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tuationsHighlights. van der Waals-London and Casimir for
es are 
al
ulated expli
itly for two semi-in�nite solids (half-spa
es) separated by a third, polarizable body inserted in the gap betweenthe two half-spa
es. In 
ontrast with previous, well-known treatments of the problem, the po-larization degreees of freedom are introdu
ed here expli
itly, and their dynami
s is in
luded,beside the Maxwell equations of the ele
tromagneti
 �eld. The equations of motion are solved forthese ele
tromagneti
ally-
oupled bodies, the normal modes are identi�ed as harmoni
-os
illatorsmodes, and the 
orresponding eigenfrequen
ies are 
omputed. The for
e is 
al
ulated frm thezero-point energy of the va

um �u
tuations of the polarization. The extension of the results tobodies of any shape is done, and the for
e a
ting between a sphere and a half-spa
e is 
al
ulatedexpli
itly.1 Introdu
tionAs it is well known, the mole
ular for
es a
ting between atoms (mole
ules), known as van derWaals-London and Casimir for
es, have been derived originally by quantum-me
hani
al 
al
u-lations in the non-retarded (small distan
e)[1℄-[3℄ and, respe
tively, retarded (large distan
e)regime[4℄ (see also Refs. [5, 6℄). The for
e a
ting in the retarded regime between an atom and asemi-in�nite 
ondu
tor (half-spa
e) has also been derived by quantum-me
hani
al 
al
ulations,[4℄
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e a
ting between two 
ondu
ting half-spa
es (Casimir for
e) has been origi-nally derived by advan
ing arguments related to the zero-point energy (va
uum �u
tuations) of theele
tromagneti
 �eld with suitable boundary 
onditions at the surfa
es of the two half-spa
es.[7℄On the other hand, it was realized that these mole
ular for
es are related to the internal ele
tri
alpolarization of matter, and the ma
ros
opi
 bodies bring their own 
hara
teristi
s with respe
tto the ele
tri
al polarization (like plasmons, polaritons, surfa
e e�e
ts, et
), in 
omparison withindividual quantum parti
les.[8℄-[12℄Mole
ular for
es a
ting between ma
ros
opi
 bodies, either 
ondu
tors or diele
tri
s, have beenderived by the theory of the quantum-statisti
al ele
tromagneti
 �u
tuations,[13℄-[15℄ as well aswithin the framework of the �eld sour
e theory.[16, 17℄ Both theories 
onsider, on one hand,the polarization as an external sour
e, and estimate the response of the ele
tromagneti
 �eldto this sour
e, and, on the other hand, in
lude polarization (via the diele
tri
 fun
tion) in theele
tromagneti
 �eld, viewing the latter as a dynami
al variable (
oordinate). For this reason,there was never 
learly grasped whi
h are the normal modes whi
h �u
tuate and bring the zero-point energy in the mole
ular for
es.We des
ribe here the polarization by a displa
ement �eld of the mobile 
harges in polarizablematter and solve the 
oupled equations of motion of this �eld, intera
ting via the ele
tromagneti
�eld, for two semi-in�nite solids with plane-parallel surfa
es (two half-spa
es) separated by a third,polarizable body. The 
al
ulations are done by using the well-known Lorentz-Drude (plasma)model of (non-magneti
) polarizable matter. We show that the polarizations of the two bodiesintera
t with ea
h other via their ele
tromagneti
 �eld, very mu
h alike two in�nite sets of 
oupledharmoni
 os
illators. The normal modes of the ensemble of the two bodies are identi�ed andthe eigenfrequen
ies are 
omputed. The for
e is derived from the zero-point energy (va
uum�u
tuations) of these normal modes. We 
ompute the van der Waals-London and Casimir for
esfor two half-spa
es, either 
ondu
tors or diele
tri
s, separated, in general, by a third polarizablebody. In view of the great deal of interest developed re
ently for the subje
t,[18℄-[37℄ we showhere how to 
ompute su
h for
es between bodies of any shape, and give the result for the for
ea
ting between a sphere and a half-spa
e.Some parti
ular results 
on
erning the derivation of the mole
ular for
es along the lines des
ribedabove have been previously published.[38, 39℄ The method used here has also been previouslyillustrated in Refs. [40, 41℄.2 Matter polarizationWe adopt a generi
 model of matter polarization 
onsisting of identi
al mobile 
harges q, with mass
m and density n, moving in a rigid, neutralizing ba
kground of volume V . A small displa
ement�eld u(R, t) in the position R of these 
harges gives, at the time t, a lo
al density imbalan
e
δn = −ndivu and a polarization 
harge density ρ = −nqdivu. We 
an see that P = nqu is thepolarization. Therefore, the displa
ement �eld u(R, t) is a representation for the polarization �eld
P(R, t). The displa
ement �eld obeys the Newton law of motion

mü = q(E + E0) − mω2
cu − mγu̇ , (1)where E is the polarization ele
tri
 �eld generated by the polarization 
harges (and 
urrents),

ωc is a 
hara
teristi
 frequen
y, γ is a (small) damping fa
tor and E0 is an external ele
tri
�eld. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[42℄-[44℄ whi
hassumes a homogeneous, isotropi
 matter, without spatial dispersion, represented by a �eld of
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 os
illators of frequen
y ωc. Taking the temporal Fourier transform of equation (1),with Et = E + E0 the total ele
tri
 �eld, we get the ele
tri
 sus
eptibility χ(ω) = P/Et and thediele
tri
 fun
tion
ε(ω) = 1 + 4πχ(ω) =

ω2 − ω2
c − ω2

p

ω2 − ω2
c + iωγ

=
ω2 − ω2

L

ω2 − ω2
T + iωγ

, (2)where ωp =
√

4πnq2/m is the plasma frequen
y. This is also well known as the Lydane-Sa
hs-Teller diele
tri
 fun
tion,[45℄ with the longitudinal frequen
y ωL =
√

ω2
c + ω2

p and the transversefrequen
y ωT = ωc. The latter 
an be taken as the main absorption frequen
y of the substan
e.The model 
an be generalized by in
luding the spatial dispersion, several 
hara
teristi
 frequen
ies
ωc, or by adding an external magneti
 �eld, et
. It is worth noting the absen
e of the magneti
part of the Lorentz for
e in equation (1), a

ording to the non-relativisti
 motion of the slightdispla
ement u. It is easy to see that, apart from relativisti
 
ontributions, it would introdu
enon-linearities in equation (1), whi
h are beyond our assumption of a small displa
ement u. Usingspatial Fourier transforms, this approximation 
an be formulated as Ku(K) ≪ 1, where K is thewaveve
tor.In general, an additional displa
ement u0 
an be introdu
ed in su
h a model, originating in external
auses, subje
ted to 
ollisions and obeying a di�erent, averaged equation of motion, mu̇0 = qEtτ ,where τ is a relaxation time; as it is well known, it gives rise to a density of "
ondu
tion" 
urrent
j0 = nqu̇0 = (nq2τ/m)Et and the 
ondu
tivity σ = nq2τ/m. We 
an see that it implies ωc = 0in equation (1), a 
ondition whi
h de�nes the 
ondu
tors; for diele
tri
s, ωc 6= 0. We leave asidethe 
ondu
tion 
urrent j0. We also leave aside the small damping parameter γ in the equation ofmotion (1).The displa
ement �eld u produ
es polarization 
harge and 
urrent densities given by

ρ = −divP = −nqdivu , j =
∂P

∂t
= nqu̇ , (3)whi
h 
an be used to 
ompute the ele
tromagneti
 potentials

Φ(R, t) =
∫

dR′ ρ(R′,t−|R−R′|/c)
|R−R′|

,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

(4)(subje
ted to the Lorenz gauge divA+ (1/c)∂Φ/∂t = 0). These potentials give rise to the ele
tri
�eld E in equation (1), when
e we 
an get the displa
ement u. This way, we 
an 
ompute theele
tromagneti
 �elds of a polarizable body, subje
ted to the a
tion of an external ele
tromagneti
�eld.3 Half-spa
eFor a half-spa
e extending over the region z > d we take the polarization as
P = nq(u, uz)θ(z − d) , (5)where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step fun
tion. The polarization 
harge and
urrent densities are given by

ρ = −nq(divu + ∂uz

∂z
)θ(z − d) − nquz(d)δ(z − d) ,j = nq(u̇, u̇z)θ(z − d) .

(6)
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ompositions of the type
u(r, z; t) =

1

2π

∑

k

∫

dωu(k, z; ω)e−iωt+ikr , (7)where R = (r, z), and may omit o
assionally the arguments k, ω, writing simply u(z), or u.The ele
tromagneti
 potentials given by equations (4) in
ludes the "retarded" Coulomb potential
ei ω

c
|R−R′|/ |R −R′|, for whi
h we use the well-known de
omposition[46℄

eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (8)where λ = ω/c and κ =

√
λ2 − k2. It is more 
onvenient to 
ompute �rst the ve
tor potential Aand then derive the s
alar potential Φ from the gauge equation divA− iλΦ = 0. The 
al
ulationsare straightforward and we get the Fourier tranforms of the potentials

Φ(k, z; ω) == 2π
κ

∫ ∞

d
dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

A(k, z; ω) = 2πλ
κ

∫ ∞

d
dz′(u, uz)e

iκ|z−z′|

(9)(where we have left aside the fa
tor nq; it is restored in the �nal formulae). In order to 
omputethe ele
tri
 �eld (E = iλA − gradΦ) it is 
onvenient to refer the in-plane ve
tors (i.e., ve
torsparallel with the surfa
e of the half-spa
e) to the ve
tors k and k⊥ = ez × k, where ez is the unitve
tor along the z-dire
tion; for instan
e, we write
u = u1

k

k
+ u2

k⊥

k
(10)and a similar representation for the ele
tri
 �eld parallel with the surfa
e of the half-spa
e. Inperforming the 
al
ulations, it is worth paying attention to the derivative of the modulus fun
tion,a

ording to the equation

∂2

∂z2
eiκ|z−z′| = −κ2eiκ|z−z′| + 2iκδ(z − z′) . (11)We get the ele
tri
 �eld

E1 = 2πiκ
∫ ∞

d
dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫ ∞

d
dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫ ∞

d
dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫ ∞

d
dz′u1e

iκ|z−z′| + 2πik2

κ

∫ ∞

d
dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(12)Making use of equations (12), we 
an 
he
k easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z − d) − 4πuz(z = d)δ(z − d) , (13)whi
h is an expression of Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (14)whi
h re�e
ts Faraday's and Maxwell-Ampere's equations. From equation (13), we 
an 
he
k thetransversality 
ondition divE = 0 for the ele
tri
 �eld outside the half-spa
e (z < d).



J. Theor. Phys. 5We use now the equation of motion (1) (with γ = 0) for E2 given by equation (12) and for the
ombinations iku1 + ∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > d. Taking into a

ount that
divE0 = 0 and k∂E01/∂z + iκ2E0z = 0 (for a plane wave) we get

iku1 +
∂uz

∂z
= 0 , k

∂u1

∂z
+ iκ′2uz = 0 ,or

∂2u
∂z2 + κ′2u = 0 , (15)where

κ′2 = κ2 −
λ2ω2

p

ω2 − ω2
c

. (16)The 
omponents u1,2 of the displa
ement �eld are given by u1,2 = A1,2e
iκ′z, where A1,2 are 
on-stants, while uz = −(k/κ′)A1e

iκ′z (we restri
t ourselves to outgoing waves, κ′ > 0). The totalele
tri
 �eld inside the half-spa
e is given by the equation of motion (1):
Et = −m

q
(ω2 − ω2

c )u (17)for z > d. We 
an see that the �eld propagates in the half-spa
e with a modi�ed waveve
tor
κ′, a

ording to the Ewald-Oseen extin
tion theorem.[47℄ The modi�ed waveve
tor κ′ given byequation (16) 
an also be written as

κ′2 = ε
ω2

c2
− k2 , (18)where ε is the diele
tri
 fun
tion (as given by equation (2)). We 
an 
he
k the well-known polari-toni
 dispersion relation εω2 = c2K

′2, where K′ = (k, κ′) is the waveve
tor.The amplitudes A1,2 
an be derived from the original equation (1) and the �eld equations (12)(for z > d). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz = q

m
E02 .

(19)The (polarization) ele
tri
 �eld, both inside and outside the half-spa
e, 
an be 
omputed fromequations (12). We get
E1 = −4πnqA1

ω2−ω2
c

ω2
p

eiκ′z − 2πnqA1
κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz , z > d ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p

eiκ′z − 2πnqA2
λ2

κ(κ′−κ)
ei(κ′−κ)deiκz , z > d ,

Ez = 4πnqA1
k(ω2−ω2

c
)

κ′ω2
p

eiκ′z + 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz , z > d .

(20)
for z > d. It is worth noting that the polarization ele
tri
 �eld, as given by equations (20), in
ludesboth the external �eld ∼ eiκz (with opposite sign) and the displa
ement �eld u ∼ eiκ′z. This 
anbe 
he
ked easily by using equations (19) and (20). The (polarization) ele
tri
 �eld outside thehalf-spa
e (in the region z < d) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)de−iκz , z < d ,

E2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ′+κ)de−iκz , z < d

(21)



6 J. Theor. Phys.and Ez = (k/κ)E1 for z < d. We 
an see that it is the �eld re�e
ted by the half-spa
e (κ → −κ).Making use of equations (19) and (21) we get the total ele
tri
 �eld Et = E + E0 outside thehalf-spa
e
Et1 = −2πnqA1

κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA1

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)deiκz ,

Et2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA2

λ2

κ(κ′−κ)
ei(κ′−κ)deiκz ,

Etz = −2πnqA1
k(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz − 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz

(22)for z < d.The magneti
 �eld, given by H = curlA, 
an be obtained from equation (9) for the ve
torpotential. It is given by
H1 = 4πnqA2

κ′(ω2−ω2
c
)

λω2
p

eiκ′z + 2πnqA2
λ

κ′−κ
ei(κ′−κ)deiκz , z > d ,

H2 = −4πnqA1
λ(ω2−ω2

p
−ω2

c
)

κ′ω2
p

eiκ′z − 2πnqA1
λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz , z > d ,

Hz = −4πnqA2
k(ω2−ω2

c
)

λω2
p

eiκ′z − 2πnqA2
λk

κ(κ′−κ)
ei(κ′−κ)deiκz , z > d

(23)
for z > d and

H1 = −2πnqA2
λ

κ′+κ
ei(κ′+κ)de−iκz , z < d ,

H2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz , z < d ,

Hz = −2πnqA2
λk

κ(κ′+κ)
ei(κ′+κ)de−iκz , z < d

(24)for z < d. We 
an 
he
k the Maxwell equation curlE = iλH. Making use of equations (19) and(23), from curlE0 = iλH0 we get the total magneti
 �eld Ht = H + H0 inside the half-spa
e
Ht1 = 4πnqA2

κ′(ω2−ω2
c
)

λω2
p

eiκ′z , Ht2 = −4πnqA1
λ(ω2−ω2

p
−ω2

c
)

κ′ω2
p

eiκ′z ,

Htz = −4πnqA2
k(ω2−ω2

c
)

λω2
p

eiκ′z

(25)for z > d and the total magneti
 �eld outside the half-spa
e
Ht1 = −2πnqA2

λ
κ′+κ

ei(κ′+κ)de−iκz − 2πnqA2
λ

κ′−κ
ei(κ′−κ)deiκz ,

Ht2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ′+κ)de−iκz + 2πnqA1
λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)deiκz ,

Htz = −2πnqA2
λk

κ(κ′+κ)
ei(κ′+κ)de−iκz + 2πnqA2

λk
κ(κ′−κ)

ei(κ′−κ)deiκz

(26)for z < d.The amplitudes A1,2 
an be viewed either as being determined by the external �eld E0 (and H0)through equations (19), or as free parameters. In the latter 
ase equations (19) are not validanymore, but the (polarization) ele
tri
 and magneti
 �elds given by equations (20), (21), (23)and (24) hold. We 
an 
he
k also that all the �elds are 
ontinuous at the surfa
e z = d, ex
eptfor Ez and Etz , whi
h exhibit a dis
ontinuity (Etz(z = d−) = εEtz(z = d+)), as expe
ted.
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esFor a half-spa
e extending in the region z < −d we 
an repeat the 
al
ulations done in the previousSe
tion. The displa
ement �eld in this 
ase is written as (v, vz)θ(−z − d). It is easy to see thatwe 
an get the results for the half spa
e extending in the region z < −d from those pertaining tothe half-spa
e extending in the region z > d by 
hanging z into −z. For instan
e, the displa
ement�eld is given by v1,2 = B1,2e
−iκ′z and vz = (k/κ′)B1e

−iκ′z, where B1,2 are 
onstant amplitudes; theele
tri
 �eld is given by
E1 = −4πnqB1

ω2−ω2
c

ω2
p

e−iκ′z − 2πnqB1
κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)de−iκz , z < −d ,

E2 = −4πnqB2
ω2−ω2

c

ω2
p

e−iκ′z − 2πnqB2
λ2

κ(κ′−κ)
ei(κ′−κ)de−iκz , z < −d ,

Ez = −4πnqB1
k(ω2−ω2

c
)

κ′ω2
p

e−iκ′z − 2πnqB1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ′−κ)de−iκz , z < −d

(27)for z < −d and
E1 = −2πnqB1

κκ′−k2

κ′(κ′+κ)
ei(κ′+κ)deiκz , z > −d ,

E2 = −2πnqB2
λ2

κ(κ′+κ)
ei(κ′+κ)deiκz , z > −d

(28)and Ez = −(k/κ)E1 for z > −d; and the amplitudes B1,2 are given by
1
2
B1ω

2
p

κκ′+k2

κ′(κ′−κ)
ei(κ′−κ)de−iκz = q

m
E01 ,

1
2
B2ω

2
p

λ2

κ(κ′−κ)
ei(κ′−κ)de−iκz = q

m
E02 .

(29)We 
onsider now two half-spa
es, one, denoted by 1, extending in the region z > d/2, another,denoted by 2, o

upying the region z < −d/2. The �eld pertaining to these half-spa
es is givenhere and in the previous Se
tion, with d repla
ed by d/2. We fo
us on the amplitudes equations(19) and (29). The external �eld for the half-spa
e 2 (equations (29)) is the �eld given by equations(21), produ
ed by half-spa
e 1 in the region z < d/2; similarly, the external �eld for the half-spa
e
1 (equations (19)) is the �eld given by equation (28), produ
ed by half-spa
e 2 in the region
z > −d/2. All the quantities pertaining to half-spa
es 1, 2 will get a su�x 1 or, respe
tively, 2.Introdu
ing these �elds in equations (19) and (29) we get the dispersion equations

κ′
1
−κ

κ′
1
+κ

· κ′
2
−κ

κ′
2
+κ

e2iκd = 1 ,

κ′
1
−κ

κ′
1
+κ

· κ′
2
−κ

κ′
2
+κ

· κκ′
1
−k2

κκ′
1
+k2 · κκ′

2
−k2

κκ′
2
+k2e

2iκd = 1 .

(30)The solutions of these equations give the eigenfrequen
ies of the two ele
tromagneti
ally-
oupledhalf-spa
es. Sin
e
(κ′ ± κ)(κκ′ ± k2) = λ2(εκ ± κ′) , (31)a

ording to equation (18), the se
ond dispersion equation (30) 
an also be written as

κ′
1 − ε1κ

κ′
1 + ε1κ

· κ′
2 − ε2κ

κ′
2 + ε2κ

e2iκd = 1 , (32)where ε1,2(ω) are the diele
tri
 fun
tions of the two half-spa
es. These dispersion equations havebeen established in Refs. [8℄, [10, 11℄, by using 
ontinuity 
onditions for the ele
tromagneti
 �eldat the surfa
es of the two half-spa
es.
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eIn general, the dispersion equations (30) have not solutions. However, there exist parti
ular
onditions, 
orresponding pre
isely to physi
ally interesting 
ases, whi
h ensure solutions for thedispersion equations (30). For instan
e, 
ondu
tors are 
hara
terized by ωc = 0 and large valuesof ωp. In this 
ase, the z-
omponent κ′ of the waveve
tor is purely imaginary and its magnitudea
quires large values in 
omparison with κ (i.e., λ). Purely imaginary waveve
tors κ′ 
orrespondto damped surfa
e plasmon-polariton modes in 
ondu
tors (see, for instan
e, Refs. [38, 40℄),in agreement with the original Casimir's assumption 
on
erning the boundary 
onditions at thesurfa
es of two semi-in�nite metals. In this retarded regime of intera
tion the ele
tromagneti
 �eldis propagating between the two half-spa
es (κ real), but it is damped along the z-dire
tion insidethe 
ondu
ting half-spa
es. Good diele
tri
s are 
hara
terized by ω ≪ ωc ≪ ωp, so that κ′ (whi
his real) a
quires again large values. This 
ondition is usually referred to as the 
ondition of longwavelengths in 
omparison with the main (
hara
teristi
) absorption wavelength of the substan
e(see, for instan
e, Ref. [15℄). It is easy to see that equations (30) have solutions κd = πn, nany integer, for ∣

∣κ′
1,2

∣

∣ ≫ κ1,2, |ε1,2| κ1,2. Solutions κd = πn 
an be easily understood. In thein-between region there is a �eld produ
ed by the half-spa
e 1, whi
h goes like E(1), H(1) ∼ e−iκzand a �eld produ
ed by the half-spa
e 2, whi
h goes like E(2), H(2) ∼ eiκz. Cross-terms of theform E(1)∗E(2), integrated over z from −d/2 to d/2, in the energy of the ele
tromagneti
 �eld inthis region give rise to the fa
tor sin κd. The 
ondition κd = πn ensures the vanishing of thisintera
tion energy. There is also an intera
tion ele
tromagneti
 energy inside the two half-spa
es(involving 
ross-terms), whi
h 
annot, in general, be removed, ex
ept in those 
ases where it ispra
ti
ally negligible. This 
ondition 
orrespond to ∣

∣κ′
1,2

∣

∣ ≫ κ1,2, |ε1,2| κ1,2.The solutions κd = πn (κ =
√

λ2 − k2) imply the eigenfrequen
ies
Ωn(k) = c

√

k2 +
π2n2

d2
; (33)a

ording to equations (19) and (29); the 
orresponding amplitudes 
an be written as

A1,2,n = 2πa1,2,nδ(ω − Ωn(k)) , (34)where u1,2,n(k, z; t) = a1,2,neiΩn(k)teiκ′
1,2

z. We 
an see that a1,2,n are displa
ements, a

ording toequation (7), and they 
orrespond to the 
oordinates of harmoni
-os
illators with frequen
ies
Ωn(k). A

ording to equations (29), a similar representation holds for the amplitudes B1,2 ofthe displa
ement �eld in the half-spa
e 2, as well as for the asso
iated ele
tromagneti
 �elds. Ine�e
t, the 
oordinates of the a1,2,n-type are the 
oordinates of the normal modes (labelled by kand n) of the two ele
tromagneti
ally-
oupled half-spa
es. The motion of the normal modes 
anbe quantized, a

ording to standard rules, so that the ground-state energy is given by

E =
∞

∑

n=0

∑

k

~Ωn(k) =
S~c

2π

∑

n=0

∫

0

dk · k
√

k2 +
π2n2

d2
, (35)where S denotes the area of the surfa
e and fa
tor 2 has been introdu
ed in order to a

ount forthe two labels 1 and 2.We estimate the 
hange brought about by the �nite distan
e d in the energy E by using theEuler-Ma
laurin formula:[49℄

∆E =
∑

m=1

(−1)mBm(π/d)2m−1

(2m)!
f (2m−1)(0) , (36)
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f(κ) =

S~c

2π

∫

dkk
√

k2 + κ2 ; (37)introdu
ing u = k2 + κ2, equation (36) be
omes
∆E =

~cS

4π

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

(
∫

κ2

du
√

u

)(2m−1)

0

, (38)The only 
ontribution to equation (38) 
omes from the third-order derivative. We get (B2 = 1/30)
∆E = −π2

~cS

720
· 1

d3
(39)and an attra
tive for
e

F = −π2
~cS

240
· 1

d4
, (40)whi
h is the well-known Casimir for
e, a
ting between two half-spa
es with parallel surfa
es sep-arated by distan
e d. We 
an see that it is the same for diele
tri
s and 
ondu
tors (under the
onditions given before), in
luding the pair 
ondu
tor-diele
tri
, does not depend on the natureof the two semi-in�nite bodies and arises from the zero-point (va
uum) �u
tuations of the motionof the 
harge 
arriers in the two polarizable bodies. We may say that it has a universal 
hara
ter.The e�e
t of the temperature T = 1/β 
an be in
orporated in equation (38) by the 
hange

∫

κ2

du
√

u →
∫

κ2

du
√

u coth

[

1

2
β~c

√
u

]

. (41)For realisti
 values of the parameters we have β~c/d ≫ 1, so we get a small temperature 
orre
tionfa
tor ≃ coth(β~c/d) in the expression of the for
e.6 van der Waals-London for
eFor shorter distan
es d, the ele
tromagneti
 �eld a
quires the non-retarded regime 
orrespondingto λ → 0; it follows that κ ≃ ik, i.e. the ele
tromagneti
 �eld is damped along the z -dire
tion,both inside and ouside the half-spa
es. In this limit we have
κ′ ≃ κ −

λ2ω2
p

2κ(ω2 − ω2
c )

, κκ′ + k2 ≃ λ2

[

1 −
ω2

p

2(ω2 − ω2
c )

] (42)and κκ′ − k2 ≃ −2k2. Making use of these approximations, the se
ond equation (30) leads to
(ω2 − ω2

c1 −
1

2
ω2

p1)((ω
2 − ω2

c2 −
1

2
ω2

p2) =
1

4
ω2

p1ω
2
p2e

−2kd . (43)We solve this equation for large values of the kd, whi
h bring the main 
ontribution to integrals over
k. Within this approximation, the rhs of equation (43) may be treated as a small perturbation.From the zero-point energy, we get the van der Waals-London for
e (per unit area) for distin
tbodies

F = − ~ωp1ωp2

16π
√

2C1C2(ωp1C1 + ωp2C2)
· 1

d3
, (44)
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C1,2 =

√

ε01,2 + 1

ε01,2 − 1
, (45)

ε01,2 being the stati
 diele
tri
 
onstants (for 
ondu
tors, C1,2 → 1). For identi
al bodies, thefor
e be
omes
F = − ~ωp

32π
√

2

(

ε0 − 1

ε0 + 1

)3/2

· 1

d3
(46)(for 
ondu
tors |ε0| → ∞).7 A third bodyWe assume now that a slab of thi
kness d and parameters ωp3, ωc3 (body 3) is inserted in the gapbetween the two half-spa
es. All the 
al
ulations given in Se
tions 2 and 3 are repeated for thisbody, whi
h brings its own 
omponent κ′

3 of the waveveve
tor along the z-axis, given by
κ

′2
3 = κ2 −

λ2ω2
p3

ω2 − ω2
c3

= ε3λ
2 − k2 , (47)

ε3 being the diele
tri
 fun
tion of this body. The �rst dispersion equation (30) be
omes now
(

κ′
1
+κ

κ′
1
−κ

· 1
κ′
3
+κ

− 1
κ′
3
−κ

)(

κ′
2
+κ

κ′
2
−κ

· 1
κ′
3
+κ

− 1
κ′
3
−κ

)

e2iκ′
3
d =

(

κ′
1
+κ

κ′
1
−κ

· 1
κ′
3
−κ

− 1
κ′
3
+κ

)(

κ′
2
+κ

κ′
2
−κ

· 1
κ′
3
−κ

− 1
κ′
3
+κ

)

,

(48)while the se
ond dispersion equation (30) 
an be written as
(a1b− − b+)(a2b− − b+)e2iκ′

3
d = (a1b+ − b−)(a2b+ − b−) , (49)where

ai =
κκ′

i + k2

κκ′
i − k2

· κ′
i + κ

κ′
i − κ

=
εiκ + κ′

i

εiκ − κ′
i

, i = 1, 2 (50)and
b± =

κκ′
3 ± k2

κ′
3 ∓ κ

. (51)We 
an see that the dispersion equations (30) 
an be retrieved from equations (48) and (49) byputting formally κ′
3 = κ, as for va
uum.For large values of ∣

∣κ′
1,2

∣

∣ (either 
ondu
tors or diele
tri
s), equations (48) and (49) have solution
κ′

3d = πn, n integer, whi
h implies ε3(ω)λ2 = c2K ′2
3 , where K′

3 = (k, πn/d). This equation hastwo solution bran
hes, one starting at √

ω2
p3 + ω2

c3 with an asymptote ≃ cK ′
3, and another startingas vK ′

3 and asymptote ωc3, where
v = c

ωc3
√

ω2
p3 + ω2

c3

=
c√
ε30

, (52)
ε30 being the (stati
) diele
tri
 
onstant of the body 3. These are the well-known polaritonbran
hes in a polarizable body. It follows that the Casimir for
e is given by the same equation



J. Theor. Phys. 11(40) with the renormalized light velo
ity (polariton velo
ity) v, as expe
ted. For a 
ondu
tingbody inserted in the gap (κ′
3 purely imginary), the for
e is vanishing.In the non-retarded regime κ ≃ ik the situation is more 
ompli
ated. Equation (49) leads to

[

4(ω2 − D1)(ω
2 − D3) − ω2

p1ω
2
p3

] [

4(ω2 − D2)(ω
2 − D3) − ω2

p2ω
2
p3

]

=

= 4
[

ω2
p1(ω

2 − D3) − ω2
p3(ω

2 − D1)
] [

ω2
p2(ω

2 − D3) − ω2
p3(ω

2 − D2)
]

e−2kd ,
(53)where

Di =
1

2
ω2

pi

ε0i + 1

ε0i − 1
, i = 1, 2, 3. (54)The zero-point energy asso
iated with the solutions of this equation leads to the van der Waals-London for
e. It is easy to see that for large values of D3 (weak diele
tri
 in-between), equation(53) be
omes equation (43),whi
h means that the e�e
t of a weak diele
tri
 introdu
ed in the gapbetween the two half-spa
es is a se
ond-order 
orre
tion. For two identi
al 
ondu
tors 1 and 2and a distin
t 
ondu
tor 3 in-between the for
e is given by

F = − ~

32π
√

2

ω2
p − ω2

p3

(ω2
p + ω2

p3)
3/2

· 1

d3
. (55)More 
ompli
ated situations 
an be treated by solving equation (53).8 Formulae of the theory of the ele
tromagneti
 �u
tuationsWe give here a formal dedu
tion of the formulae obtained within the framework of the theory ofthe ele
tromagneti
 �u
tuations, following Refs. [8℄, [10, 11℄Suppose that the eigenvalues Ωn(k) are given by the roots of an equation written as G(ω, k) = 0,like one of equations (30). Then, the zero-point energy 
an be written as

E =
1

2
~

∑

nk

Ωn(k) =
~

4πi

∑

nk

∫

dω
ω

ω − Ωn(k)
, (56)or

E =
~

2i

∫

dkk

∫

dωω
∂

∂ω
ln G (57)(per unit area), where the integration with respe
t to ω is performed around the positive ω-axis(we assume that fun
tion G has no poles). We pass from the variables (ω, k) to the variables

(ξ, p) de�ned by
ω = iξ , p =

√

1 + c2k2/ξ2sgn(ξ) . (58)The ja
obian of this transformation is
∂(ω, k)

∂(ξ, p)
=

iξp

c(p2 − 1)1/2
(59)and the integration is represented as

∫ −1

−∞

dp

∫ 0

−∞

dξ −
∫ ∞

1

dp

∫ ∞

0

dξ (60)
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h, with the new variables, be
ome
G1 = (s1+p)(s2+p)

(s1−p)(s2−p)
e2ξpd/c − 1 = 0 ,

G2 = (s1+ε1p)(s2+ε2p)
(s1−ε1p)(s2−ε2p)

e2ξpd/c − 1 = 0 ,

(61)where si = (εi − 1 + p2)1/2, i = 1, 2 and κ is repla
ed by κ = −iξp/c. The derivative with respe
tto ω in equation (57) be
omes
∂G

∂ω
= −i

∂G

∂ξ
+ i

p2 − 1

pξ

∂G

∂p
. (62)In order to get the for
e, we take the (minus) derivative with respe
t to d in equation (57) andmake use of

∂G

∂d
=

2ξp

c
(G + 1) . (63)Combining equations (62) and (63), we get easily

∂

∂d

(

1

G

∂G

∂ω

)

=
2

ic

(

1

p
+

1

pG
− ξp

G2

∂G

∂ξ
+

p2 − 1

G2

∂G

∂p

)

. (64)An integration by parts in F = ∂E/∂d leads to the for
e
F = − ~

2π2c3

∫ ∞

1

dpp2

∫ ∞

0

dξξ3

(

1

G1
+

1

G2

)

, (65)whi
h is the well-known formula given in Refs. [13℄-[17℄. The formal equivalen
e given here 
anbe found entirely in Ref. [10℄. For �nite temperatures the integration over ξ is repla
ed by asummation over the integers n, su
h as β~ξn = 2πn, where β = 1/T is the re
ipro
al of thetemperature T .For 
ondu
tors, in the non-retarded limit, equation (65) leads to the Casimir for
e given byequation (40). For poor diele
tri
s, or 
ombinations of poor diele
tri
s with 
ondu
tors, equation(65) brings a small 
orre
tion fa
tor in the Casimir for
e (see, for instan
e, equation (82.6) inRef. [15℄), whi
h indi
ates, in fa
t, that the for
e is vanishing in this 
ase. In the limit of gooddiele
tri
s, equation (65) leads to the same universal Casimir for
e given by equation (40).In the non-retarded limit ω → 0 (ξ → 0), the most important 
ontribution to the p-integral inequation (65) 
omes from p ≫ 1, due to the presen
e of the exponential in the denominator.Consequently, we may take s1,2 ≃ p, whi
h leads to
F ≃ − ~

16π2d3

∫ ∞

0

dxx2

∫ ∞

0

dξ

[

(1 + ε1)(1 + ε2)

(1 − ε1)(1 − ε2)
ex − 1

]−1

, (66)whi
h is the well-known formula given in Refs. [13℄-[17℄ for the van der Waals-London for
e. Theevaluation of the ξ-integral is di�
ult, so we 
annot 
ompare the result with equation (44).Both equations (65) and (66) 
an be extended to very rare�ed bodies, leading to well-known for
es
omputed quantum-me
hani
aly for two intera
ting atoms (mole
ules).[15℄ In general, equations(65) and (66) are valid where there exist solutions of equation G(ω, k) = 0 (equations (30)).Unfortunately, equations (65) and (66) may also indi
ate false solutions (as for poor diele
tri
s).
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luding remarks. Sphere and half-spa
eLet us denote by F1/2 = CS/dn the van der Waals-London or Casimir for
e a
ting between twohalf-spa
e separated by distan
e d, where C is a 
onstant, S is the transverse area of the twohalf-spa
es, n = 3 for the van der Waals-London for
e and n = 4 for the Casimir for
e. We lookfor a for
e df = C1/ |z|n1 dV , a
ting between the half-spa
e and a "ma
ros
opi
ally in�nitesimal"element of volume dV pla
ed at distan
e |z| from the half-spa
e, su
h as
∫

df = F1/2 , (67)where the integration is performed over the other half-spa
e. We �nd easily C1 = Cn and n1 =
n + 1. Now we 
ompute the for
e

Fs =

∫

df = Cn

∫

dV
1

(R + d − r cos θ)n+1
(68)a
ting between the half-spa
e and a sphere of radius R pla
ed at distan
e d from the half-spa
e(the distan
e between the half-spa
e and the surfa
e of the sphere); the integration in equation(68) is performed over the volume of the sphere. The integration in equation (68) is elementary,and, for R ≫ d, we get the for
e

Fs ≃
2πCR

(n − 1)dn−1
. (69)The for
e a
ting between a half-spa
e and a spheri
al sell of radius R is 2πCR2/dn. In a similarway we 
an derive the for
e a
ting between two bodies of any shape. The for
e a
ting betweentwo ma
ros
opi
 parti
les is given by

f =
n(n + 1)(n + 2)C

2πdn+4
v1v2 , (70)where v1,2 are the volumes of the two parti
les.In 
on
lusion we may say that the van der Waals-London and Casimir for
es are 
al
ulated hereexpli
itly for two semi-in�nite solids (half-spa
es) separated by a third, polarizable body insertedin the gap between the two half-spa
es. In 
ontrast with previous, well-known treatments of theproblem, the polarization degreees of freedom are introdu
ed here expli
itly, and their dynami
s isin
luded, beside the Maxwell equations of the ele
tromagneti
 �eld. The equations of motion aresolved (both for polarization and the ele
troamgneti
 �eld) for these ele
tromagneti
ally-
oupledbodies, the normal modes are identi�ed as harmoni
-os
illators modes, and the 
orrespondingeigenfrequen
ies are 
omputed. The for
e is 
al
ulated frm the zero-point energy of the va

um�u
tuations of the polarization. The extension of the results to bodies of any shape is done, andthe for
e a
ting between a sphere and a half-spa
e is 
al
ulated expli
itly.A
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