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2 J. Theor. Phys.while the retarded fore ating between two onduting half-spaes (Casimir fore) has been origi-nally derived by advaning arguments related to the zero-point energy (vauum �utuations) of theeletromagneti �eld with suitable boundary onditions at the surfaes of the two half-spaes.[7℄On the other hand, it was realized that these moleular fores are related to the internal eletrialpolarization of matter, and the marosopi bodies bring their own harateristis with respetto the eletrial polarization (like plasmons, polaritons, surfae e�ets, et), in omparison withindividual quantum partiles.[8℄-[12℄Moleular fores ating between marosopi bodies, either ondutors or dieletris, have beenderived by the theory of the quantum-statistial eletromagneti �utuations,[13℄-[15℄ as well aswithin the framework of the �eld soure theory.[16, 17℄ Both theories onsider, on one hand,the polarization as an external soure, and estimate the response of the eletromagneti �eldto this soure, and, on the other hand, inlude polarization (via the dieletri funtion) in theeletromagneti �eld, viewing the latter as a dynamial variable (oordinate). For this reason,there was never learly grasped whih are the normal modes whih �utuate and bring the zero-point energy in the moleular fores.We desribe here the polarization by a displaement �eld of the mobile harges in polarizablematter and solve the oupled equations of motion of this �eld, interating via the eletromagneti�eld, for two semi-in�nite solids with plane-parallel surfaes (two half-spaes) separated by a third,polarizable body. The alulations are done by using the well-known Lorentz-Drude (plasma)model of (non-magneti) polarizable matter. We show that the polarizations of the two bodiesinterat with eah other via their eletromagneti �eld, very muh alike two in�nite sets of oupledharmoni osillators. The normal modes of the ensemble of the two bodies are identi�ed andthe eigenfrequenies are omputed. The fore is derived from the zero-point energy (vauum�utuations) of these normal modes. We ompute the van der Waals-London and Casimir foresfor two half-spaes, either ondutors or dieletris, separated, in general, by a third polarizablebody. In view of the great deal of interest developed reently for the subjet,[18℄-[37℄ we showhere how to ompute suh fores between bodies of any shape, and give the result for the foreating between a sphere and a half-spae.Some partiular results onerning the derivation of the moleular fores along the lines desribedabove have been previously published.[38, 39℄ The method used here has also been previouslyillustrated in Refs. [40, 41℄.2 Matter polarizationWe adopt a generi model of matter polarization onsisting of idential mobile harges q, with mass
m and density n, moving in a rigid, neutralizing bakground of volume V . A small displaement�eld u(R, t) in the position R of these harges gives, at the time t, a loal density imbalane
δn = −ndivu and a polarization harge density ρ = −nqdivu. We an see that P = nqu is thepolarization. Therefore, the displaement �eld u(R, t) is a representation for the polarization �eld
P(R, t). The displaement �eld obeys the Newton law of motion

mü = q(E + E0) − mω2
cu − mγu̇ , (1)where E is the polarization eletri �eld generated by the polarization harges (and urrents),

ωc is a harateristi frequeny, γ is a (small) damping fator and E0 is an external eletri�eld. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[42℄-[44℄ whihassumes a homogeneous, isotropi matter, without spatial dispersion, represented by a �eld of



J. Theor. Phys. 3harmoni osillators of frequeny ωc. Taking the temporal Fourier transform of equation (1),with Et = E + E0 the total eletri �eld, we get the eletri suseptibility χ(ω) = P/Et and thedieletri funtion
ε(ω) = 1 + 4πχ(ω) =

ω2 − ω2
c − ω2

p

ω2 − ω2
c + iωγ

=
ω2 − ω2

L

ω2 − ω2
T + iωγ

, (2)where ωp =
√

4πnq2/m is the plasma frequeny. This is also well known as the Lydane-Sahs-Teller dieletri funtion,[45℄ with the longitudinal frequeny ωL =
√

ω2
c + ω2

p and the transversefrequeny ωT = ωc. The latter an be taken as the main absorption frequeny of the substane.The model an be generalized by inluding the spatial dispersion, several harateristi frequenies
ωc, or by adding an external magneti �eld, et. It is worth noting the absene of the magnetipart of the Lorentz fore in equation (1), aording to the non-relativisti motion of the slightdisplaement u. It is easy to see that, apart from relativisti ontributions, it would introduenon-linearities in equation (1), whih are beyond our assumption of a small displaement u. Usingspatial Fourier transforms, this approximation an be formulated as Ku(K) ≪ 1, where K is thewavevetor.In general, an additional displaement u0 an be introdued in suh a model, originating in externalauses, subjeted to ollisions and obeying a di�erent, averaged equation of motion, mu̇0 = qEtτ ,where τ is a relaxation time; as it is well known, it gives rise to a density of "ondution" urrent
j0 = nqu̇0 = (nq2τ/m)Et and the ondutivity σ = nq2τ/m. We an see that it implies ωc = 0in equation (1), a ondition whih de�nes the ondutors; for dieletris, ωc 6= 0. We leave asidethe ondution urrent j0. We also leave aside the small damping parameter γ in the equation ofmotion (1).The displaement �eld u produes polarization harge and urrent densities given by

ρ = −divP = −nqdivu , j =
∂P

∂t
= nqu̇ , (3)whih an be used to ompute the eletromagneti potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

(4)(subjeted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the eletri�eld E in equation (1), whene we an get the displaement u. This way, we an ompute theeletromagneti �elds of a polarizable body, subjeted to the ation of an external eletromagneti�eld.3 Half-spaeFor a half-spae extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step funtion. The polarization harge andurrent densities are given by

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) ,j = nq(u̇, u̇z)θ(z − d) .

(6)



4 J. Theor. Phys.We use Fourier deompositions of the type
u(r, z; t) =

1

2π

∑

k

∫

dωu(k, z; ω)e−iωt+ikr , (7)where R = (r, z), and may omit oassionally the arguments k, ω, writing simply u(z), or u.The eletromagneti potentials given by equations (4) inludes the "retarded" Coulomb potential
ei ω

c
|R−R′|/ |R −R′|, for whih we use the well-known deomposition[46℄

eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (8)where λ = ω/c and κ =

√
λ2 − k2. It is more onvenient to ompute �rst the vetor potential Aand then derive the salar potential Φ from the gauge equation divA− iλΦ = 0. The alulationsare straightforward and we get the Fourier tranforms of the potentials

Φ(k, z; ω) == 2π
κ

∫ ∞

d
dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

A(k, z; ω) = 2πλ
κ

∫ ∞

d
dz′(u, uz)e

iκ|z−z′|

(9)(where we have left aside the fator nq; it is restored in the �nal formulae). In order to omputethe eletri �eld (E = iλA − gradΦ) it is onvenient to refer the in-plane vetors (i.e., vetorsparallel with the surfae of the half-spae) to the vetors k and k⊥ = ez × k, where ez is the unitvetor along the z-diretion; for instane, we write
u = u1

k

k
+ u2

k⊥

k
(10)and a similar representation for the eletri �eld parallel with the surfae of the half-spae. Inperforming the alulations, it is worth paying attention to the derivative of the modulus funtion,aording to the equation

∂2

∂z2
eiκ|z−z′| = −κ2eiκ|z−z′| + 2iκδ(z − z′) . (11)We get the eletri �eld

E1 = 2πiκ
∫ ∞

d
dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫ ∞

d
dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫ ∞

d
dz′u1e

iκ|z−z′| + 2πik2

κ

∫ ∞

d
dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(12)Making use of equations (12), we an hek easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(z = d)δ(z − d) , (13)whih is an expression of Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (14)whih re�ets Faraday's and Maxwell-Ampere's equations. From equation (13), we an hek thetransversality ondition divE = 0 for the eletri �eld outside the half-spae (z < d).



J. Theor. Phys. 5We use now the equation of motion (1) (with γ = 0) for E2 given by equation (12) and for theombinations iku1 + ∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > d. Taking into aount that
divE0 = 0 and k∂E01/∂z + iκ2E0z = 0 (for a plane wave) we get

iku1 +
∂uz

∂z
= 0 , k

∂u1

∂z
+ iκ′2uz = 0 ,or

∂2u
∂z2 + κ′2u = 0 , (15)where

κ′2 = κ2 −
λ2ω2

p

ω2 − ω2
c

. (16)The omponents u1,2 of the displaement �eld are given by u1,2 = A1,2e
iκ′z, where A1,2 are on-stants, while uz = −(k/κ′)A1e

iκ′z (we restrit ourselves to outgoing waves, κ′ > 0). The totaleletri �eld inside the half-spae is given by the equation of motion (1):
Et = −m

q
(ω2 − ω2

c )u (17)for z > d. We an see that the �eld propagates in the half-spae with a modi�ed wavevetor
κ′, aording to the Ewald-Oseen extintion theorem.[47℄ The modi�ed wavevetor κ′ given byequation (16) an also be written as

κ′2 = ε
ω2

c2
− k2 , (18)where ε is the dieletri funtion (as given by equation (2)). We an hek the well-known polari-toni dispersion relation εω2 = c2K

′2, where K′ = (k, κ′) is the wavevetor.The amplitudes A1,2 an be derived from the original equation (1) and the �eld equations (12)(for z > d). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz = q

m
E02 .

(19)The (polarization) eletri �eld, both inside and outside the half-spae, an be omputed fromequations (12). We get
E1 = −4πnqA1

ω2−ω2
c

ω2
p

eiκ′z − 2πnqA1
κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz , z > d ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p

eiκ′z − 2πnqA2
λ2

κ(κ′−κ)
ei(κ′−κ)deiκz , z > d ,

Ez = 4πnqA1
k(ω2−ω2

c
)

κ′ω2
p

eiκ′z + 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz , z > d .

(20)
for z > d. It is worth noting that the polarization eletri �eld, as given by equations (20), inludesboth the external �eld ∼ eiκz (with opposite sign) and the displaement �eld u ∼ eiκ′z. This anbe heked easily by using equations (19) and (20). The (polarization) eletri �eld outside thehalf-spae (in the region z < d) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)de−iκz , z < d ,

E2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ′+κ)de−iκz , z < d

(21)



6 J. Theor. Phys.and Ez = (k/κ)E1 for z < d. We an see that it is the �eld re�eted by the half-spae (κ → −κ).Making use of equations (19) and (21) we get the total eletri �eld Et = E + E0 outside thehalf-spae
Et1 = −2πnqA1

κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA1

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz ,

Et2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA2

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz ,

Etz = −2πnqA1
k(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz − 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz

(22)for z < d.The magneti �eld, given by H = curlA, an be obtained from equation (9) for the vetorpotential. It is given by
H1 = 4πnqA2

κ′(ω2−ω2
c
)

λω2
p

eiκ′z + 2πnqA2
λ

κ′−κ
ei(κ′−κ)deiκz , z > d ,

H2 = −4πnqA1
λ(ω2−ω2

p
−ω2

c
)

κ′ω2
p

eiκ′z − 2πnqA1
λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz , z > d ,

Hz = −4πnqA2
k(ω2−ω2

c
)

λω2
p

eiκ′z − 2πnqA2
λk

κ(κ′−κ)
ei(κ′−κ)deiκz , z > d

(23)
for z > d and

H1 = −2πnqA2
λ

κ′+κ
ei(κ′+κ)de−iκz , z < d ,

H2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz , z < d ,

Hz = −2πnqA2
λk

κ(κ′+κ)
ei(κ′+κ)de−iκz , z < d

(24)for z < d. We an hek the Maxwell equation curlE = iλH. Making use of equations (19) and(23), from curlE0 = iλH0 we get the total magneti �eld Ht = H + H0 inside the half-spae
Ht1 = 4πnqA2

κ′(ω2−ω2
c
)

λω2
p

eiκ′z , Ht2 = −4πnqA1
λ(ω2−ω2

p
−ω2

c
)

κ′ω2
p

eiκ′z ,

Htz = −4πnqA2
k(ω2−ω2

c
)

λω2
p

eiκ′z

(25)for z > d and the total magneti �eld outside the half-spae
Ht1 = −2πnqA2

λ
κ′+κ

ei(κ′+κ)de−iκz − 2πnqA2
λ

κ′−κ
ei(κ′−κ)deiκz ,

Ht2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz + 2πnqA1
λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz ,

Htz = −2πnqA2
λk

κ(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA2

λk
κ(κ′−κ)

ei(κ′−κ)deiκz

(26)for z < d.The amplitudes A1,2 an be viewed either as being determined by the external �eld E0 (and H0)through equations (19), or as free parameters. In the latter ase equations (19) are not validanymore, but the (polarization) eletri and magneti �elds given by equations (20), (21), (23)and (24) hold. We an hek also that all the �elds are ontinuous at the surfae z = d, exeptfor Ez and Etz , whih exhibit a disontinuity (Etz(z = d−) = εEtz(z = d+)), as expeted.



J. Theor. Phys. 74 Two half-spaesFor a half-spae extending in the region z < −d we an repeat the alulations done in the previousSetion. The displaement �eld in this ase is written as (v, vz)θ(−z − d). It is easy to see thatwe an get the results for the half spae extending in the region z < −d from those pertaining tothe half-spae extending in the region z > d by hanging z into −z. For instane, the displaement�eld is given by v1,2 = B1,2e
−iκ′z and vz = (k/κ′)B1e

−iκ′z, where B1,2 are onstant amplitudes; theeletri �eld is given by
E1 = −4πnqB1

ω2−ω2
c

ω2
p

e−iκ′z − 2πnqB1
κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)de−iκz , z < −d ,

E2 = −4πnqB2
ω2−ω2

c

ω2
p

e−iκ′z − 2πnqB2
λ2

κ(κ′−κ)
ei(κ′−κ)de−iκz , z < −d ,

Ez = −4πnqB1
k(ω2−ω2

c
)

κ′ω2
p

e−iκ′z − 2πnqB1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)de−iκz , z < −d

(27)for z < −d and
E1 = −2πnqB1

κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)deiκz , z > −d ,

E2 = −2πnqB2
λ2

κ(κ′+κ)
ei(κ′+κ)deiκz , z > −d

(28)and Ez = −(k/κ)E1 for z > −d; and the amplitudes B1,2 are given by
1
2
B1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)de−iκz = q

m
E01 ,

1
2
B2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)de−iκz = q

m
E02 .

(29)We onsider now two half-spaes, one, denoted by 1, extending in the region z > d/2, another,denoted by 2, oupying the region z < −d/2. The �eld pertaining to these half-spaes is givenhere and in the previous Setion, with d replaed by d/2. We fous on the amplitudes equations(19) and (29). The external �eld for the half-spae 2 (equations (29)) is the �eld given by equations(21), produed by half-spae 1 in the region z < d/2; similarly, the external �eld for the half-spae
1 (equations (19)) is the �eld given by equation (28), produed by half-spae 2 in the region
z > −d/2. All the quantities pertaining to half-spaes 1, 2 will get a su�x 1 or, respetively, 2.Introduing these �elds in equations (19) and (29) we get the dispersion equations

κ′
1
−κ

κ′
1
+κ

· κ′
2
−κ

κ′
2
+κ

e2iκd = 1 ,

κ′
1
−κ

κ′
1
+κ

· κ′
2
−κ

κ′
2
+κ

· κκ′
1
−k2

κκ′
1
+k2 · κκ′

2
−k2

κκ′
2
+k2e

2iκd = 1 .

(30)The solutions of these equations give the eigenfrequenies of the two eletromagnetially-oupledhalf-spaes. Sine
(κ′ ± κ)(κκ′ ± k2) = λ2(εκ ± κ′) , (31)aording to equation (18), the seond dispersion equation (30) an also be written as

κ′
1 − ε1κ

κ′
1 + ε1κ

· κ′
2 − ε2κ

κ′
2 + ε2κ

e2iκd = 1 , (32)where ε1,2(ω) are the dieletri funtions of the two half-spaes. These dispersion equations havebeen established in Refs. [8℄, [10, 11℄, by using ontinuity onditions for the eletromagneti �eldat the surfaes of the two half-spaes.



8 J. Theor. Phys.5 Casimir foreIn general, the dispersion equations (30) have not solutions. However, there exist partiularonditions, orresponding preisely to physially interesting ases, whih ensure solutions for thedispersion equations (30). For instane, ondutors are haraterized by ωc = 0 and large valuesof ωp. In this ase, the z-omponent κ′ of the wavevetor is purely imaginary and its magnitudeaquires large values in omparison with κ (i.e., λ). Purely imaginary wavevetors κ′ orrespondto damped surfae plasmon-polariton modes in ondutors (see, for instane, Refs. [38, 40℄),in agreement with the original Casimir's assumption onerning the boundary onditions at thesurfaes of two semi-in�nite metals. In this retarded regime of interation the eletromagneti �eldis propagating between the two half-spaes (κ real), but it is damped along the z-diretion insidethe onduting half-spaes. Good dieletris are haraterized by ω ≪ ωc ≪ ωp, so that κ′ (whihis real) aquires again large values. This ondition is usually referred to as the ondition of longwavelengths in omparison with the main (harateristi) absorption wavelength of the substane(see, for instane, Ref. [15℄). It is easy to see that equations (30) have solutions κd = πn, nany integer, for ∣

∣κ′
1,2

∣

∣ ≫ κ1,2, |ε1,2| κ1,2. Solutions κd = πn an be easily understood. In thein-between region there is a �eld produed by the half-spae 1, whih goes like E(1), H(1) ∼ e−iκzand a �eld produed by the half-spae 2, whih goes like E(2), H(2) ∼ eiκz. Cross-terms of theform E(1)∗E(2), integrated over z from −d/2 to d/2, in the energy of the eletromagneti �eld inthis region give rise to the fator sin κd. The ondition κd = πn ensures the vanishing of thisinteration energy. There is also an interation eletromagneti energy inside the two half-spaes(involving ross-terms), whih annot, in general, be removed, exept in those ases where it ispratially negligible. This ondition orrespond to ∣

∣κ′
1,2

∣

∣ ≫ κ1,2, |ε1,2| κ1,2.The solutions κd = πn (κ =
√

λ2 − k2) imply the eigenfrequenies
Ωn(k) = c

√

k2 +
π2n2

d2
; (33)aording to equations (19) and (29); the orresponding amplitudes an be written as

A1,2,n = 2πa1,2,nδ(ω − Ωn(k)) , (34)where u1,2,n(k, z; t) = a1,2,neiΩn(k)teiκ′
1,2

z. We an see that a1,2,n are displaements, aording toequation (7), and they orrespond to the oordinates of harmoni-osillators with frequenies
Ωn(k). Aording to equations (29), a similar representation holds for the amplitudes B1,2 ofthe displaement �eld in the half-spae 2, as well as for the assoiated eletromagneti �elds. Ine�et, the oordinates of the a1,2,n-type are the oordinates of the normal modes (labelled by kand n) of the two eletromagnetially-oupled half-spaes. The motion of the normal modes anbe quantized, aording to standard rules, so that the ground-state energy is given by

E =
∞

∑

n=0

∑

k

~Ωn(k) =
S~c

2π

∑

n=0

∫

0

dk · k
√

k2 +
π2n2

d2
, (35)where S denotes the area of the surfae and fator 2 has been introdued in order to aount forthe two labels 1 and 2.We estimate the hange brought about by the �nite distane d in the energy E by using theEuler-Malaurin formula:[49℄

∆E =
∑

m=1

(−1)mBm(π/d)2m−1

(2m)!
f (2m−1)(0) , (36)



J. Theor. Phys. 9where Bm are the Bernoulli's numbers and
f(κ) =

S~c

2π

∫

dkk
√

k2 + κ2 ; (37)introduing u = k2 + κ2, equation (36) beomes
∆E =

~cS

4π

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

(
∫

κ2

du
√

u

)(2m−1)

0

, (38)The only ontribution to equation (38) omes from the third-order derivative. We get (B2 = 1/30)
∆E = −π2

~cS

720
· 1

d3
(39)and an attrative fore

F = −π2
~cS

240
· 1

d4
, (40)whih is the well-known Casimir fore, ating between two half-spaes with parallel surfaes sep-arated by distane d. We an see that it is the same for dieletris and ondutors (under theonditions given before), inluding the pair ondutor-dieletri, does not depend on the natureof the two semi-in�nite bodies and arises from the zero-point (vauum) �utuations of the motionof the harge arriers in the two polarizable bodies. We may say that it has a universal harater.The e�et of the temperature T = 1/β an be inorporated in equation (38) by the hange

∫

κ2

du
√

u →
∫

κ2

du
√

u coth

[

1

2
β~c

√
u

]

. (41)For realisti values of the parameters we have β~c/d ≫ 1, so we get a small temperature orretionfator ≃ coth(β~c/d) in the expression of the fore.6 van der Waals-London foreFor shorter distanes d, the eletromagneti �eld aquires the non-retarded regime orrespondingto λ → 0; it follows that κ ≃ ik, i.e. the eletromagneti �eld is damped along the z -diretion,both inside and ouside the half-spaes. In this limit we have
κ′ ≃ κ −

λ2ω2
p

2κ(ω2 − ω2
c )

, κκ′ + k2 ≃ λ2

[

1 −
ω2

p

2(ω2 − ω2
c )

] (42)and κκ′ − k2 ≃ −2k2. Making use of these approximations, the seond equation (30) leads to
(ω2 − ω2

c1 −
1

2
ω2

p1)((ω
2 − ω2

c2 −
1

2
ω2

p2) =
1

4
ω2

p1ω
2
p2e

−2kd . (43)We solve this equation for large values of the kd, whih bring the main ontribution to integrals over
k. Within this approximation, the rhs of equation (43) may be treated as a small perturbation.From the zero-point energy, we get the van der Waals-London fore (per unit area) for distintbodies

F = − ~ωp1ωp2

16π
√

2C1C2(ωp1C1 + ωp2C2)
· 1

d3
, (44)
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C1,2 =

√

ε01,2 + 1

ε01,2 − 1
, (45)

ε01,2 being the stati dieletri onstants (for ondutors, C1,2 → 1). For idential bodies, thefore beomes
F = − ~ωp

32π
√

2

(

ε0 − 1

ε0 + 1

)3/2

· 1

d3
(46)(for ondutors |ε0| → ∞).7 A third bodyWe assume now that a slab of thikness d and parameters ωp3, ωc3 (body 3) is inserted in the gapbetween the two half-spaes. All the alulations given in Setions 2 and 3 are repeated for thisbody, whih brings its own omponent κ′

3 of the wavevevetor along the z-axis, given by
κ

′2
3 = κ2 −

λ2ω2
p3

ω2 − ω2
c3

= ε3λ
2 − k2 , (47)

ε3 being the dieletri funtion of this body. The �rst dispersion equation (30) beomes now
(

κ′
1
+κ

κ′
1
−κ

· 1
κ′
3
+κ

− 1
κ′
3
−κ

)(

κ′
2
+κ

κ′
2
−κ

· 1
κ′
3
+κ

− 1
κ′
3
−κ

)

e2iκ′
3
d =

(

κ′
1
+κ

κ′
1
−κ

· 1
κ′
3
−κ

− 1
κ′
3
+κ

)(

κ′
2
+κ

κ′
2
−κ

· 1
κ′
3
−κ

− 1
κ′
3
+κ

)

,

(48)while the seond dispersion equation (30) an be written as
(a1b− − b+)(a2b− − b+)e2iκ′

3
d = (a1b+ − b−)(a2b+ − b−) , (49)where

ai =
κκ′

i + k2

κκ′
i − k2

· κ′
i + κ

κ′
i − κ

=
εiκ + κ′

i

εiκ − κ′
i

, i = 1, 2 (50)and
b± =

κκ′
3 ± k2

κ′
3 ∓ κ

. (51)We an see that the dispersion equations (30) an be retrieved from equations (48) and (49) byputting formally κ′
3 = κ, as for vauum.For large values of ∣

∣κ′
1,2

∣

∣ (either ondutors or dieletris), equations (48) and (49) have solution
κ′

3d = πn, n integer, whih implies ε3(ω)λ2 = c2K ′2
3 , where K′

3 = (k, πn/d). This equation hastwo solution branhes, one starting at √

ω2
p3 + ω2

c3 with an asymptote ≃ cK ′
3, and another startingas vK ′

3 and asymptote ωc3, where
v = c

ωc3
√

ω2
p3 + ω2

c3

=
c√
ε30

, (52)
ε30 being the (stati) dieletri onstant of the body 3. These are the well-known polaritonbranhes in a polarizable body. It follows that the Casimir fore is given by the same equation



J. Theor. Phys. 11(40) with the renormalized light veloity (polariton veloity) v, as expeted. For a ondutingbody inserted in the gap (κ′
3 purely imginary), the fore is vanishing.In the non-retarded regime κ ≃ ik the situation is more ompliated. Equation (49) leads to

[

4(ω2 − D1)(ω
2 − D3) − ω2

p1ω
2
p3

] [

4(ω2 − D2)(ω
2 − D3) − ω2

p2ω
2
p3

]

=

= 4
[

ω2
p1(ω

2 − D3) − ω2
p3(ω

2 − D1)
] [

ω2
p2(ω

2 − D3) − ω2
p3(ω

2 − D2)
]

e−2kd ,
(53)where

Di =
1

2
ω2

pi

ε0i + 1

ε0i − 1
, i = 1, 2, 3. (54)The zero-point energy assoiated with the solutions of this equation leads to the van der Waals-London fore. It is easy to see that for large values of D3 (weak dieletri in-between), equation(53) beomes equation (43),whih means that the e�et of a weak dieletri introdued in the gapbetween the two half-spaes is a seond-order orretion. For two idential ondutors 1 and 2and a distint ondutor 3 in-between the fore is given by

F = − ~

32π
√

2

ω2
p − ω2

p3

(ω2
p + ω2

p3)
3/2

· 1

d3
. (55)More ompliated situations an be treated by solving equation (53).8 Formulae of the theory of the eletromagneti �utuationsWe give here a formal dedution of the formulae obtained within the framework of the theory ofthe eletromagneti �utuations, following Refs. [8℄, [10, 11℄Suppose that the eigenvalues Ωn(k) are given by the roots of an equation written as G(ω, k) = 0,like one of equations (30). Then, the zero-point energy an be written as

E =
1

2
~

∑

nk

Ωn(k) =
~

4πi

∑

nk

∫

dω
ω

ω − Ωn(k)
, (56)or

E =
~

2i

∫

dkk

∫

dωω
∂

∂ω
ln G (57)(per unit area), where the integration with respet to ω is performed around the positive ω-axis(we assume that funtion G has no poles). We pass from the variables (ω, k) to the variables

(ξ, p) de�ned by
ω = iξ , p =

√

1 + c2k2/ξ2sgn(ξ) . (58)The jaobian of this transformation is
∂(ω, k)

∂(ξ, p)
=

iξp

c(p2 − 1)1/2
(59)and the integration is represented as

∫ −1

−∞

dp

∫ 0

−∞

dξ −
∫ ∞

1

dp

∫ ∞

0

dξ (60)



12 J. Theor. Phys.We take for G = 0 equations (30), whih, with the new variables, beome
G1 = (s1+p)(s2+p)

(s1−p)(s2−p)
e2ξpd/c − 1 = 0 ,

G2 = (s1+ε1p)(s2+ε2p)
(s1−ε1p)(s2−ε2p)

e2ξpd/c − 1 = 0 ,

(61)where si = (εi − 1 + p2)1/2, i = 1, 2 and κ is replaed by κ = −iξp/c. The derivative with respetto ω in equation (57) beomes
∂G

∂ω
= −i

∂G

∂ξ
+ i

p2 − 1

pξ

∂G

∂p
. (62)In order to get the fore, we take the (minus) derivative with respet to d in equation (57) andmake use of

∂G

∂d
=

2ξp

c
(G + 1) . (63)Combining equations (62) and (63), we get easily

∂

∂d

(

1

G

∂G

∂ω

)

=
2

ic

(

1

p
+

1

pG
− ξp

G2

∂G

∂ξ
+

p2 − 1

G2

∂G

∂p

)

. (64)An integration by parts in F = ∂E/∂d leads to the fore
F = − ~

2π2c3

∫ ∞

1

dpp2

∫ ∞

0

dξξ3

(

1

G1
+

1

G2

)

, (65)whih is the well-known formula given in Refs. [13℄-[17℄. The formal equivalene given here anbe found entirely in Ref. [10℄. For �nite temperatures the integration over ξ is replaed by asummation over the integers n, suh as β~ξn = 2πn, where β = 1/T is the reiproal of thetemperature T .For ondutors, in the non-retarded limit, equation (65) leads to the Casimir fore given byequation (40). For poor dieletris, or ombinations of poor dieletris with ondutors, equation(65) brings a small orretion fator in the Casimir fore (see, for instane, equation (82.6) inRef. [15℄), whih indiates, in fat, that the fore is vanishing in this ase. In the limit of gooddieletris, equation (65) leads to the same universal Casimir fore given by equation (40).In the non-retarded limit ω → 0 (ξ → 0), the most important ontribution to the p-integral inequation (65) omes from p ≫ 1, due to the presene of the exponential in the denominator.Consequently, we may take s1,2 ≃ p, whih leads to
F ≃ − ~

16π2d3

∫ ∞

0

dxx2

∫ ∞

0

dξ

[

(1 + ε1)(1 + ε2)

(1 − ε1)(1 − ε2)
ex − 1

]−1

, (66)whih is the well-known formula given in Refs. [13℄-[17℄ for the van der Waals-London fore. Theevaluation of the ξ-integral is di�ult, so we annot ompare the result with equation (44).Both equations (65) and (66) an be extended to very rare�ed bodies, leading to well-known foresomputed quantum-mehanialy for two interating atoms (moleules).[15℄ In general, equations(65) and (66) are valid where there exist solutions of equation G(ω, k) = 0 (equations (30)).Unfortunately, equations (65) and (66) may also indiate false solutions (as for poor dieletris).



J. Theor. Phys. 139 Conluding remarks. Sphere and half-spaeLet us denote by F1/2 = CS/dn the van der Waals-London or Casimir fore ating between twohalf-spae separated by distane d, where C is a onstant, S is the transverse area of the twohalf-spaes, n = 3 for the van der Waals-London fore and n = 4 for the Casimir fore. We lookfor a fore df = C1/ |z|n1 dV , ating between the half-spae and a "marosopially in�nitesimal"element of volume dV plaed at distane |z| from the half-spae, suh as
∫

df = F1/2 , (67)where the integration is performed over the other half-spae. We �nd easily C1 = Cn and n1 =
n + 1. Now we ompute the fore

Fs =

∫

df = Cn

∫

dV
1

(R + d − r cos θ)n+1
(68)ating between the half-spae and a sphere of radius R plaed at distane d from the half-spae(the distane between the half-spae and the surfae of the sphere); the integration in equation(68) is performed over the volume of the sphere. The integration in equation (68) is elementary,and, for R ≫ d, we get the fore

Fs ≃
2πCR

(n − 1)dn−1
. (69)The fore ating between a half-spae and a spherial sell of radius R is 2πCR2/dn. In a similarway we an derive the fore ating between two bodies of any shape. The fore ating betweentwo marosopi partiles is given by

f =
n(n + 1)(n + 2)C

2πdn+4
v1v2 , (70)where v1,2 are the volumes of the two partiles.In onlusion we may say that the van der Waals-London and Casimir fores are alulated hereexpliitly for two semi-in�nite solids (half-spaes) separated by a third, polarizable body insertedin the gap between the two half-spaes. In ontrast with previous, well-known treatments of theproblem, the polarization degreees of freedom are introdued here expliitly, and their dynamis isinluded, beside the Maxwell equations of the eletromagneti �eld. The equations of motion aresolved (both for polarization and the eletroamgneti �eld) for these eletromagnetially-oupledbodies, the normal modes are identi�ed as harmoni-osillators modes, and the orrespondingeigenfrequenies are omputed. The fore is alulated frm the zero-point energy of the vaum�utuations of the polarization. The extension of the results to bodies of any shape is done, andthe fore ating between a sphere and a half-spae is alulated expliitly.Aknowledgments. The author is indebted to the members of the Laboratory of TheoretialPhysis and Condensed Matter in the Institute for Physis and Nulear Engineering at Magurele-Buharest for many useful disussions. The author is also indebted to the members of the Seminarof the Institute for Atomi Physis, Magurele-Buharest for a thorough analysis of the resultspresented here.Referenes[1℄ R. Eisenshitz and F. London, "Uber das Verhaltnis der van der Waalsshen Krafte zu denhomoopolaren Bindungskraften", Z. Physik 60 491-527 (1930).
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