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2 J. Theor. Phys.The main di�ulty in getting more de�nite results in suh problems resides in modelling onve-niently the surfae roughness suh as to arrive at more mathematially operational approahes.[9℄We present here a perturbation-theoretial sheme, with the surfae roughness as a perturbationparameter, whih allows the omputation of the eletromagneti �eld sattered by the surfaeroughness in a semi-in�nite solid. The sheme is based on the equation of motion of the po-larization, whose degrees of freedom are expliitly introdued, within the well-knowm Lorentz-Drude (plasma) model of polarizable, non-magneti, homogeneous matter. The sattered �eld isomputed within the �rst order of the perturbation theory, where the omponent of the surfaeroughnes modulated with half the in-plane wavelength of the inident wave ontributes to sat-tering. The wave re�eted by the surfae roughness adds to the main (speularly) re�eted wave,while the wave sattered by the surfae roughnesss into the solid propagates along the originaldiretion of the inident wave (distint from the refrated wave). The surfae roughness on-tributes to the re�etion and transmission oe�ients in higher orders of the perturbation theory(starting with theseond order), as expeetd. However, for damped waves in ondutors, thereexists a �rst-order ontribution to these oe�ients, arisingfrom thes urfae roughness. As we ansee, the main qualitative features of the sattering by surfae roughness (diretionality, hange inthe re�etion and transmission oe�ients, et) appear even in the �rst-order of the perturbationtheory. In addition, it is shown that the surfae roughness generates a surfae mode, i.e. a modestritly on�ned to, and propagating only on the surfae ( a two-dimensional wave), resonant atthe longitudinal frequeny of the solid.2 Semi-in�nite solid with a rough surfaeWe onsider a polarizable homogeneous body with a density n of mobile harges q moving ina uniform rigid neutralizing bakground. A small displaement u(R, t) of these harges, where
R = (r, z), r = (x, y) is the position vetor and t denotes the time, produes a hage density
ρ = −nqdivu and a urrent desity j = nqu̇, orresponding to a polarization P = nqu. The vetorpotential is given by
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, (2)where λ = ω/c. The salar potential Φ is obtained from divA = iλΦ (Lorenz gauge) and the�elds are given by E = iλA− gradΦ (eletri �eld), H = curlA or curlE = iλH (magneti �eld).We use the well-known deomposition[10℄
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J. Theor. Phys. 3Next, we onsider a semi-in�nite solid extending over the region z > h(r), where h(r), with
∫

drh(r) = 0, is the surfae roughness funtion, to be further spei�ed. The polarization for thisbody is taken as
P = nq(u, uz)θ(z − h(r)) , (5)where u lies in the r-plane, uz is direted along the z-diretion and θ is the step funtion (θ(z) = 1for z > 0, θ(z) = 0 for z < 0). We assume that the magnitude of the roughness funtion h(r) ismuh smaller than the relevant wavelengths of the eletromagneti �eld and use the approximation

P = P(0) + P(1) ,

P(0) = nq(u, uz)θ(z) , P(1) = −nqh(r)(u, uz)δ(z) ,
(6)where δ(z) is the Dira delta-funtion. The spei� onditions of validity for suh an approx-imation, whih is a �rst-order perturbation-theoretial approah, will be disussed below. Wean see that the polarization P(0) orresponds to a half-spae extending over the region z > 0,while the polarization P(1) is a surfae polarization loalized on the surfae z = 0. We omputethe eletromagneti potentials and �elds as desribed above (equation (2)) for the harges andurrents orresponding to these polarizations. The alulations are straightforward. Leaving asidethe fator nq (it will be restored in the �nal formulae), we get

A(0) = 2πλ
κ

∫

0 dz′(u, uz)e
iκ|z−z′| ,

Φ0) = 2π
κ

∫ ∞
d dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞
d dz′uze

iκ|z−z′|

(7)and
A(1)(k, z) = −2πλ

κ
(g(k, z = 0), gz(k, z = 0)) eiκ|z| ,

Φ(1)(k, z) = −2π
[

1
κ
kg(k, z = 0) + gz(k, z = 0)sgn(z)

]

eiκ|z| ,
(8)where

g(k, z) =
∫

drh(r)u(r, z)e−ikr =
1

(2π)2

∫

dqh(q)u(k − q, z) (9)and a similar formula for gz(k, z), h(q) being the Fourier transform of the roughness funtion h(r)(sgn(z) = +1 for z > 0, sgn(z) = −1 for z < 0). Further on, we may omit the arguments k, z ofthese funtions and understand z = 0 in the funtions g, gz.In order to ompute the eletri �eld it is onvenient to refer the in-plane vetors (i.e., vetorsparallel with the surfae of the half-spae) to the vetors k and k⊥ = ez × k, where ez is the unitvetor along the z-diretion; for instane, we write
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(10)and a similar representation for the eletri �eld parallel with the surfae of the half-spae. Theomponents u1 and uz orrespond to the p-wave (parallel wave), while the omponent u2 orre-sponds to the s-wave (from the German senkreht whih means perpendiular). In performing thealulations, it is worth paying attention to the derivative of the modulus funtion, aording tothe equation
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4 J. Theor. Phys.We get the eletri �eld
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(13)where g1,2 are the projetions of g on the vetors k and, respetively, k⊥. It is easy to hek thefollowing relations:
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(15)whih are the expression of Maxwell equations for this geometry.3 Equations of motion. The perturbation shemeIn polarizable homogeneous (non-magneti) matter the displaement �eld u(R, t) is subjeted toNewton's equation of motion
mü = q(E + E0) − mω2

cu − mγu̇ , (16)where m is the mass of the mobile harges, E is the eletri �eld of the polarization harges andurrents (alulated in the previous setion), E0 is an external eletri �eld, ωc is a harateristifrequeny and γ is a damping oe�ient. This is the well-known Lorentz-Drude model of matterpolarization.[11℄-[13℄ Taking the temporal Fourier transform of equation, with Et = E + E0 thetotal eletri �eld, we get the eletri suseptibility χ(ω) = P/Et (P = nqE) and the dieletrifuntion
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4πnq2/m is the plasma frequeny. For ωc = 0 in equation (17) we get the dieletrifuntion of a ondutor; ωc 6= 0 orresponds to dieletris. This is also known as the Lydane-Sahs-Teller dieletri funtion,[14℄ with the longitudinal frequeny ωL =
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p and the transversefrequeny ωT = ωc. In general, the damping oe�ient γ is muh smaller than these frequenies,



J. Theor. Phys. 5so we limit ourselves to the ideal ase γ = 0. It is worth noting the absene of the magnetipart of the Lorentz fore in equation (16), aording to the non-relativisti motion of the slightdisplaement u. It is easy to see that, apart from relativisti ontributions, it would introduenon-linearities in equation (16), whih are beyond our assumption of a small displaement u.Using spatial Fourier transforms, this approximation an be formulated as Ku(K) ≪ 1, where Kis the wavevetor.For temporal Fourier transforms equation (16) an also be written as (γ = 0)
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(E + E0) . (18)Aording to the results given in the previous setion, the polarization eletri �eld E depends onthe displaement �eld u. For a plane surfae (h(r) = 0) we denote this displaement �eld by u(0)and write equation (18) as
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] (19)(for z > 0). The eletri �eld E(u(0)) is given by equations (12) (with u replaed by u(0)). Inthe presene of the surfae roughness, aording to equation (6), the displaement �eld aquiresa small additional ontribution, denoted by u(1), whih orresponds to the �eld E(1)(u), where
u = u(0) + u(1). This additional ontribution is governed by the equation of motion
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E(1)(u(0)) (21)(for z > 0), where E(1)(u(0)) is given by equations (13), with u replaed by u(0) in the g -funtions(equation (9)). We solve equations (19) for u(0) with an external plane wave �eld E0 and omputethe �eld E(1)(u(0)) by equations (13) (both for z > 0 and z < 0); it is the �eld sattered by thesurfae roughness. The additional ontribution u(1) is obtained from equation (20).4 Plane surfae: zeroth order approximationWe fous now on equations (19) for a plane surfae, with the eletri �eld E given by equations(12). The inident wave is desribed by E0e
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6 J. Theor. Phys.we an hek the well-known polaritoni dispersion relation εω2 = c2K
′2, where K′ = (k, κ′) is thewavevetor. Introduing the solution given by equation (24) in equation (19) we get the amplitude
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2 (28)for the s-wave, where θ0,r denote the inidene and, respetively, refration angles, sin θ0=√
ε sin θr.Similarly, equation (27) de�nes the transmission oe�ient for the s-wave.Equations (19) are solved in a similar way for u
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2 (32)for the p-wave.[16℄ The (total) eletri �eld is proportional to u(0) (equation (19)), so we an getthe transmission oe�ient for the p-wave. In both ases (s- and p-waves) we an hek that there�etion and transmission oe�ients add to unity, as expeted.It is worth noting that there appears a resonane in equation (31) for κκ
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J. Theor. Phys. 75 The sattered �eldWe ompute now the sattered �eld E(1), as given by equations (13), in the �rst-order approxima-tion of the perturbation theory, by making use of the displaement �eld u(0) given by equations(24) and (29).First, it is worth noting that the z-omponent of the sattered �eld given by equations (13) has aloalized part
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zl ). First,we note that the �eld sattered by the surfae roughness into the solid is propagating along thesame diretion K = (k, κ) as the inident wave (it is proportional to eikr+iκz), in ontrast withthe zeroth order �eld (refrated �eld) whih is transmitted into the solid along the diretion
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) (it goes like eikr+iκ′z). On the other hand, the �eld re�eted by the surfae roughnesspropagates along the same diretion (k, −κ) as the main re�eted �eld. This is true only withinthe �rst-order approximation of the perturbation theory. Higher-order approximations, both inthe expansion of the polarization given by equation (6) and in the equation of motion (20) willgive a �eld sattered by the surfae roughness along any diretion (depending on the roughnessfuntion).Aording to equations (24) and (29), we assume a zeroth order displaement �eld of the form
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1h(2k) , (39)where h(2k) is the Fourier transform of the roughness funtion h(r) for twie the in-plane waveve-tor k of the inident wave. For instane, if h(r) = 2h cos 2kr, then h(2k) = h. We an see that,within the �rst-order theory of perturbation, only the surfae roughness modulated with half thein-plane wavelength of the inident wave ontributes to the sattering. Assuming A1,2 real, fromequations (13), (26) and (31) we an write the re�eted �eld as
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ε sin θr) and λ = c/ω is the wavelength of the inident wave. A similar ondition holds for the�eld sattered into the solid, whose amplitudes satisfy a relation similar with equation (40).We an see from equation (40) that, in general, the surfae roughness ontributes to the re�e-tion (and transmission) oe�ient in the seond-order of the perturbation theory, as expeted.However, for ondutors (ωc = 0) it may happen that κ
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ωδε/2c cos3 θr. We an see from equation (40) that the relative ontribution of the surfae rough-ness to the absorption is 3ωδεh(2k)/c cos3 θr (whih should be muh less than unity).6 Conluding remarksA perturbation-theoretial sheme was devised, with the surfae roughness as a perturbation pa-rameter, for the re�etion and refration of the eletromagneti waves for a semi-in�nite solid. Thepolarization degrees of motion has been introdued expliitly, within the Lorentz-Drude (plasma)model of polarizable, non-magneti, homogeneous matter. The �eld sattered by the surfaeroughness has been alulated within the �rst order of the perturbation sheme. It is shown thatthe omponent of the surfae roughness modulated with half the in-plane wavelength of the in-ident wave ontributes to the sattered �eld within the �rst-order approximation. Within thesame approximation, the �eld re�eted by the surfae roughness adds to the main (speularly)re�eted wave, while the �eld transmitted by the surfae roughness into the solid propagatesalong the same diretion as the inident wave (distint from the refrated wave). A (stritlytwo-dimensional) mode, resonant at the longitudinal frequeny of the solid, has been identi�ed,on�ned to the surfae, and propagating only on the surfae. The ontribution of the surfaeroughness to the re�etion (and transmission) oe�ient ours only in the higher-order of theperturbation sheme, starting with the seond-order (not alulated here). However, for dampingwaves in ondutors, the �rst order of the perturbation theory may ontribute to the re�etionand transmission oe�ients, as it was shown here.Aknolwdgments. The author is indebted to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for valuable disussions and a thourough reading of the manusript.
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