On the molecular forces acting between macroscopic bodies M. Apostol
 Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania
 email: apoma@theory.nipne.ro

Abstract

The eigenfrequencies are identified for two electromagnetically-coupled semi-infinite solids with plane-parallel surfaces (two half-spaces) separated by a third, polarizable body. The corresponding van der Waals-London and Casimir forces are calculated from the zero-point energy (vacuum fluctuations) of the normal modes. It is shown how the results can be extended to bodies of any shape; in particular, the force is given for a sphere interacting with a half-space. The calculations are performed by using the well-known Lorentz-Drude (plasma) model of (non-magnetic) polarizable matter. The polarization degrees of freedom are explicitly introduced. It is shown that the polarization dynamical variables for the two bodies are coupled through the electromagnetic field, very similar with two infnite sets of coupled harmonic oscillators.

PACS: 03.50.De; 41.20.-q; 41.20.Jb; 52.25.Mq; 42.50.Wk
Keywords: molecular forces; van der Waals-London force; Casimir force; matter polarization; vacuum fluctuations

Highlights. van der Waals-London and Casimir forces are calculated explicitly for two semiinfinite solids (half-spaces) separated by a third, polarizable body inserted in the gap between the two half-spaces. In contrast with previous, well-known treatments of the problem, the polarization degreees of freedom are introduced here explicitly, and their dynamics is included, beside the Maxwell equations of the electromagnetic field. The equations of motion are solved for these electromagnetically-coupled bodies, the normal modes are identified as harmonic-oscillators modes, and the corresponding eigenfrequencies are computed. The force is calculated frm the zero-point energy of the vaccum fluctuations of the polarization. The extension of the results to bodies of any shape is done, and the force acting between a sphere and a half-space is calculated explicitly.

1 Introduction

As it is well known, the molecular forces acting between atoms (molecules), known as van der Waals-London and Casimir forces, have been derived originally by quantum-mechanical calculations in the non-retarded (small distance)[1]-[3] and, respectively, retarded (large distance) regime[4] (see also Refs. [5, 6]). The force acting in the retarded regime between an atom and a semi-infinite conductor (half-space) has also been derived by quantum-mechanical calculations,[4]
while the retarded force acting between two conducting half-spaces (Casimir force) has been originally derived by advancing arguments related to the zero-point energy (vacuum fluctuations) of the electromagnetic field with suitable boundary conditions at the surfaces of the two half-spaces.[7] On the other hand, it was realized that these molecular forces are related to the internal electrical polarization of matter, and the macroscopic bodies bring their own characteristics with respect to the electrical polarization (like plasmons, polaritons, surface effects, etc), in comparison with individual quantum particles.[8]-[12]

Molecular forces acting between macroscopic bodies, either conductors or dielectrics, have been derived by the theory of the quantum-statistical electromagnetic fluctuations,[13]-[15] as well as within the framework of the field source theory.[16, 17] Both theories consider, on one hand, the polarization as an external source, and estimate the response of the electromagnetic field to this source, and, on the other hand, include polarization (via the dielectric function) in the electromagnetic field, viewing the latter as a dynamical variable (coordinate). For this reason, there was never clearly grasped which are the normal modes which fluctuate and bring the zeropoint energy in the molecular forces.
We describe here the polarization by a displacement field of the mobile charges in polarizable matter and solve the coupled equations of motion of this field, interacting via the electromagnetic field, for two semi-infinite solids with plane-parallel surfaces (two half-spaces) separated by a third, polarizable body. The calculations are done by using the well-known Lorentz-Drude (plasma) model of (non-magnetic) polarizable matter. We show that the polarizations of the two bodies interact with each other via their electromagnetic field, very much alike two infinite sets of coupled harmonic oscillators. The normal modes of the ensemble of the two bodies are identified and the eigenfrequencies are computed. The force is derived from the zero-point energy (vacuum fluctuations) of these normal modes. We compute the van der Waals-London and Casimir forces for two half-spaces, either conductors or dielectrics, separated, in general, by a third polarizable body. In view of the great deal of interest developed recently for the subject,[18]-[37] we show here how to compute such forces between bodies of any shape, and give the result for the force acting between a sphere and a half-space.
Some particular results concerning the derivation of the molecular forces along the lines described above have been previously published.[38, 39] The method used here has also been previously illustrated in Refs. [40, 41].

2 Matter polarization

We adopt a generic model of matter polarization consisting of identical mobile charges q, with mass m and density n, moving in a rigid, neutralizing background of volume V. A small displacement field $\mathbf{u}(\mathbf{R}, t)$ in the position \mathbf{R} of these charges gives, at the time t, a local density imbalance $\delta n=-n d i v \mathbf{u}$ and a polarization charge density $\rho=-n q d i v \mathbf{u}$. We can see that $\mathbf{P}=n q \mathbf{u}$ is the polarization. Therefore, the displacement field $\mathbf{u}(\mathbf{R}, t)$ is a representation for the polarization field $\mathbf{P}(\mathbf{R}, t)$. The displacement field obeys the Newton law of motion

$$
\begin{equation*}
m \ddot{\mathbf{u}}=q\left(\mathbf{E}+\mathbf{E}_{0}\right)-m \omega_{c}^{2} \mathbf{u}-m \gamma \dot{\mathbf{u}}, \tag{1}
\end{equation*}
$$

where \mathbf{E} is the polarization electric field generated by the polarization charges (and currents), ω_{c} is a characteristic frequency, γ is a (small) damping factor and \mathbf{E}_{0} is an external electric field. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[42]-[44] which assumes a homogeneous, isotropic matter, without spatial dispersion, represented by a field of
harmonic oscillators of frequency ω_{c}. Taking the temporal Fourier transform of equation (1), with $\mathbf{E}_{t}=\mathbf{E}+\mathbf{E}_{0}$ the total electric field, we get the electric susceptibility $\chi(\omega)=P / E_{t}$ and the dielectric function

$$
\begin{equation*}
\varepsilon(\omega)=1+4 \pi \chi(\omega)=\frac{\omega^{2}-\omega_{c}^{2}-\omega_{p}^{2}}{\omega^{2}-\omega_{c}^{2}+i \omega \gamma}=\frac{\omega^{2}-\omega_{L}^{2}}{\omega^{2}-\omega_{T}^{2}+i \omega \gamma} \tag{2}
\end{equation*}
$$

where $\omega_{p}=\sqrt{4 \pi n q^{2} / m}$ is the plasma frequency. This is also well known as the Lydane-SachsTeller dielectric function,[45] with the longitudinal frequency $\omega_{L}=\sqrt{\omega_{c}^{2}+\omega_{p}^{2}}$ and the transverse frequency $\omega_{T}=\omega_{c}$. The latter can be taken as the main absorption frequency of the substance. The model can be generalized by including the spatial dispersion, several characteristic frequencies ω_{c}, or by adding an external magnetic field, etc. It is worth noting the absence of the magnetic part of the Lorentz force in equation (1), according to the non-relativistic motion of the slight displacement \mathbf{u}. It is easy to see that, apart from relativistic contributions, it would introduce non-linearities in equation (1), which are beyond our assumption of a small displacement \mathbf{u}. Using spatial Fourier transforms, this approximation can be formulated as $\mathbf{K u}(\mathbf{K}) \ll 1$, where \mathbf{K} is the wavevector.
In general, an additional displacement \mathbf{u}_{0} can be introduced in such a model, originating in external causes, subjected to collisions and obeying a different, averaged equation of motion, $m \dot{\mathbf{u}}_{0}=q \mathbf{E}_{t} \tau$, where τ is a relaxation time; as it is well known, it gives rise to a density of "conduction" current $\mathbf{j}_{0}=n q \dot{\mathbf{u}}_{0}=\left(n q^{2} \tau / m\right) \mathbf{E}_{t}$ and the conductivity $\sigma=n q^{2} \tau / m$. We can see that it implies $\omega_{c}=0$ in equation (1), a condition which defines the conductors; for dielectrics, $\omega_{c} \neq 0$. We leave aside the conduction current \mathbf{j}_{0}. We also leave aside the small damping parameter γ in the equation of motion (1).
The displacement field \mathbf{u} produces polarization charge and current densities given by

$$
\begin{equation*}
\rho=-\operatorname{div} \mathbf{P}=-n q d i v \mathbf{u}, \mathbf{j}=\frac{\partial \mathbf{P}}{\partial t}=n q \dot{\mathbf{u}} \tag{3}
\end{equation*}
$$

which can be used to compute the electromagnetic potentials

$$
\begin{align*}
& \Phi(\mathbf{R}, t)=\int d \mathbf{R}^{\prime} \frac{\rho\left(\mathbf{R}^{\prime}, t-\left|\mathbf{R}-\mathbf{R}^{\prime}\right| / c\right)}{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|} \\
& \mathbf{A}(\mathbf{R}, t)=\frac{1}{c} \int d \mathbf{R}^{\prime \frac{\mathbf{j}\left(\mathbf{R}^{\prime}, t-\left|\mathbf{R}-\mathbf{R}^{\prime}\right| / c\right)}{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|}} \tag{4}
\end{align*}
$$

(subjected to the Lorenz gauge $\operatorname{div} \mathbf{A}+(1 / c) \partial \Phi / \partial t=0$). These potentials give rise to the electric field \mathbf{E} in equation (1), whence we can get the displacement \mathbf{u}. This way, we can compute the electromagnetic fields of a polarizable body, subjected to the action of an external electromagnetic field.

3 Half-space

For a half-space extending over the region $z>d$ we take the polarization as

$$
\begin{equation*}
\mathbf{P}=n q\left(\mathbf{u}, u_{z}\right) \theta(z-d) \tag{5}
\end{equation*}
$$

where $\theta(z)=0$ for $z<0$ and $\theta(z)=1$ for $z>0$ is the step function. The polarization charge and current densities are given by

$$
\begin{gather*}
\rho=-n q\left(\operatorname{div} \mathbf{u}+\frac{\partial u_{z}}{\partial z}\right) \theta(z-d)-n q u_{z}(d) \delta(z-d), \tag{6}\\
\mathbf{j}=n q\left(\dot{\mathbf{u}}, \dot{u}_{z}\right) \theta(z-d)
\end{gather*}
$$

We use Fourier decompositions of the type

$$
\begin{equation*}
\mathbf{u}(\mathbf{r}, z ; t)=\frac{1}{2 \pi} \sum_{\mathbf{k}} \int d \omega \mathbf{u}(\mathbf{k}, z ; \omega) e^{-i \omega t+i \mathbf{k r}} \tag{7}
\end{equation*}
$$

where $\mathbf{R}=(\mathbf{r}, z)$, and may omit ocassionally the $\operatorname{arguments} \mathbf{k}$, ω, writing simply $\mathbf{u}(z)$, or \mathbf{u}. The electromagnetic potentials given by equations (4) includes the "retarded" Coulomb potential $e^{i \frac{\omega}{c}\left|\mathbf{R}-\mathbf{R}^{\prime}\right|} /\left|\mathbf{R}-\mathbf{R}^{\prime}\right|$, for which we use the well-known decomposition[46]

$$
\begin{equation*}
\frac{e^{i \lambda\left|\mathbf{R}-\mathbf{R}^{\prime}\right|}}{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|}=\frac{i}{2 \pi} \int d \mathbf{k} \frac{1}{\kappa} e^{i \mathbf{k}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} e^{i \kappa\left|z-z^{\prime}\right|} \tag{8}
\end{equation*}
$$

where $\lambda=\omega / c$ and $\kappa=\sqrt{\lambda^{2}-k^{2}}$. It is more convenient to compute first the vector potential \mathbf{A} and then derive the scalar potential Φ from the gauge equation $\operatorname{div} \mathbf{A}-i \lambda \Phi=0$. The calculations are straightforward and we get the Fourier tranforms of the potentials

$$
\begin{gather*}
\Phi(\mathbf{k}, z ; \omega)==\frac{2 \pi}{\kappa} \int_{d}^{\infty} d z^{\prime} \mathbf{k} \mathbf{u} e^{i \kappa\left|z-z^{\prime}\right|}-\frac{2 \pi i}{\kappa} \frac{\partial}{\partial z} \int_{d}^{\infty} d z^{\prime} u_{z} e^{i \kappa\left|z-z^{\prime}\right|} \\
\mathbf{A}(\mathbf{k}, z ; \omega)=\frac{2 \pi \lambda}{\kappa} \int_{d}^{\infty} d z^{\prime}\left(\mathbf{u}, u_{z}\right) e^{i \kappa\left|z-z^{\prime}\right|} \tag{9}
\end{gather*}
$$

(where we have left aside the factor $n q$; it is restored in the final formulae). In order to compute the electric field $(\mathbf{E}=i \lambda \mathbf{A}-\operatorname{grad} \Phi)$ it is convenient to refer the in-plane vectors (i.e., vectors parallel with the surface of the half-space) to the vectors \mathbf{k} and $\mathbf{k}_{\perp}=e_{z} \times \mathbf{k}$, where e_{z} is the unit vector along the z-direction; for instance, we write

$$
\begin{equation*}
\mathbf{u}=u_{1} \frac{\mathbf{k}}{k}+u_{2} \frac{\mathbf{k}_{\perp}}{k} \tag{10}
\end{equation*}
$$

and a similar representation for the electric field parallel with the surface of the half-space. In performing the calculations, it is worth paying attention to the derivative of the modulus function, according to the equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z^{2}} e^{i \kappa\left|z-z^{\prime}\right|}=-\kappa^{2} e^{i \kappa\left|z-z^{\prime}\right|}+2 i \kappa \delta\left(z-z^{\prime}\right) \tag{11}
\end{equation*}
$$

We get the electric field

$$
\begin{gather*}
E_{1}=2 \pi i \kappa \int_{d}^{\infty} d z^{\prime} u_{1} e^{i \kappa\left|z-z^{\prime}\right|}-\frac{2 \pi k}{\kappa} \frac{\partial}{\partial z} \int_{d}^{\infty} d z^{\prime} u_{z} e^{i \kappa\left|z-z^{\prime}\right|} \\
E_{2}=\frac{2 \pi i \lambda^{2}}{\kappa} \int_{d}^{\infty} d z^{\prime} u_{2} e^{i \kappa\left|z-z^{\prime}\right|} \tag{12}\\
E_{z}=-\frac{2 \pi k}{\kappa} \frac{\partial}{\partial z} \int_{d}^{\infty} d z^{\prime} u_{1} e^{i \kappa\left|z-z^{\prime}\right|}+\frac{2 \pi i k^{2}}{\kappa} \int_{d}^{\infty} d z^{\prime} u_{z} e^{i \kappa\left|z-z^{\prime}\right|}-4 \pi u_{z} \theta(z-d)
\end{gather*}
$$

Making use of equations (12), we can check easily the equalities

$$
\begin{equation*}
i k E_{1}+\frac{\partial E_{z}}{\partial z}=-4 \pi\left(i k u_{1}+\frac{\partial u_{z}}{\partial z}\right) \theta(z-d)-4 \pi u_{z}(z=d) \delta(z-d) \tag{13}
\end{equation*}
$$

which is an expression of Gauss's law, and

$$
\begin{equation*}
k \frac{\partial E_{1}}{\partial z}+i \kappa^{2} E_{z}=-4 \pi i \lambda^{2} u_{z} \theta(z-d) \tag{14}
\end{equation*}
$$

which reflects Faraday's and Maxwell-Ampere's equations. From equation (13), we can check the transversality condition $\operatorname{div} \mathbf{E}=0$ for the electric field outside the half-space $(z<d)$.

We use now the equation of motion (1) (with $\gamma=0$) for E_{2} given by equation (12) and for the combinations $i k u_{1}+\partial u_{z} / \partial z$ and $k \partial u_{1} / \partial z+i \kappa^{2} u_{z}$ in the region $z>d$. Taking into account that $\operatorname{div} \mathbf{E}_{0}=0$ and $k \partial E_{01} / \partial z+i \kappa^{2} E_{0 z}=0$ (for a plane wave) we get

$$
i k u_{1}+\frac{\partial u_{z}}{\partial z}=0, k \frac{\partial u_{1}}{\partial z}+i \kappa^{\prime 2} u_{z}=0
$$

or

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{u}}{\partial z^{2}}+\kappa^{\prime 2} \mathbf{u}=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa^{\prime 2}=\kappa^{2}-\frac{\lambda^{2} \omega_{p}^{2}}{\omega^{2}-\omega_{c}^{2}} . \tag{16}
\end{equation*}
$$

The components $u_{1,2}$ of the displacement field are given by $u_{1,2}=A_{1,2} e^{i \kappa^{\prime} z}$, where $A_{1,2}$ are constants, while $u_{z}=-\left(k / \kappa^{\prime}\right) A_{1} e^{i \kappa^{\prime} z}$ (we restrict ourselves to outgoing waves, $\kappa^{\prime}>0$). The total electric field inside the half-space is given by the equation of motion (1):

$$
\begin{equation*}
\mathbf{E}_{t}=-\frac{m}{q}\left(\omega^{2}-\omega_{c}^{2}\right) \mathbf{u} \tag{17}
\end{equation*}
$$

for $z>d$. We can see that the field propagates in the half-space with a modified wavevector κ^{\prime}, according to the Ewald-Oseen extinction theorem.[47] The modified wavevector κ^{\prime} given by equation (16) can also be written as

$$
\begin{equation*}
\kappa^{\prime 2}=\varepsilon \frac{\omega^{2}}{c^{2}}-k^{2} \tag{18}
\end{equation*}
$$

where ε is the dielectric function (as given by equation (2)). We can check the well-known polaritonic dispersion relation $\varepsilon \omega^{2}=c^{2} K^{\prime 2}$, where $\mathbf{K}^{\prime}=\left(\mathbf{k}, \kappa^{\prime}\right)$ is the wavevector.
The amplitudes $A_{1,2}$ can be derived from the original equation (1) and the field equations (12) (for $z>d$). We get

$$
\begin{align*}
& \frac{1}{2} A_{1} \omega_{p}^{2} \frac{\kappa \kappa^{\prime}+k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}=\frac{q}{m} E_{01} \\
& \frac{1}{2} A_{2} \omega_{p}^{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}=\frac{q}{m} E_{02} \tag{19}
\end{align*}
$$

The (polarization) electric field, both inside and outside the half-space, can be computed from equations (12). We get

$$
\begin{align*}
& E_{1}=-4 \pi n q A_{1} \frac{\omega^{2}-\omega_{c}^{2}}{\omega_{p}^{2}} e^{i \kappa^{\prime} z}-2 \pi n q A_{1} \frac{\kappa \kappa^{\prime}+k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d \\
& E_{2}=-4 \pi n q A_{2} \frac{\omega^{2}-\omega_{c}^{2}}{\omega_{p}^{2}} e^{i \kappa^{\prime} z}-2 \pi n q A_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d \tag{20}\\
& E_{z}=4 \pi n q A_{1} \frac{k\left(\omega^{2}-\omega_{c}^{2}\right)}{\kappa^{\prime} \omega_{p}^{2}} e^{i \kappa^{\prime} z}+2 \pi n q A_{1} \frac{k\left(\kappa \kappa^{\prime}+k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d
\end{align*}
$$

for $z>d$. It is worth noting that the polarization electric field, as given by equations (20), includes both the external field $\sim e^{i \kappa z}$ (with opposite sign) and the displacement field $\mathbf{u} \sim e^{i \kappa^{\prime} z}$. This can be checked easily by using equations (19) and (20). The (polarization) electric field outside the half-space (in the region $z<d$) is given by

$$
\begin{gather*}
E_{1}=-2 \pi n q A_{1} \frac{\kappa \kappa^{\prime}-k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}, z<d \\
E_{2}=-2 \pi n q A_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}, z<d \tag{21}
\end{gather*}
$$

and $E_{z}=(k / \kappa) E_{1}$ for $z<d$. We can see that it is the field reflected by the half-space $(\kappa \rightarrow-\kappa)$. Making use of equations (19) and (21) we get the total electric field $\mathbf{E}_{t}=\mathbf{E}+\mathbf{E}_{0}$ outside the half-space

$$
\begin{gather*}
E_{t 1}=-2 \pi n q A_{1} \frac{\kappa \kappa^{\prime}-k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}+2 \pi n q A_{1} \frac{\kappa \kappa^{\prime}+k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z} \\
E_{t 2}=-2 \pi n q A_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}+2 \pi n q A_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z} \tag{22}\\
E_{t z}=-2 \pi n q A_{1} \frac{k\left(\kappa \kappa^{\prime}-k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}-2 \pi n q A_{1} \frac{k\left(\kappa \kappa^{\prime}+k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}
\end{gather*}
$$

for $z<d$.
The magnetic field, given by $\mathbf{H}=\operatorname{curl} \mathbf{A}$, can be obtained from equation (9) for the vector potential. It is given by

$$
\begin{gather*}
H_{1}=4 \pi n q A_{2} \frac{\kappa^{\prime}\left(\omega^{2}-\omega_{c}^{2}\right)}{\lambda \omega_{p}^{2}} e^{i \kappa^{\prime} z}+2 \pi n q A_{2} \frac{\lambda}{\kappa^{\prime}-\kappa} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d, \\
H_{2}=-4 \pi n q A_{1} \frac{\lambda\left(\omega^{2}-\omega_{p}^{2}-\omega_{c}^{2}\right)}{\kappa^{\prime} \omega_{p}^{2}} e^{i \kappa^{\prime} z}-2 \pi n q A_{1} \frac{\lambda\left(\kappa \kappa^{\prime}+k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d, \tag{23}\\
H_{z}=-4 \pi n q A_{2} \frac{k\left(\omega^{2}-\omega_{c}^{2}\right)}{\lambda \omega_{p}^{2}} e^{i \kappa^{\prime} z}-2 \pi n q A_{2} \frac{\lambda k}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, z>d
\end{gather*}
$$

for $z>d$ and

$$
\begin{gather*}
H_{1}=-2 \pi n q A_{2} \frac{\lambda}{\kappa^{\prime}+\kappa} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}, z<d \\
H_{2}=2 \pi n q A_{1} \frac{\lambda\left(\kappa \kappa^{\prime}-k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}, z<d \tag{24}\\
H_{z}=-2 \pi n q A_{2} \frac{\lambda k}{\kappa\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}, z<d
\end{gather*}
$$

for $z<d$. We can check the Maxwell equation $\operatorname{cur} l \mathbf{E}=i \lambda \mathbf{H}$. Making use of equations (19) and (23), from $\operatorname{curl} \mathbf{E}_{0}=i \lambda \mathbf{H}_{0}$ we get the total magnetic field $\mathbf{H}_{t}=\mathbf{H}+\mathbf{H}_{0}$ inside the half-space

$$
\begin{gather*}
H_{t 1}=4 \pi n q A_{2} \frac{\kappa^{\prime}\left(\omega^{2}-\omega_{c}^{2}\right)}{\lambda \omega_{p}^{2}} e^{i \kappa^{\prime} z}, H_{t 2}=-4 \pi n q A_{1} \frac{\lambda\left(\omega^{2}-\omega_{p}^{2}-\omega_{c}^{2}\right)}{\kappa^{\prime} \omega_{p}^{2}} e^{i \kappa^{\prime} z} \\
H_{t z}=-4 \pi n q A_{2} \frac{k\left(\omega^{2}-\omega_{c}^{2}\right)}{\lambda \omega_{p}^{2}} e^{i \kappa^{\prime} z} \tag{25}
\end{gather*}
$$

for $z>d$ and the total magnetic field outside the half-space

$$
\begin{gather*}
H_{t 1}=-2 \pi n q A_{2} \frac{\lambda}{\kappa^{\prime}+\kappa} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}-2 \pi n q A_{2} \frac{\lambda}{\kappa^{\prime}-\kappa} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, \\
H_{t 2}=2 \pi n q A_{1} \frac{\lambda\left(\kappa \kappa^{\prime}-k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}+2 \pi n q A_{1} \frac{\lambda\left(\kappa \kappa^{\prime}+k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}, \tag{26}\\
H_{t z}=-2 \pi n q A_{2} \frac{\lambda k}{\kappa\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{-i \kappa z}+2 \pi n q A_{2} \frac{\lambda k}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{i \kappa z}
\end{gather*}
$$

for $z<d$.
The amplitudes $A_{1,2}$ can be viewed either as being determined by the external field \mathbf{E}_{0} (and \mathbf{H}_{0}) through equations (19), or as free parameters. In the latter case equations (19) are not valid anymore, but the (polarization) electric and magnetic fields given by equations (20), (21), (23) and (24) hold. We can check also that all the fields are continuous at the surface $z=d$, except for E_{z} and $E_{t z}$, which exhibit a discontinuity $\left(E_{t z}\left(z=d^{-}\right)=\varepsilon E_{t z}\left(z=d^{+}\right)\right.$), as expected.

4 Two half-spaces

For a half-space extending in the region $z<-d$ we can repeat the calculations done in the previous Section. The displacement field in this case is written as $\left(\mathbf{v}, v_{z}\right) \theta(-z-d)$. It is easy to see that we can get the results for the half space extending in the region $z<-d$ from those pertaining to the half-space extending in the region $z>d$ by changing z into $-z$. For instance, the displacement field is given by $v_{1,2}=B_{1,2} e^{-i \kappa^{\prime} z}$ and $v_{z}=\left(k / \kappa^{\prime}\right) B_{1} e^{-i \kappa^{\prime} z}$, where $B_{1,2}$ are constant amplitudes; the electric field is given by

$$
\begin{align*}
& E_{1}=-4 \pi n q B_{1} \frac{\omega^{2}-\omega_{c}^{2}}{\omega_{p}^{2}} e^{-i \kappa^{\prime} z}-2 \pi n q B_{1} \frac{\kappa \kappa^{\prime}+k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{-i \kappa z}, z<-d, \\
& E_{2}=-4 \pi n q B_{2} \frac{\omega^{2}-\omega_{c}^{2}}{\omega_{p}^{2}} e^{-i \kappa^{\prime} z}-2 \pi n q B_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{-i \kappa z}, z<-d \tag{27}\\
& E_{z}=-4 \pi n q B_{1} \frac{k\left(\omega^{2}-\omega_{c}^{2}\right)}{\kappa^{\prime} \omega_{p}^{2}} e^{-i \kappa^{\prime} z}-2 \pi n q B_{1} \frac{k\left(\kappa \kappa^{\prime}+k^{2}\right)}{\kappa \kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{-i \kappa z}, z<-d
\end{align*}
$$

for $z<-d$ and

$$
\begin{gather*}
E_{1}=-2 \pi n q B_{1} \frac{\kappa \kappa^{\prime}-k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{i \kappa z}, z>-d, \\
E_{2}=-2 \pi n q B_{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}+\kappa\right)} e^{i\left(\kappa^{\prime}+\kappa\right) d} e^{i \kappa z}, z>-d \tag{28}
\end{gather*}
$$

and $E_{z}=-(k / \kappa) E_{1}$ for $z>-d$; and the amplitudes $B_{1,2}$ are given by

$$
\begin{align*}
& \frac{1}{2} B_{1} \omega_{p}^{2} \frac{\kappa \kappa^{\prime}+k^{2}}{\kappa^{\prime}\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{-i \kappa z}=\frac{q}{m} E_{01}, \tag{29}\\
& \frac{1}{2} B_{2} \omega_{p}^{2} \frac{\lambda^{2}}{\kappa\left(\kappa^{\prime}-\kappa\right)} e^{i\left(\kappa^{\prime}-\kappa\right) d} e^{-i \kappa z}=\frac{q}{m} E_{02} .
\end{align*}
$$

We consider now two half-spaces, one, denoted by 1 , extending in the region $z>d / 2$, another, denoted by 2 , occupying the region $z<-d / 2$. The field pertaining to these half-spaces is given here and in the previous Section, with d replaced by $d / 2$. We focus on the amplitudes equations (19) and (29). The external field for the half-space 2 (equations (29)) is the field given by equations (21), produced by half-space 1 in the region $z<d / 2$; similarly, the external field for the half-space 1 (equations (19)) is the field given by equation (28), produced by half-space 2 in the region $z>-d / 2$. All the quantities pertaining to half-spaces 1,2 will get a suffix 1 or, respectively, 2 . Introducing these fields in equations (19) and (29) we get the dispersion equations

$$
\begin{gather*}
\frac{\kappa_{1}^{\prime}-\kappa}{\kappa_{1}^{\prime}+\kappa} \cdot \frac{\kappa_{2}^{\prime}-\kappa}{\kappa_{2}^{\prime}+\kappa} e^{2 i \kappa d}=1 \\
\frac{\kappa_{1}^{\prime}-\kappa}{\kappa_{1}^{\prime}+\kappa} \cdot \frac{\kappa_{2}^{\prime}-\kappa}{\kappa_{2}^{\prime}+\kappa} \cdot \frac{\kappa \kappa_{1}^{\prime}-k^{2}}{\kappa \kappa_{1}^{\prime}+k^{2}} \cdot \frac{\kappa \kappa_{2}^{\prime}-k^{2}}{\kappa \kappa_{2}^{\prime}+k^{2}} e^{2 i \kappa d}=1 \tag{30}
\end{gather*}
$$

The solutions of these equations give the eigenfrequencies of the two electromagnetically-coupled half-spaces. Since

$$
\begin{equation*}
\left(\kappa^{\prime} \pm \kappa\right)\left(\kappa \kappa^{\prime} \pm k^{2}\right)=\lambda^{2}\left(\varepsilon \kappa \pm \kappa^{\prime}\right) \tag{31}
\end{equation*}
$$

according to equation (18), the second dispersion equation (30) can also be written as

$$
\begin{equation*}
\frac{\kappa_{1}^{\prime}-\varepsilon_{1} \kappa}{\kappa_{1}^{\prime}+\varepsilon_{1} \kappa} \cdot \frac{\kappa_{2}^{\prime}-\varepsilon_{2} \kappa}{\kappa_{2}^{\prime}+\varepsilon_{2} \kappa} e^{2 i \kappa d}=1 \tag{32}
\end{equation*}
$$

where $\varepsilon_{1,2}(\omega)$ are the dielectric functions of the two half-spaces. These dispersion equations have been established in Refs. [8], [10, 11], by using continuity conditions for the electromagnetic field at the surfaces of the two half-spaces.

5 Casimir force

In general, the dispersion equations (30) have not solutions. However, there exist particular conditions, corresponding precisely to physically interesting cases, which ensure solutions for the dispersion equations (30). For instance, conductors are characterized by $\omega_{c}=0$ and large values of ω_{p}. In this case, the z-component κ^{\prime} of the wavevector is purely imaginary and its magnitude acquires large values in comparison with κ (i.e., λ). Purely imaginary wavevectors κ^{\prime} correspond to damped surface plasmon-polariton modes in conductors (see, for instance, Refs. [38, 40]), in agreement with the original Casimir's assumption concerning the boundary conditions at the surfaces of two semi-infinite metals. In this retarded regime of interaction the electromagnetic field is propagating between the two half-spaces (κ real), but it is damped along the z-direction inside the conducting half-spaces. Good dielectrics are characterized by $\omega \ll \omega_{c} \ll \omega_{p}$, so that κ^{\prime} (which is real) acquires again large values. This condition is usually referred to as the condition of long wavelengths in comparison with the main (characteristic) absorption wavelength of the substance (see, for instance, Ref. [15]). It is easy to see that equations (30) have solutions $\kappa d=\pi n, n$ any integer, for $\left|\kappa_{1,2}^{\prime}\right| \gg \kappa_{1,2},\left|\varepsilon_{1,2}\right| \kappa_{1,2}$. Solutions $\kappa d=\pi n$ can be easily understood. In the in-between region there is a field produced by the half-space 1, which goes like $\mathbf{E}^{(1)}, \mathbf{H}^{(1)} \sim e^{-i \kappa z}$ and a field produced by the half-space 2 , which goes like $\mathbf{E}^{(2)}, \mathbf{H}^{(2)} \sim e^{i \kappa z}$. Cross-terms of the form $\mathbf{E}^{(1) *} \mathbf{E}^{(2)}$, integrated over z from $-d / 2$ to $d / 2$, in the energy of the electromagnetic field in this region give rise to the factor $\sin \kappa d$. The condition $\kappa d=\pi n$ ensures the vanishing of this interaction energy. There is also an interaction electromagnetic energy inside the two half-spaces (involving cross-terms), which cannot, in general, be removed, except in those cases where it is practically negligible. This condition correspond to $\left|\kappa_{1,2}^{\prime}\right| \gg \kappa_{1,2},\left|\varepsilon_{1,2}\right| \kappa_{1,2}$.
The solutions $\kappa d=\pi n\left(\kappa=\sqrt{\lambda^{2}-k^{2}}\right)$ imply the eigenfrequencies

$$
\begin{equation*}
\Omega_{n}(k)=c \sqrt{k^{2}+\frac{\pi^{2} n^{2}}{d^{2}}} \tag{33}
\end{equation*}
$$

according to equations (19) and (29); the corresponding amplitudes can be written as

$$
\begin{equation*}
A_{1,2, n}=2 \pi a_{1,2, n} \delta\left(\omega-\Omega_{n}(k)\right) \tag{34}
\end{equation*}
$$

where $u_{1,2, n}(\mathbf{k}, z ; t)=a_{1,2, n} e^{i \Omega_{n}(k) t} e^{i \kappa_{1,2}^{\prime} z}$. We can see that $a_{1,2, n}$ are displacements, according to equation (7), and they correspond to the coordinates of harmonic-oscillators with frequencies $\Omega_{n}(k)$. According to equations (29), a similar representation holds for the amplitudes $B_{1,2}$ of the displacement field in the half-space 2, as well as for the associated electromagnetic fields. In effect, the coordinates of the $a_{1,2, n}$-type are the coordinates of the normal modes (labelled by \mathbf{k} and n) of the two electromagnetically-coupled half-spaces. The motion of the normal modes can be quantized, according to standard rules, so that the ground-state energy is given by

$$
\begin{equation*}
E=\sum_{n=0}^{\infty} \sum_{\mathbf{k}} \hbar \Omega_{n}(k)=\frac{S \hbar c}{2 \pi} \sum_{n=0} \int_{0} d k \cdot k \sqrt{k^{2}+\frac{\pi^{2} n^{2}}{d^{2}}} \tag{35}
\end{equation*}
$$

where S denotes the area of the surface and factor 2 has been introduced in order to account for the two labels 1 and 2.
We estimate the change brought about by the finite distance d in the energy E by using the Euler-Maclaurin formula:[49]

$$
\begin{equation*}
\Delta E=\sum_{m=1} \frac{(-1)^{m} B_{m}(\pi / d)^{2 m-1}}{(2 m)!} f^{(2 m-1)}(0) \tag{36}
\end{equation*}
$$

where B_{m} are the Bernoulli's numbers and

$$
\begin{equation*}
f(\kappa)=\frac{S \hbar c}{2 \pi} \int d k k \sqrt{k^{2}+\kappa^{2}} \tag{37}
\end{equation*}
$$

introducing $u=k^{2}+\kappa^{2}$, equation (36) becomes

$$
\begin{equation*}
\Delta E=\frac{\hbar c S}{4 \pi} \sum_{m=1} \frac{(-1)^{m} B_{m}(\pi / d)^{2 m-1}}{(2 m)!}\left(\int_{\kappa^{2}} d u \sqrt{u}\right)_{0}^{(2 m-1)} \tag{38}
\end{equation*}
$$

The only contribution to equation (38) comes from the third-order derivative. We get ($B_{2}=1 / 30$)

$$
\begin{equation*}
\Delta E=-\frac{\pi^{2} \hbar c S}{720} \cdot \frac{1}{d^{3}} \tag{39}
\end{equation*}
$$

and an attractive force

$$
\begin{equation*}
F=-\frac{\pi^{2} \hbar c S}{240} \cdot \frac{1}{d^{4}} \tag{40}
\end{equation*}
$$

which is the well-known Casimir force, acting between two half-spaces with parallel surfaces separated by distance d. We can see that it is the same for dielectrics and conductors (under the conditions given before), including the pair conductor-dielectric, does not depend on the nature of the two semi-infinite bodies and arises from the zero-point (vacuum) fluctuations of the motion of the charge carriers in the two polarizable bodies. We may say that it has a universal character. The effect of the temperature $T=1 / \beta$ can be incorporated in equation (38) by the change

$$
\begin{equation*}
\int_{\kappa^{2}} d u \sqrt{u} \rightarrow \int_{\kappa^{2}} d u \sqrt{u} \operatorname{coth}\left[\frac{1}{2} \beta \hbar c \sqrt{u}\right] \tag{41}
\end{equation*}
$$

For realistic values of the parameters we have $\beta \hbar c / d \gg 1$, so we get a small temperature correction factor $\simeq \operatorname{coth}(\beta \hbar c / d)$ in the expression of the force.

6 van der Waals-London force

For shorter distances d, the electromagnetic field acquires the non-retarded regime corresponding to $\lambda \rightarrow 0$; it follows that $\kappa \simeq i k$, i.e. the electromagnetic field is damped along the z -direction, both inside and ouside the half-spaces. In this limit we have

$$
\begin{equation*}
\kappa^{\prime} \simeq \kappa-\frac{\lambda^{2} \omega_{p}^{2}}{2 \kappa\left(\omega^{2}-\omega_{c}^{2}\right)}, \kappa \kappa^{\prime}+k^{2} \simeq \lambda^{2}\left[1-\frac{\omega_{p}^{2}}{2\left(\omega^{2}-\omega_{c}^{2}\right)}\right] \tag{42}
\end{equation*}
$$

and $\kappa \kappa^{\prime}-k^{2} \simeq-2 k^{2}$. Making use of these approximations, the second equation (30) leads to

$$
\begin{equation*}
\left(\omega^{2}-\omega_{c 1}^{2}-\frac{1}{2} \omega_{p 1}^{2}\right)\left(\left(\omega^{2}-\omega_{c 2}^{2}-\frac{1}{2} \omega_{p 2}^{2}\right)=\frac{1}{4} \omega_{p 1}^{2} \omega_{p 2}^{2} e^{-2 k d} .\right. \tag{43}
\end{equation*}
$$

We solve this equation for large values of the $k d$, which bring the main contribution to integrals over k. Within this approximation, the rhs of equation (43) may be treated as a small perturbation. From the zero-point energy, we get the van der Waals-London force (per unit area) for distinct bodies

$$
\begin{equation*}
F=-\frac{\hbar \omega_{p 1} \omega_{p 2}}{16 \pi \sqrt{2} C_{1} C_{2}\left(\omega_{p 1} C_{1}+\omega_{p 2} C_{2}\right)} \cdot \frac{1}{d^{3}} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1,2}=\sqrt{\frac{\varepsilon_{01,2}+1}{\varepsilon_{01,2}-1}} \tag{45}
\end{equation*}
$$

$\varepsilon_{01,2}$ being the static dielectric constants (for conductors, $C_{1,2} \rightarrow 1$). For identical bodies, the force becomes

$$
\begin{equation*}
F=-\frac{\hbar \omega_{p}}{32 \pi \sqrt{2}}\left(\frac{\varepsilon_{0}-1}{\varepsilon_{0}+1}\right)^{3 / 2} \cdot \frac{1}{d^{3}} \tag{46}
\end{equation*}
$$

(for conductors $\left|\varepsilon_{0}\right| \rightarrow \infty$).

7 A third body

We assume now that a slab of thickness d and parameters $\omega_{p 3}, \omega_{c 3}$ (body 3) is inserted in the gap between the two half-spaces. All the calculations given in Sections 2 and $\mathbf{3}$ are repeated for this body, which brings its own component κ_{3}^{\prime} of the wavevevector along the z-axis, given by

$$
\begin{equation*}
\kappa_{3}^{\prime 2}=\kappa^{2}-\frac{\lambda^{2} \omega_{p 3}^{2}}{\omega^{2}-\omega_{c 3}^{2}}=\varepsilon_{3} \lambda^{2}-k^{2} \tag{47}
\end{equation*}
$$

ε_{3} being the dielectric function of this body. The first dispersion equation (30) becomes now

$$
\begin{gather*}
\left(\frac{\kappa_{1}^{\prime}+\kappa}{\kappa_{1}^{\prime}-\kappa} \cdot \frac{1}{\kappa_{3}^{\prime}+\kappa}-\frac{1}{\kappa_{3}^{\prime}-\kappa}\right)\left(\frac{\kappa_{2}^{\prime}+\kappa}{\kappa_{2}^{\prime}-\kappa} \cdot \frac{1}{\kappa_{3}^{\prime}+\kappa}-\frac{1}{\kappa_{3}^{\prime}-\kappa}\right) e^{2 i \kappa_{3}^{\prime} d}= \\
\left(\frac{\kappa_{1}^{\prime}+\kappa}{\kappa_{1}^{\prime}-\kappa} \cdot \frac{1}{\kappa_{3}^{\prime}-\kappa}-\frac{1}{\kappa_{3}^{\prime}+\kappa}\right)\left(\frac{\kappa_{2}^{\prime}+\kappa}{\kappa_{2}^{\prime}-\kappa} \cdot \frac{1}{\kappa_{3}^{\prime}-\kappa}-\frac{1}{\kappa_{3}^{\prime}+\kappa}\right), \tag{48}
\end{gather*}
$$

while the second dispersion equation (30) can be written as

$$
\begin{equation*}
\left(a_{1} b_{-}-b_{+}\right)\left(a_{2} b_{-}-b_{+}\right) e^{2 i \kappa_{3}^{\prime} d}=\left(a_{1} b_{+}-b_{-}\right)\left(a_{2} b_{+}-b_{-}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}=\frac{\kappa \kappa_{i}^{\prime}+k^{2}}{\kappa \kappa_{i}^{\prime}-k^{2}} \cdot \frac{\kappa_{i}^{\prime}+\kappa}{\kappa_{i}^{\prime}-\kappa}=\frac{\varepsilon_{i} \kappa+\kappa_{i}^{\prime}}{\varepsilon_{i} \kappa-\kappa_{i}^{\prime}}, i=1,2 \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{ \pm}=\frac{\kappa \kappa_{3}^{\prime} \pm k^{2}}{\kappa_{3}^{\prime} \mp \kappa} \tag{51}
\end{equation*}
$$

We can see that the dispersion equations (30) can be retrieved from equations (48) and (49) by putting formally $\kappa_{3}^{\prime}=\kappa$, as for vacuum.
For large values of $\left|\kappa_{1,2}^{\prime}\right|$ (either conductors or dielectrics), equations (48) and (49) have solution $\kappa_{3}^{\prime} d=\pi n$, n integer, which implies $\varepsilon_{3}(\omega) \lambda^{2}=c^{2} K_{3}^{\prime 2}$, where $\mathbf{K}_{3}^{\prime}=(\mathbf{k}, \pi n / d)$. This equation has two solution branches, one starting at $\sqrt{\omega_{p 3}^{2}+\omega_{c 3}^{2}}$ with an asymptote $\simeq c K_{3}^{\prime}$, and another starting as $v K_{3}^{\prime}$ and asymptote $\omega_{c 3}$, where

$$
\begin{equation*}
v=c \frac{\omega_{c 3}}{\sqrt{\omega_{p 3}^{2}+\omega_{c 3}^{2}}}=\frac{c}{\sqrt{\varepsilon_{30}}} \tag{52}
\end{equation*}
$$

ε_{30} being the (static) dielectric constant of the body 3. These are the well-known polariton branches in a polarizable body. It follows that the Casimir force is given by the same equation
(40) with the renormalized light velocity (polariton velocity) v, as expected. For a conducting body inserted in the gap (κ_{3}^{\prime} purely imginary), the force is vanishing.
In the non-retarded regime $\kappa \simeq i k$ the situation is more complicated. Equation (49) leads to

$$
\begin{gather*}
{\left[4\left(\omega^{2}-D_{1}\right)\left(\omega^{2}-D_{3}\right)-\omega_{p 1}^{2} \omega_{p 3}^{2}\right]\left[4\left(\omega^{2}-D_{2}\right)\left(\omega^{2}-D_{3}\right)-\omega_{p 2}^{2} \omega_{p 3}^{2}\right]=} \\
=4\left[\omega_{p 1}^{2}\left(\omega^{2}-D_{3}\right)-\omega_{p 3}^{2}\left(\omega^{2}-D_{1}\right)\right]\left[\omega_{p 2}^{2}\left(\omega^{2}-D_{3}\right)-\omega_{p 3}^{2}\left(\omega^{2}-D_{2}\right)\right] e^{-2 k d}, \tag{53}
\end{gather*}
$$

where

$$
\begin{equation*}
D_{i}=\frac{1}{2} \omega_{p i}^{2} \frac{\varepsilon_{0 i}+1}{\varepsilon_{0 i}-1}, i=1,2,3 . \tag{54}
\end{equation*}
$$

The zero-point energy associated with the solutions of this equation leads to the van der WaalsLondon force. It is easy to see that for large values of D_{3} (weak dielectric in-between), equation (53) becomes equation (43), which means that the effect of a weak dielectric introduced in the gap between the two half-spaces is a second-order correction. For two identical conductors 1 and 2 and a distinct conductor 3 in-between the force is given by

$$
\begin{equation*}
F=-\frac{\hbar}{32 \pi \sqrt{2}} \frac{\omega_{p}^{2}-\omega_{p 3}^{2}}{\left(\omega_{p}^{2}+\omega_{p 3}^{2}\right)^{3 / 2}} \cdot \frac{1}{d^{3}} . \tag{55}
\end{equation*}
$$

More complicated situations can be treated by solving equation (53).

8 Formulae of the theory of the electromagnetic fluctuations

We give here a formal deduction of the formulae obtained within the framework of the theory of the electromagnetic fluctuations, following Refs. [8], [10, 11]
Suppose that the eigenvalues $\Omega_{n}(\mathbf{k})$ are given by the roots of an equation written as $G(\omega, k)=0$, like one of equations (30). Then, the zero-point energy can be written as

$$
\begin{equation*}
E=\frac{1}{2} \hbar \sum_{n \mathbf{k}} \Omega_{n}(k)=\frac{\hbar}{4 \pi i} \sum_{n \mathbf{k}} \int d \omega \frac{\omega}{\omega-\Omega_{n}(k)} \tag{56}
\end{equation*}
$$

or

$$
\begin{equation*}
E=\frac{\hbar}{2 i} \int d k k \int d \omega \omega \frac{\partial}{\partial \omega} \ln G \tag{57}
\end{equation*}
$$

(per unit area), where the integration with respect to ω is performed around the positive ω-axis (we assume that function G has no poles). We pass from the variables (ω, k) to the variables (ξ, p) defined by

$$
\begin{equation*}
\omega=i \xi, p=\sqrt{1+c^{2} k^{2} / \xi^{2}} \operatorname{sgn}(\xi) \tag{58}
\end{equation*}
$$

The jacobian of this transformation is

$$
\begin{equation*}
\frac{\partial(\omega, k)}{\partial(\xi, p)}=\frac{i \xi p}{c\left(p^{2}-1\right)^{1 / 2}} \tag{59}
\end{equation*}
$$

and the integration is represented as

$$
\begin{equation*}
\int_{-\infty}^{-1} d p \int_{-\infty}^{0} d \xi-\int_{1}^{\infty} d p \int_{0}^{\infty} d \xi \tag{60}
\end{equation*}
$$

We take for $G=0$ equations (30), which, with the new variables, become

$$
\begin{gather*}
G_{1}=\frac{\left(s_{1}+p\right)\left(s_{2}+p\right)}{\left(s_{1}-p\right)\left(s_{2}-p\right)} e^{2 \xi p d / c}-1=0 \\
G_{2}=\frac{\left(s_{1}+\varepsilon_{1} p\right)\left(s_{2}+\varepsilon_{2} p\right)}{\left(s_{1}-\varepsilon_{1} p\right)\left(s_{2}-\varepsilon_{2} p\right)} e^{2 \xi p d / c}-1=0 \tag{61}
\end{gather*}
$$

where $s_{i}=\left(\varepsilon_{i}-1+p^{2}\right)^{1 / 2}, i=1,2$ and κ is replaced by $\kappa=-i \xi p / c$. The derivative with respect to ω in equation (57) becomes

$$
\begin{equation*}
\frac{\partial G}{\partial \omega}=-i \frac{\partial G}{\partial \xi}+i \frac{p^{2}-1}{p \xi} \frac{\partial G}{\partial p} \tag{62}
\end{equation*}
$$

In order to get the force, we take the (minus) derivative with respect to d in equation (57) and make use of

$$
\begin{equation*}
\frac{\partial G}{\partial d}=\frac{2 \xi p}{c}(G+1) \tag{63}
\end{equation*}
$$

Combining equations (62) and (63), we get easily

$$
\begin{equation*}
\frac{\partial}{\partial d}\left(\frac{1}{G} \frac{\partial G}{\partial \omega}\right)=\frac{2}{i c}\left(\frac{1}{p}+\frac{1}{p G}-\frac{\xi p}{G^{2}} \frac{\partial G}{\partial \xi}+\frac{p^{2}-1}{G^{2}} \frac{\partial G}{\partial p}\right) \tag{64}
\end{equation*}
$$

An integration by parts in $F=\partial E / \partial d$ leads to the force

$$
\begin{equation*}
F=-\frac{\hbar}{2 \pi^{2} c^{3}} \int_{1}^{\infty} d p p^{2} \int_{0}^{\infty} d \xi \xi^{3}\left(\frac{1}{G_{1}}+\frac{1}{G_{2}}\right) \tag{65}
\end{equation*}
$$

which is the well-known formula given in Refs. [13]-[17]. The formal equivalence given here can be found entirely in Ref. [10]. For finite temperatures the integration over ξ is replaced by a summation over the integers n, such as $\beta \hbar \xi_{n}=2 \pi n$, where $\beta=1 / T$ is the reciprocal of the temperature T.
For conductors, in the non-retarded limit, equation (65) leads to the Casimir force given by equation (40). For poor dielectrics, or combinations of poor dielectrics with conductors, equation (65) brings a small correction factor in the Casimir force (see, for instance, equation (82.6) in Ref. [15]), which indicates, in fact, that the force is vanishing in this case. In the limit of good dielectrics, equation (65) leads to the same universal Casimir force given by equation (40).
In the non-retarded limit $\omega \rightarrow 0(\xi \rightarrow 0)$, the most important contribution to the p-integral in equation (65) comes from $p \gg 1$, due to the presence of the exponential in the denominator. Consequently, we may take $s_{1,2} \simeq p$, which leads to

$$
\begin{equation*}
F \simeq-\frac{\hbar}{16 \pi^{2} d^{3}} \int_{0}^{\infty} d x x^{2} \int_{0}^{\infty} d \xi\left[\frac{\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)}{\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)} e^{x}-1\right]^{-1} \tag{66}
\end{equation*}
$$

which is the well-known formula given in Refs. [13]-[17] for the van der Waals-London force. The evaluation of the ξ-integral is difficult, so we cannot compare the result with equation (44).
Both equations (65) and (66) can be extended to very rarefied bodies, leading to well-known forces computed quantum-mechanicaly for two interacting atoms (molecules).[15] In general, equations (65) and (66) are valid where there exist solutions of equation $G(\omega, k)=0$ (equations (30)). Unfortunately, equations (65) and (66) may also indicate false solutions (as for poor dielectrics).

9 Concluding remarks. Sphere and half-space

Let us denote by $F_{1 / 2}=C S / d^{n}$ the van der Waals-London or Casimir force acting between two half-space separated by distance d, where C is a constant, S is the transverse area of the two half-spaces, $n=3$ for the van der Waals-London force and $n=4$ for the Casimir force. We look for a force $d f=C_{1} /|z|^{n_{1}} d V$, acting between the half-space and a "macroscopically infinitesimal" element of volume $d V$ placed at distance $|z|$ from the half-space, such as

$$
\begin{equation*}
\int d f=F_{1 / 2} \tag{67}
\end{equation*}
$$

where the integration is performed over the other half-space. We find easily $C_{1}=C n$ and $n_{1}=$ $n+1$. Now we compute the force

$$
\begin{equation*}
F_{s}=\int d f=C n \int d V \frac{1}{(R+d-r \cos \theta)^{n+1}} \tag{68}
\end{equation*}
$$

acting between the half-space and a sphere of radius R placed at distance d from the half-space (the distance between the half-space and the surface of the sphere); the integration in equation (68) is performed over the volume of the sphere. The integration in equation (68) is elementary, and, for $R \gg d$, we get the force

$$
\begin{equation*}
F_{s} \simeq \frac{2 \pi C R}{(n-1) d^{n-1}} \tag{69}
\end{equation*}
$$

The force acting between a half-space and a spherical sell of radius R is $2 \pi C R^{2} / d^{n}$. In a similar way we can derive the force acting between two bodies of any shape. The force acting between two macroscopic particles is given by

$$
\begin{equation*}
f=\frac{n(n+1)(n+2) C}{2 \pi d^{n+4}} v_{1} v_{2} \tag{70}
\end{equation*}
$$

where $v_{1,2}$ are the volumes of the two particles.
In conclusion we may say that the van der Waals-London and Casimir forces are calculated here explicitly for two semi-infinite solids (half-spaces) separated by a third, polarizable body inserted in the gap between the two half-spaces. In contrast with previous, well-known treatments of the problem, the polarization degreees of freedom are introduced here explicitly, and their dynamics is included, beside the Maxwell equations of the electromagnetic field. The equations of motion are solved (both for polarization and the electroamgnetic field) for these electromagnetically-coupled bodies, the normal modes are identified as harmonic-oscillators modes, and the corresponding eigenfrequencies are computed. The force is calculated frm the zero-point energy of the vaccum fluctuations of the polarization. The extension of the results to bodies of any shape is done, and the force acting between a sphere and a half-space is calculated explicitly.
Acknowledgments. The author is indebted to the members of the Laboratory of Theoretical Physics and Condensed Matter in the Institute for Physics and Nuclear Engineering at MagureleBucharest for many useful discussions. The author is also indebted to the members of the Seminar of the Institute for Atomic Physics, Magurele-Bucharest for a thorough analysis of the results presented here.

References

[1] R. Eisenschitz and F. London, "Uber das Verhaltnis der van der Waalsschen Krafte zu den homoopolaren Bindungskraften", Z. Physik 60 491-527 (1930).
[2] F. London, "Zur Theorie und Systematik der Molekularkrafte", Z. Physik 63 245-279 (1930).
[3] F. London, "The general theory of molecular forces", Trans. Faraday Soc. 33 8-26 (1937).
[4] H. B. G. Casimir and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev. 73 360-372 (1948).
[5] L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 3 (Quantum Mechanics), Butterworth-Heinemann, Oxford (2003), p. 341.
[6] L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4 (Quantum Electrodynamics), Butterworth-Heinemann, Oxford (2003), p. 347.
[7] H. Casimir, "On the atttraction between two perfectly conducting plates," Proc. Kon. Ned. Ak. Wet. 51793 (1948).
[8] N. G. Van Kampen, B. R. A. Nijboer and K. Schram, "On the macroscopic theory of van der Waals forces," Phys. Lett. A26 307-308 (1968).
[9] T. H. Boyer, "Recalculations of long-range van der Waals potentials", Phys. Rev. 180 19-24 (1969).
[10] E. Gerlach, "Equivalence of van der Waals forces between solids and the surface-plasmon interaction," Phys. Rev. B4 393-396 (1971).
[11] K. Schram, "On the macroscopic theory of retarded van der Waals forces," Phys. Lett. A43 282-284 (1973).
[12] J. Heinrichs, "Theory of van der Waals interaction between metal surfaces," Phys. Rev. B11 3625-3636 (1975).
[13] E. Lifshitz, ZhETF 29 94-105 (1956) (Sov. Phys. JETP 2 73-83 (1956)).
[14] I. E. Dzyaloshinskii, E. M. Lifshitz and L. P. Pitaevskii, "The general theory of van der Waals forces," Adv. Phys. 10 165-209 (1961).
[15] L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5 (Statistical Physics), part. 2, Butterworth-Heinemann, Oxford (2003), ch. 8.
[16] J. Schwinger, "Casimir effect in source theory", Lett. Math. Phys. 1 43-47 (1975).
[17] J. Schwinger, L. L. deRaad, Jr., and K. A. Milton, "Casimir effect in dielectrics", Ann. Phys. 115 1-23 (1978).
[18] P. W. Milloni, The Quantum Vacuum (Academic Press, San Diego, 1994).
[19] V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon, Oxford, 1997).
[20] S. K. Lamoreaux, "Demonstration of the Casimir force in the 0.6 to $6 \mu m$ range," Phys. Rev. Lett. 78 5-8 (1997).
[21] L. H. Ford, "Casimir sphere between a dielectric sphere and a wall: a model for amplification of vacuum fluctuations, Phys. Rev. A58 4279-4286 (1998).
[22] U. Mohideen and A. Roy, "Precision measurement of the Casimir force from 0.1 to $0.9 \mu \mathrm{~m}$ ", Phys. Rev. Lett. 81 4549-4552 (1998).
[23] S. K. Lamoreaux, "Calculation of the Casimir force between imperfectly conductiong plates," Phys. Rev. A59 R3149-R3153 (1999).
[24] A. Lambrecht and S. Reynard, "Comment on "Demonstration of the Casimir force in the 0.6 to $6 \mu \mathrm{~m}$ range"," Phys. Rev. Lett. 84 5672-5672 (2000).
[25] A. Lambrecht and S. Reynaud, "Casimir force between metallic mirrors", Eur. Phys. J. D8 309-318 (2000).
[26] M. Bordag, U. Mohideen and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Reps. 353 1-205 (2001).
[27] K. A. Milton, The Casimir Effect (World Scientific, Singapore, 2001).
[28] G. Bressi, G. Carugno, R. Onofrio and G. Ruoso, "Measurement of the Casimir force between parallel metallic surfaces", Phys. Rev. Lett. 88041804 (2002) (1-4).
[29] C. Genet, A. Lambrecht and S. Reynaud, "Casimir force and the quantum theory of lossy optical cavities," Phys. Rev. A67 043811 (1-18) (2003).
[30] K. A. Milton, "The Casimir effect: recent controversies and progress", J. Phys. A: Math. Gen. 37 R209-R277 (2004).
[31] F. Chen, U. Mohideen, G. L. Klimchitskaya and V. M. Mostepanenko, "Investigation of the Casimir force between metal and semiconductor test bodies," Phys. Rev. A72 020101(R1-4) (2005).
[32] S. K. Lamoreaux, "The Casimir force: background, experiments and applications," Reps. Progr. Phys. 65 201-236 (2005).
[33] F. Intravaia, "Effet Casimir et interaction entre plasmons de surface," These de Doctorat de l'Universite Paris VI, 1-177, June 2005.
[34] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari and E. A. Cornell, "Measurement of the temperature dependence of the Casimir-Polder force," Phys. Rev. Lett. 98063201 (1-4) (2007).
[35] F. Intravaia, C. Henkel and A. Lambrecht, "Role of surface plasmons in the Casimir effect," Phys. Rev. A76 033820 (1-11) (2007).
[36] T. Emig, N. Graham, R. L. Jaffe and M. Kardar, "Casimir forces between arbitrary compact objects", Phys. Rev. Lett. 99170403 (2007) (1-4).
[37] M. Kruger, T. Emig, G. Bimonte and M. Kardar, "Non-equilibrium Casimir forces:: spheres and sphere-plate", Eur. Phys. Lett. 9521002 (2011) (1-6).
[38] M. Apostol and G. Vaman, "Electromagnetic eigenmodes in matter. van der Waals-London and Casimir forces", Pogr. Electrom. Res. PIER B19 115-131 (2010).
[39] M. Apostol and G. Vaman, "Attraction force between a polarizable point-like particle and a semi-infinite solid", Roum. J. Phys. 55 764-771 (2010).
[40] M. Apostol and G. Vaman, "Electromagnetic field interacting with a semi-infinite plasma", J. Opt. Soc. Am. A26 1747-1753 (2009).
[41] M. Apostol and G. Vaman, "Plasmons and difraction of an electromagnetic plane wave by a metallic sphere", Progr. Electrom. Res. PIER 98 97-118 (2009).
[42] P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566-613 (1900).
[43] P. Drude, "Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetische und thermomagnetische Effecte, 308 369-402 (1900).
[44] H. A. Lorentz, The Theory of Electrons, Teubner, Leipzig (1916).
[45] C. Kittel, Introduction to Solid State Physics, Wiley, NJ (2005).
[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, eds. A. Jeffrey and D. Zwillinger, 6th edition, Academic Press, San Diego (2000), pp. 714-715, 6.677.1,2.
[47] M. Born and E. Wolf, Principles of Optics, Pergamon, London (1959).
[48] L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 2 (The Classical Theory of Fields), Butterworth-Heinemann, Oxford (2003).
[49] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Mathematical Library, Cambridge (2004), p. 128.
[50] W. Heitler, The Quantum Tehroy of Radiation, Dover, NY (1954).

[^0]
[^0]: © J. Theor. Phys. 2011, apoma@theor1.theory.nipne.ro

