-
stants, while u, = —(k/r’)A1e"'* (we restrict ourselves to outgoing waves, ' > 0). The total

electric field inside the half-space is given by the equation of motion (1):

E = (- wu (17)

q
for z > d. We can see that the field propagates in the half-space with a modified wavevector
k', according to the Ewald-Oseen extinction theorem.[47] The modified wavevector k' given by

equation (16) can also be written as

u)2

2 2

K? = =g k (18)
where ¢ is the dielectric function (as given by equation (2)). We can check the well-known polari-
tonic dispersion relation cw? = ¢? K2, where K’ = (k, «') is the wavevector.

The amplitudes A; 5 can be derived from the original equation (1) and the field equations (12)
(for z > d). We get

1 2 ke'+k? ik —k)d ikz _ G
Alwpﬁ/(ﬁ_ﬁ)e e = L Ey

(19)

2

%A2w2

i(k'—kK)d ikz _ 4
pn(n’fn)e € - mEO2 :

The (polarization) electric field, both inside and outside the half-space, can be computed from
equations (12). We get

E, = —47anA1 eir'z _ 2mngA; r;r(f;rkj) iK' —R)d girz Cz>d,
E, = —47qu2 el 27qu2 )ez(“/_"‘)demz , z2>d (20)

E, = 47qulTQ) w2 L 9rngA, K:/';;rkj)) gl =mdginz 5~ |
p
for z > d. It is worth noting that the polarization electric field, as given by equations (20), includes
both the external field ~ ¢** (with opposite sign) and the displacement field u ~ ¢/, This can
be checked easily by using equations (19) and (20). The (polarization) electric field outside the
half-space (in the region z < d) is given by

E, = —2mngA, ;"‘R fn) el tRde=irz o

(21)

E2 = —27anA2 R(/:;j—fi)

and E, = (k/k)E; for z < d. We can see that it is the field reflected by the half-space (k — —k).
Making use of equations (19) and (21) we get the total electric field E; = E + Eq outside the
half-space

ei(m/—l—n)de—inz L2 < d

Ey = _QquAl KK lf’j) 62(5 +,‘€) —ikz + QquAl KK +k )62(5/_R)demz 7
Ep = —2mnqA, K(K);im) i(r/ +r)dp—irz 4 27ngAs K(K)in) iK' —r)d iz 7 (22)
Ei. = —27qu17ﬁE§'({,;Tf3 el tR)dg—irz _ 27qu17ﬁE§?;ﬂ€3 el —r)d itz

for z < d.



The magnetic field, given by H = curlA, can be obtained from equation (9) for the vector
potential. It is given by

H, _47anA2’f w *WQ) ZRZ+27T7LQA2 A zn—n)d mz7 z>d,

H, = —47rnqA1# w2 _ 9rngA, A/ +?) i —r)dginz o (23)
D

Lk’ (5 —k)

H, = —4rngA,M =28 in's _ onpa A, el —r)dginz 5 >
p

Ii(l{ —K)

for z > d and

H, = —27anA2,€,—’}me"("‘/+”)de*mz , 2 <d,
Hy = 2mngA, I:“R fj)) el tR)de=inz o < (| (24)
H, = QquAQ,{(,{ +K)€i(n/+ﬁ)defmz L2 < d

for z < d. We can check the Maxwell equation curlE = i\H. Making use of equations (19) and
(23), from curlEy = iA\H, we get the total magnetic field H; = H + Hj inside the half-space

, 2,2 .2y .,
Hy, = 47qu2Lw2) 'z = —47qu1wem Z

K'w?
p
(25)
wr—w?) ik'z
H,, = —4mngA, it N2 e
for z > d and the total magnetic field outside the half-space
H,y = _QquA2 Rlinei(nurn)defmz _ anqA2 R,);Rei(ﬁ/fn)demz ’
Hyy, = 27ngA, ;nﬁ—fj)) iKW +R)dp—irz 4 QquAl%ei(n/_n)demz : (26)
H,, = —27anA2 ,{(,{ +,{) ez(fc +I€) —iKkz + 27anA2 ,{(,{))]in) ei(n’_n)deinz

for z < d.

The amplitudes A; 5 can be viewed either as being determined by the external field Eq (and Hy)
through equations (19), or as free parameters. In the latter case equations (19) are not valid
anymore, but the (polarization) electric and magnetic fields given by equations (20), (21), (23)
and (24) hold. We can check also that all the fields are continuous at the surface z = d, except
for £, and E,,, which exhibit a discontinuity (F;,(z = d~) = cE;.(z = dT)), as expected.

4 Energy and momentum conservation. Stress force

Making use of the equation of motion (1) and Maxwell equations

curlE = —198 " cyplH = 128 4 A0y (27)

we get easily the well-known law of energy conservation|48|

gt(ﬁ +E,) = /dfs+ , (28)



where

1
Bl = o [ ROE + H) (29
8T
is the energy of the electromagnetic field inside the half-space,
1 12 2112
E, = m dR(|a|” + w; ul”) (30)
is the matter energy and
St= "B xH+ce (31)
8

is the Poynting vector. The integration in equations (29) and (30) is performed over the volume of
the half-space and the integration in equation (28) is performed over the surface of the half-space
(oriented to the outside), df denoting the infinitesimal element of area. For instance, for an infinite
half-space the surface f is given by z = d, oriented toward negative values of z (we assume that
the field is vanishing at infinity). Similarly, the energy conservation reads

o )
o By = / dfS (32)

for the energy of the electromagnetic field outside the half-space. Since the in-plane components
of the field are continuous at the surface z = d (or any other surface placed at a finite distance)
the two (oriented) Poynting vectors cancel each out. Their contribution is also vanishing for any
other surface placed at infinity, so we get the conservation of the total energy

%(Ejm +E, +E, =0. (33)

It is also well known the law of momentum conservation|48|

0 o
fz‘i‘aG;r:a]UJr G :3]-0

— 4
’L] ) 8t KA (3 )

”
where f is the Lorentz force acting upon charges and currents in matter, G = S/c? is the electro-
magnetic momentum and

1 1

0 = — |EfE; + HiH; — ~6;(|E] + [HP)| = cc. (35)
8T 2

is the stress tensor (whose components are labelled by i, j). It is easy to see that the total force

is given by the surface integral [ df;o;;, For surfaces placed at infinity this force is vanishing, but

it gives a non-vanishing contribution on the surface z = d (0,,), arising from the discontinity

AE?) = |B(z = d )| = |B.(z = d")|” ; (36)

for instance, taking the average values with respect to time by (1/7") | dt, where ' — oo, and mak-
ing use of equations (17) and (22) for the Fourier transforms of the (total) field, this discontinuity
is proportional to
k*e+1
K2e—1

ALl (37)

A similar discontinuity occurs also in the absence of the external field. At first sight, it seems that
the half-space would experience a stress force acting upon its surface on behalf of the electromag-
netic field, even in the absence of an external electromagnetic field. Such a force (in the context



of the electromagnetic fluctuations) is usually associated with the Casimir (and van der Waals-
London) forces.[13]-[17] It is due to the infinite extension of the half-space along the z-direction.
In fact, such bodies have a finite extension along the z-axis, so that there is another surface where
the discontinuity given by equation (36) is cancelled out. In general, the stress forces are internal
forces; they act on the surface of the bodies (or interfaces of inhomogeneous bodies), giving a
surface tension.

5 Two half-spaces

For a half-space extending in the region z < —d we can repeat the calculations done in the previous
Section. The displacement field in this case is written as (v, v,)0(—z — d). It is easy to see that
we can get the results for the half space extending in the region z < —d from those pertaining to
the half-space extending in the region z > d by changing z into —z. For instance, the displacement
field is given by v, 9 = By 2™ and v, = (k/K')Bie~*"*, where Bj 5 are constant amplitudes; the
electric field is given by

By = —4mngB, %e*i’“ — 2mng By R’f’(‘;f_]‘i) iK' —r)d g —irz , 2 < —d
p
Ey = —47an32%e*m/z - 2ﬁangﬁi@ei(K'*“)de*i”Z , 2 < —d, (38)
p
E, = —47rnq31%e’m/z — 2mngB, ig’f’;};ﬁ“_kz)) gl =mdg=irz o~ _
D
for 2 < —d and
E1 = —27anBl Ij’({/;/ifj) ei(l{LHﬂ)d@iliz . 2> —d ’
(39)
E2 = —27anB2 K(’j;j’h)) ei(f{’+1€)deiﬁz , 2 > —d
and E, = —(k/k)E; for z > —d; and the amplitudes B 5 are given by
1 2 ke +k? i(k/ —r)d ,—ikz _
EBlwpn’(n’fn)e( Memins = %Em )
(40)

2 . .
lBQWQ )\7 ez(n —n)de—mz — %EOZ ]

We consider now two half-spaces, one, denoted by 1, extending in the region z > d/2, another,
denoted by 2, occupying the region z < —d/2. The field pertaining to these half-spaces is given
here and in the previous Section, with d replaced by d/2. We focus on the amplitudes equations
(19) and (40). The external field for the half-space 2 (equations (40)) is the field given by equations
(21), produced by half-space 1 in the region z < d/2; similarly, the external field for the half-space
1 (equations (19)) is the field given by equation (39), produced by half-space 2 in the region
z > —d/2. All the quantities pertaining to half-spaces 1, 2 will get a suffix 1 or, respectively, 2.
Introducing these fields in equations (19) and (40) we get the dispersion equations

BITE | RTK 2ikd _ q
Ki+Kk  KhLFK )
(41)
Ki—K  Ky—K kK] —k? . kkh—k?  2id -1
Ki+k  khte  kE]HEZ keL4E?




The solutions of these equations give the eigenfrequencies of the two electromagnetically-coupled
half-spaces. Since, according to equation (18),

(k' £ r) (kK £ k) = N(en £ ), (42)
the second dispersion equation (41) can also be written as

/ /

1, 43
Ky +e1k Ky + eak (43)

where €1 o(w) are the dielectric functions of the two half-spaces. These dispersion equations have
been established in Refs. [8], [10, 11], by using continuity conditions for the electromagnetic field
at the surfaces of the two half-spaces.

6 Casimir force

In general, the dispersion equations (41) have not solutions. However, there exist particular
conditions, corresponding precisely to physically interesting cases, which ensure solutions for the
dispersion equations (41). For instance, conductors are characterized by w. = 0 and large values
of w,. In this case, the z-component ' of the wavevector is purely imaginary and its magnitude
acquires large values in comparison with & (i.e., A). Purely imaginary wavevectors k' correspond
to damped surface plasmon-polariton modes in conductors (see, for instance, Refs. [38, 40]),
in agreement with the original Casimir’s assumption concerning the boundary conditions at the
surfaces of two semi-infinite metals. In this retarded regime of interaction the electromagnetic field
is propagating between the two half-spaces (k real), but it is damped along the z-direction inside
the conducting half-spaces. Good dielectrics are characterized by w < w. < wy, so that ' (which
is real) acquires again large values. This condition is usually referred to as the condition of long
wavelengths in comparison with the main (characteristic) absorption wavelength of the substance
(see, for instance, Ref. [15]). It is easy to see that equations (41) have solutions kd = mn, n
any integer, for ’/@’172’ > K9, |€12| K12. Solutions kd = mn can be easily understood. In the
in-between region there is a field produced by the half-space 1, which goes like E®), H() ~ g=ix2
and a field produced by the half-space 2, which goes like E?, H® ~ e*?  Cross-terms of the
form EW*E® | integrated over z from —d/2 to d/2, in the energy of the electromagnetic field in
this region give rise to the factor sin kd. The condition kd = mn ensures the vanishing of this
interaction energy. There is also an interaction electromagnetic energy inside the two half-spaces
(involving cross-terms), which cannot, in general, be removed, except in those cases where it is
practically negligible. This condition correspond to }Fo’w} > Kio, |€12] K12

The solutions kd = mn (k = v/ A% — k?) imply the eigenfrequencies

n?
Qn(k) =cy\/ k2 + o (44)

according to equations (19) and (40); the corresponding amplitudes can be written as

A1,2,n = 27Ta1,2,n5(w - Qn(k)) ) (45)

iQn (k) k] 2%

where uy 9, (k, 2;t) = aj2,6 e We can see that a2, are displacements, according to
equation (7), and they correspond to the coordinates of harmonic-oscillators with frequencies

Q,(k). According to equations (40), a similar representation holds for the amplitudes Bj 2 of the



displacement field in the half-space 2, as well as for the associated electromagnetic fields. In effect,
the coordinates of the a; 5 ,-type are the coordinates of the normal modes (labelled by k and n) of
the two electromagnetically-coupled half-spaces. The energy asssociated with these normal modes,
implied by equation (45) (or the similar equation for amplitudes By 5,,), is the total energy of the
ensemble (i.e., the matter energy and the energy of the electromagnetic field, of the form given in
equations (29) and (30)) into the energy of an infinite set of harmonic oscillators with frequencies
Q,(k); the energy of the electromagnetic field plays the role of interacting energy, while the
polarization degrees of freedom of the two half-spaces are associated with the dynamical variables
(matter energy). The motion of the normal modes can be quantized, according to standard rules,
so that the ground-state energy is given by

E= ZZHQ ShCZ/dk ky/k2 + ”2”’2 (46)

n=0 k

where S denotes the area of the surface and factor 2 has been introduced in order to account for
the two labels 1 and 2.

We estimate the change brought about by the finite distance d in the energy E by using the
Euler-Maclaurin formula:[49]

A = 37 CTRE e )

where B,, are the Bernoulli’s numbers and
f(k) = 52 he / dkkvi? + K2 ; (48)

introducing u = k? 4+ k?, equation (47) becomes

ap =85 (_1)mf(3m(ﬁ/d)2ml <L2 duﬁ)fm_l) , (49)

47 2m)!
m=1

The only contribution to equation (49) comes from the third-order derivative. We get (B = 1/30)

m2heS 1
AFE = — - — 50
720 d3 ( )
and an attractive force 2pes 1
T“hc
F=— - — 1
240 d* (5 )

which is the well-known Casimir force, acting between two half-spaces with parallel surfaces sep-
arated by distance d. We can see that it is the same for dielectrics and conductors (under the
conditions given before), including the pair conductor-dielectric, does not depend on the nature
of the two semi-infinite bodies and arises from the zero-point (vacuum) fluctuations of the motion
of the charge carriers in the two polarizable bodies. We may say that it has a universal character.

The effect of the temperature 7" = 1/ can be incorporated in equation (49) by the change

/ﬁ du/ii / du/iicotl [%6710\/6] | (52)

For realistic values of the parameters we have Shc/d > 1, so we get a temperature correction
factor ~ coth(/Shc/d) in the expression of the force.



7 van der Waals-London force

For shorter distances d, the electromagnetic field acquires the non-retarded regime corresponding
to A — 0; it follows that x ~ ik, i.e. the electromagnetic field is damped along the z -direction,
both inside and ouside the half-spaces. In this limit we have

2
~ p 2 0 )2 “p
K~k — > . RE kP A {1—2@2_%2)} (53)

and kK’ — k% ~ —2k* Making use of these approximations, the second equation (41) leads to

1 1 1
2 2 2 2 2 2 2 2 —2kd
(w —We T §wp1)((w — Wea §wp2) = prlwzﬂe : (54)
We solve this equation for large values of the kd, which bring the main contribution to integrals over
k. Within this approximation, the rhs of equation (54) may be treated as a small perturbation.
From the zero-point energy, we get the van der Waals-London force (per unit area) for distinct

bodies

hw 1
F = — plpr : _3 ) (55)
167r\/§(]102(wp101 + Wp202) d
where
gore +1
Cho= 22— 56
b2 €o12 — 1 (56)

01,2 being the static dielectric constants (for conductors, C'; o — 1). For identical bodies, the

force becomes 5o
F = — hwp 60 _ 1 * i (57)
327v/2 \eo + 1 a3

(for conductors |g¢| — 00).

8 A third body

We assume now that a slab of thickness d and parameters w3, w3 (body 3) is inserted in the gap
between the two half-spaces. All the calculations given in Sections 2 and 3 are repeated for this
body, which brings its own component % of the wavevevector along the z-axis, given by

= k2 — —— N2k (58)
g3 being the dielectric function of this body. The first dispersion equation (41) becomes now
(HHK | ) <ff’2+f€. 11 )62mgd:
Ki—K  Kh+K Kh—K Kh—kK Kbtk Kh—K

K4k 11 Kbtk 11
Ki—K  Kh—K KR Kh—K  Kh—K Kotk )

while the second dispersion equation (41) can be written as

(59)

(arb- = by)(ash- — by )e™s? = (arby — b )(ashy —b-) (60)



where )
ki + Kk K+ K gk + K

i = = ,.:1,2 6]-
¢ kk, —k* K,—K €Kk — K, ! (61)
and )42
KK
by = B ER (62)
Ky F K

We can see that the dispersion equations (41) can be retrieved from equations (59) and (60) by
putting formally % = &, as for vacuum.

For large values of |k} ,| (either conductors or dielectrics), equations (59) and (60) have solution
Kkyd = mn, n integer, which implies e3(w)\? = *K%, where K} = (k, 7n/d). This equation has
two solution branches, one starting at y /w2; + w2 with an asymptote ~ cK3, and another starting

as vK} and asymptote w3, where

We3 C
v=c = , (63)
\/ %33 + Wc23 V€30

£30 being the (static) dielectric constant of the body 3. These are the well-known polariton
branches in a polarizable body. It follows that the Casimir force is given by the same equation
(51) with the renormalized light velocity (polariton velocity) v, as expected. For a conducting
body inserted in the gap (k% purely imginary), the force is vanishing.

In the non-retarded regime x ~ ik the situation is more complicated. Equation (60) leads to

[4(w?® = Di)(w? = D3) — whwps] [4(W* = Ds)(w? — D3) — wppwps] =

(64)
=4 [w2 (w? — D3) —w2(w? — Dy)] [wh(w? — D3) — wl(w?® — Dy)] e
where . 41
€oi .
D; = —w? ,i=1,2,3. 65

The zero-point energy associated with the solutions of this equation leads to the van der Waals-
London force. It is easy to see that for large values of D3 (weak dielectric in-between), equation
(64) becomes equation (54),which means that the effect of a weak dielectric introduced in the gap
between the two half-spaces is a second-order correction. For two identical conductors 1 and 2
and a distinct conductor 3 in-between the force is given by

o w—whoo 1

F=— N 66
322 (2 4 B B (66)

More complicated situations can be treated by solving equation (64).

9 Formulae of the theory of the electromagnetic fluctuations

We give here a formal deduction of the formulae obtained within the framework of the theory of
the electromagnetic fluctuations, following Refs. [8], [10, 11]

Suppose that the eigenvalues €, (k) are given by the roots of an equation written as G(w, k) = 0,
like one of equations (41). Then, the zero-point energy can be written as

E= %h%@n(k) - %%/dwﬁm , (67)



or
h 0

(per unit area), where the integration with respect to w is performed around the positive w-axis
(we assume that function G has no poles). We pass from the variables (w, k) to the variables

(&, p) defined by
w=if, p=+/1+ck?/§sgn(§) . (69)

The jacobian of this transformation is

Olw, k) i&p
e p) - DI (70)

and the integration is represented as

/O:dp/iodg—/lmdp/owdg (71)

We take for G = 0 equations (41), which, with the new variables, become

G, = (s1+p)(s2+p) e2pd/e _ 1 _
L™ (s1=p)(s2—p) ’
(72)
G, = (s1t+e1p)(s2+eap) e2rd/c _ 1 — )
27 (si—e1p)(s2—e2p) T

where s; = (g, — 1 +p?)Y/2,i = 1,2 and & is replaced by x = —ip/c. The derivative with respect
to w in equation (68) becomes

oG 0G  p*—10G
— =—1==+1 —-— .
Ow 3 p§ OIp

(73)

In order to get the force, we take the (minus) derivative with respect to d in equation (68) and
make use of

oG _ 2
od ¢

Combining equations (73) and (74), we get easily
0(18@)_2(1 1 §p0G+p2—1§>

9d\Gow) ic\p pG G209 G2 Op

(G+1). (74)

(75)

An integration by parts in F' = 9F/dd leads to the force

h o o 1 1
F=__—""_ 2 3 4 —
923 /1 dpp /0 1133 (G1+ G2> : (76)

which is the well-known formula given in Refs. [13]-[17]. For finite temperatures the integration
over ¢ is replaced by a summation over the integers n, such as Sh¢, = 2mn, where 8 = 1/T is the
reciprocal of the temperature 7.

For conductors, in the non-retarded limit, equation (76) leads to the Casimir force given by
equation (51). For poor dielectrics, or combinations of poor dielectrics with conductors, equation
(76) brings a small correction factor in the Casimir force (see, for instance, equation (82.6) in
Ref. [15]), which indicates, in fact, that the force is vanishing in this case. In the limit of good
dielectrics, equation (76) leads to the same universal Casimir force given by equation (51).



In the non-retarded limit w — 0 (£ — 0), the most important contribution to the p-integral in
equation (76) comes from p > 1, due to the presence of the exponential in the denominator.
Consequently, we may take s; 9 ~ p, which leads to

(14 e1)(1 + &) -
F~— d d -1
167r2d3 / T / ¢ { 1—e)(1—2)° ’ (77)
which is the well-known formula given in Refs. [13]|-[17] for the van der Waals-London force. The
evaluation of the &-integral is difficult, so we cannot compare the result with equation (55).

Both equations (76) and (77) can be extended to very rarefied bodies, leading to well-known forces
computed quantum-mechanicaly for two interacting atoms (molecules).[15] In general, equations
(76) and (77) are valid where there exist solutions of equation G(w,k) = 0 (equations (41)).
Unfortunately, equations (76) and (77) may also indicate false solutions (as for poor dielectrics).

10 Concluding remarks. Sphere and half-space

Let us denote by Fy/, = C'S/d" the van der Waals-London or Casimir force acting between two
half-space separated by distance d, where C' is a constant, S is the transverse area of the two
half-spaces, n = 3 for the van der Waals-London force and n = 4 for the Casimir force. We look
for a force df = Cy/|z|™ dV, acting between the half-space and a "macroscopically infinitesimal"
element of volume dV placed at distance |z| from the half-space, such as

/ if = Fyjs (78)

where the integration is performed over the other half-space. We find easily C; = Cn and n; =
n + 1. Now we compute the force

1
F p— pr—
s /df Cn / v (R+d—rcosf)n+t (79)

acting between the half-space and a sphere of radius R placed at distance d from the half-space
(the distance between the half-space and the surface of the sphere); the integration in equation
(79) is performed over the volume of the sphere. The integration in equation (79) is elementary,
and, for R > d, we get the force

N 2nCR
* T (n—1)dnt
The force acting between a half-space and a spherical sell of radius R is 2rC'R?/d". In a similar

way we can derive the force acting between two bodies of any shape. The force acting between
two macroscopic particles is given by

(80)

n(n+1)(n+2)C
Qmrdnt4

where v, 5 are the volumes of the two particles.

f = VU (81)

Finally, it is worth commenting here on the meaning of the zero-point energy, as obtained by the
present method.

The coupled equations of motion have been solved here both for the polarization (displacement)
field (Newton’s equation (1)) and the electromagnetic field obeying Maxwell’s equations (equa-
tions (4)). It was found that the solution depends on two free parameters, A;», which obey



harmonic-oscillator equations of motion, with certain characteristic frequencies €, (k) (equation
(45)). Consequently, the harmonic-oscillator hamiltonian was set up for these dynamical variables
and its zero-point energy has been calculated. On the other hand, inserting the solution of the
equations of motion, containing the two free parameters A; o, into the matter and electromagnetic
field energy (equations of the type (29) and (30)), we get an energy depending on these two pa-
rameters A; 5. An expansion in normal modes shows that this energy is the same as the energy
given by the clasical limit of the harmonic-oscillator hamiltonian.

Indeed, the problem can be cast into another form. We can start with a particles-in-the field
hamiltonian of the form

1 qd \\2
H,=qb+ —(p—-A 82
g+ 5 -(p—24) (52

for matter interacting with the electromagnetic field in bodies 1 and 2 (with corresponding inte-
gration over volume in equation (82)). The electromagnetic energy of the form

o /dR(!E\Q +HP) (83)
8T
must be add to the energy given by equation (82), for each bodies 1 and 2 as well as for the in-
between space (for the third body a corresponding energy, both of matter and the electromagnetic
field should be added). It is well known that an energy of the form given by equation (83) can be
written as a sum of energies of independent oscillators (including the longitudinal and the scalar
deegres of freedom of the electromagnetic field);|50] it reads

Hep = Z(‘pT‘Q +w72’ ‘q?“’2) ) (84)

T

N | —

where g, are the normal-modes coordinates and p, denote their momentum. Equation (84) can
be viewed as the hamiltonian of the electromagnetic field. It is obtained from equation (83) by
introducing the normal coordinates for the vector and scalar potentials of the form

A= ZQT(t)AT(R) ) (85)

where )

AA, +22A, =0, w, =K, | (86)
C

the wavevector K, being given by the boundary conditions. We can check then the Maxwell
equations for potentials, by ¢, + w?q, = 0.

Therefore, we have matter hamiltonians (equation (82)) and electromagnetic hamiltonians (equa-
tion (84)) for each of the three regions, the interaction between matter and the electromagnetic
field being included in the matter hamiltonians. At first sight, there is no interaction between
the two bodies (or the three space regions). However, we should add the continuity equations
(or discontinity conditions) for the electromagnetic field at the surfaces of separation of the three
space regions. This is usually done by introducing the dielectric functions of the material (non-
magnetic) bodies, which amounts to removing the explicit effect of the interaction of matter with
the electromagnetic field. There are cases where the dielectric funtion is used together with pre-
serving the interaction in the matter hamiltonian, which is an inconsistemt treatment.[13]-[17] It
amounts to mistake an external field (charge, current) for the internal polarization. We are then
left with electromagnetic fields for three space regions, which are not independent. From all the
electromagnetic hamiltonians of the form given by equation (84) we are left with one, for two



types of degrees of freedom ¢,, which correspond precisely to a harmonic-oscillator hamiltonian
for the free parameters A; o. As a mater of fact, the treatment given in Refs. [8], [10, 11] is very
close to the one sketched here.

The force acting between the two bodies is derived from the change in the zero-point energy with
the distance between the two bodies. It is worth noting that it is a quantum effect, which is
vanishing in the classical limit. Very often, the stress tensor of the electromagnetic field (energy
flux through the separation surface) is used to derive the force.[13]-[17] In the classical limit this
energy flux is not vanishing, except for finite-size bodies. For finite-size bodies, it is vanishing
also in the quantum limit. It folows that the molecular forces do not originate in the Lorentz
force, nor in the variation of the electromagnetic momentum (but in the vacuum fluctuations). A
corresponding stress tensor (energy flux) can be determined from this force, which is the opposite
of soem of the usual treatments.
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