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omponentmodulated with half the in-plane wavelength of the in
ident wave; stri
tly two-dimensional mode,due to the surfa
e roughness, resonant at the longitudinal frequen
y of the solid.1 Introdu
tionRe
ently, there is a great deal of interest in the role played by the surfa
e roughness (
orrugation)in a large variety of physi
al phenomena, in
luding the dispersive properties of the surfa
e plasmon-polariton in nanoplasmoni
s,[1℄ terahertz-waves generation[2℄ or ele
troni
 mi
rostru
tures.[3, 4℄Enhan
ed, or suppressed, opti
al transmission in the subwavelength regime is asso
iated withsurfa
e 
orrugation,[5℄ whi
h indu
es also a highly-dire
tional opti
al emission.[6℄ Multiple s
at-tering has been emphasized, both experimentally and theoreti
ally, in light s
attered di�usely bya randomly rough surfa
e.[7℄ The s
attering theory within the Born approximation was appliedto the surfa
e roughness modelled by a dispersive (position dependent) diele
tri
 fun
tion.[8℄



2 J. Theor. Phys.The main di�
ulty in getting more de�nite results in su
h problems resides in modelling 
onve-niently the surfa
e roughness su
h as to arrive at more mathemati
ally operational approa
hes.[9℄We present here a perturbation-theoreti
al s
heme, with the surfa
e roughness as a perturbationparameter, whi
h allows the 
omputation of the ele
tromagneti
 �eld s
attered by the surfa
eroughness in a semi-in�nite solid. The s
heme is based on the equation of motion of the po-larization, whose degrees of freedom are expli
itly introdu
ed, within the well-knowm Lorentz-Drude (plasma) model of polarizable, non-magneti
, homogeneous matter. The s
attered �eld is
omputed within the �rst order of the perturbation theory, where the 
omponent of the surfa
eroughnes modulated with half the in-plane wavelength of the in
ident wave 
ontributes to s
at-tering. The wave re�e
ted by the surfa
e roughness adds to the main (spe
ularly) re�e
ted wave,while the wave s
attered by the surfa
e roughnesss into the solid propagates along the originaldire
tion of the in
ident wave (distin
t from the refra
ted wave). The surfa
e roughness 
on-tributes to the re�e
tion and transmission 
oe�
ients in higher orders of the perturbation theory(starting with these
ond order), as expe
etd. However, for damped waves in 
ondu
tors, thereexists a �rst-order 
ontribution to these 
oe�
ients, arisingfrom thes urfa
e roughness. As we 
ansee, the main qualitative features of the s
attering by surfa
e roughness (dire
tionality, 
hange inthe re�e
tion and transmission 
oe�
ients, et
) appear even in the �rst-order of the perturbationtheory. In addition, it is shown that the surfa
e roughness generates a surfa
e mode, i.e. a modestri
tly 
on�ned to, and propagating only on the surfa
e ( a two-dimensional wave), resonant atthe longitudinal frequen
y of the solid.2 Semi-in�nite solid with a rough surfa
eWe 
onsider a polarizable homogeneous body with a density n of mobile 
harges q moving ina uniform rigid neutralizing ba
kground. A small displa
ement u(R, t) of these 
harges, where
R = (r, z), r = (x, y) is the position ve
tor and t denotes the time, produ
es a 
hage density
ρ = −nqdivu and a 
urrent desity j = nqu̇, 
orresponding to a polarization P = nqu. The ve
torpotential is given by

A(R, t) =
1

c

∫

dR′
j(R

′

, t −
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∣
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∣

∣
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′| , (1)or, with the temporal Fourier transform,
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∣

∣

∣
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∣

∣

∣

, (2)where λ = ω/c. The s
alar potential Φ is obtained from divA = iλΦ (Lorenz gauge) and the�elds are given by E = iλA− gradΦ (ele
tri
 �eld), H = curlA or curlE = iλH (magneti
 �eld).We use the well-known de
omposition[10℄
eiλ|R−R

′|

|R− R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| (3)for the spheri
al wave (Green fun
tion) in equation (2), where κ =

√
λ2 − k2, as well as Fouriertransforms of the type

u(r, z) =
1

(2π)2

∫

dku(k, z)eikr . (4)For simpli
ity, the argument ω is omitted in su
h formulae, as well as, o
asionally, the waveve
torargument k.



J. Theor. Phys. 3Next, we 
onsider a semi-in�nite solid extending over the region z > h(r), where h(r), with
∫

drh(r) = 0, is the surfa
e roughness fun
tion, to be further spe
i�ed. The polarization for thisbody is taken as
P = nq(u, uz)θ(z − h(r)) , (5)where u lies in the r-plane, uz is dire
ted along the z-dire
tion and θ is the step fun
tion (θ(z) = 1for z > 0, θ(z) = 0 for z < 0). We assume that the magnitude of the roughness fun
tion h(r) ismu
h smaller than the relevant wavelengths of the ele
tromagneti
 �eld and use the approximation

P = P(0) + P(1) ,

P(0) = nq(u, uz)θ(z) , P(1) = −nqh(r)(u, uz)δ(z) ,
(6)where δ(z) is the Dira
 delta-fun
tion. The spe
i�
 
onditions of validity for su
h an approx-imation, whi
h is a �rst-order perturbation-theoreti
al approa
h, will be dis
ussed below. We
an see that the polarization P(0) 
orresponds to a half-spa
e extending over the region z > 0,while the polarization P(1) is a surfa
e polarization lo
alized on the surfa
e z = 0. We 
omputethe ele
tromagneti
 potentials and �elds as des
ribed above (equation (2)) for the 
harges and
urrents 
orresponding to these polarizations. The 
al
ulations are straightforward. Leaving asidethe fa
tor nq (it will be restored in the �nal formulae), we get

A(0) = 2πλ
κ

∫

0 dz′(u, uz)e
iκ|z−z′| ,

Φ0) = 2π
κ

∫ ∞
d dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫ ∞
d dz′uze

iκ|z−z′|

(7)and
A(1)(k, z) = −2πλ

κ
(g(k, z = 0), gz(k, z = 0)) eiκ|z| ,

Φ(1)(k, z) = −2π
[

1
κ
kg(k, z = 0) + gz(k, z = 0)sgn(z)

]

eiκ|z| ,
(8)where

g(k, z) =
∫

drh(r)u(r, z)e−ikr =
1

(2π)2

∫

dqh(q)u(k − q, z) (9)and a similar formula for gz(k, z), h(q) being the Fourier transform of the roughness fun
tion h(r)(sgn(z) = +1 for z > 0, sgn(z) = −1 for z < 0). Further on, we may omit the arguments k, z ofthese fun
tions and understand z = 0 in the fun
tions g, gz.In order to 
ompute the ele
tri
 �eld it is 
onvenient to refer the in-plane ve
tors (i.e., ve
torsparallel with the surfa
e of the half-spa
e) to the ve
tors k and k⊥ = ez × k, where ez is the unitve
tor along the z-dire
tion; for instan
e, we write
u = u1

k

k
+ u2

k⊥

k
(10)and a similar representation for the ele
tri
 �eld parallel with the surfa
e of the half-spa
e. The
omponents u1 and uz 
orrespond to the p-wave (parallel wave), while the 
omponent u2 
orre-sponds to the s-wave (from the German senkre
ht whi
h means perpendi
ular). In performing the
al
ulations, it is worth paying attention to the derivative of the modulus fun
tion, a

ording tothe equation

∂2

∂z2
eiκ|z−z′| = −κ2eiκ|z−z′| + 2iκδ(z − z′) . (11)
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tri
 �eld
E

(0)
1 = 2πiκ
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E
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κ
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E(1)
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κ
gz

)

eiκ|z| + 4πgzδ(z) ,

(13)where g1,2 are the proje
tions of g on the ve
tors k and, respe
tively, k⊥. It is easy to 
he
k thefollowing relations:
ikE

(0)
1 + ∂E

(0)
z

∂z
= −4π

(

iku1 + ∂uz

∂z

)

θ(z) − 4πuz(z = 0)δ(z) ,

k
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(0)
1
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+ iκ2E(0)

z = −4πiλ2uzθ(z)

(14)and
ikE

(1)
1 + ∂E

(1)
z

∂z
= 4πikg1δ(z) + 4πgzδ

′

(z) ,

k
∂E

(1)
1

∂z
+ iκ2E(1)

z = 4πiλ2gzδ(z) ,

(15)whi
h are the expression of Maxwell equations for this geometry.3 Equations of motion. The perturbation s
hemeIn polarizable homogeneous (non-magneti
) matter the displa
ement �eld u(R, t) is subje
ted toNewton's equation of motion
mü = q(E + E0) − mω2

cu − mγu̇ , (16)where m is the mass of the mobile 
harges, E is the ele
tri
 �eld of the polarization 
harges and
urrents (
al
ulated in the previous se
tion), E0 is an external ele
tri
 �eld, ωc is a 
hara
teristi
frequen
y and γ is a damping 
oe�
ient. This is the well-known Lorentz-Drude model of matterpolarization.[11℄-[13℄ Taking the temporal Fourier transform of equation, with Et = E + E0 thetotal ele
tri
 �eld, we get the ele
tri
 sus
eptibility χ(ω) = P/Et (P = nqE) and the diele
tri
fun
tion
ε(ω) = 1 + 4πχ(ω) =

ω2 − ω2
c − ω2

p

ω2 − ω2
c + iωγ

, (17)where ωp =
√

4πnq2/m is the plasma frequen
y. For ωc = 0 in equation (17) we get the diele
tri
fun
tion of a 
ondu
tor; ωc 6= 0 
orresponds to diele
tri
s. This is also known as the Lydane-Sa
hs-Teller diele
tri
 fun
tion,[14℄ with the longitudinal frequen
y ωL =
√

ω2
c + ω2

p and the transversefrequen
y ωT = ωc. In general, the damping 
oe�
ient γ is mu
h smaller than these frequen
ies,
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ase γ = 0. It is worth noting the absen
e of the magneti
part of the Lorentz for
e in equation (16), a

ording to the non-relativisti
 motion of the slightdispla
ement u. It is easy to see that, apart from relativisti
 
ontributions, it would introdu
enon-linearities in equation (16), whi
h are beyond our assumption of a small displa
ement u.Using spatial Fourier transforms, this approximation 
an be formulated as Ku(K) ≪ 1, where Kis the waveve
tor.For temporal Fourier transforms equation (16) 
an also be written as (γ = 0)
(ω2 − ω2

c )u = − q

m
(E + E0) . (18)A

ording to the results given in the previous se
tion, the polarization ele
tri
 �eld E depends onthe displa
ement �eld u. For a plane surfa
e (h(r) = 0) we denote this displa
ement �eld by u(0)and write equation (18) as

(ω2 − ω2
c )u

(0) = − q

m

[

E(u(0)) + E0

] (19)(for z > 0). The ele
tri
 �eld E(u(0)) is given by equations (12) (with u repla
ed by u(0)). Inthe presen
e of the surfa
e roughness, a

ording to equation (6), the displa
ement �eld a
quiresa small additional 
ontribution, denoted by u(1), whi
h 
orresponds to the �eld E(1)(u), where
u = u(0) + u(1). This additional 
ontribution is governed by the equation of motion

(ω2 − ω2
c )u

(1) = − q

m
E(1)(u) . (20)In keeping with the �rst-order of the perturbation theory, we may write this equation as

(ω2 − ω2
c )u

(1) = − q

m
E(1)(u(0)) (21)(for z > 0), where E(1)(u(0)) is given by equations (13), with u repla
ed by u(0) in the g -fun
tions(equation (9)). We solve equations (19) for u(0) with an external plane wave �eld E0 and 
omputethe �eld E(1)(u(0)) by equations (13) (both for z > 0 and z < 0); it is the �eld s
attered by thesurfa
e roughness. The additional 
ontribution u(1) is obtained from equation (20).4 Plane surfa
e: zeroth order approximationWe fo
us now on equations (19) for a plane surfa
e, with the ele
tri
 �eld E given by equations(12). The in
ident wave is des
ribed by E0e

−iωt+ikr+iκz. We take the se
ond derivative of equation(19) for u
(0)
2 with respe
t to z and use the relation given by equation (11). We get

∂2u
(0)
2

∂z2
+ κ

′2u
(0)
2 = 0 , (22)where

κ
′2 = κ2 − λ2ω2

p

ω2 − ω2
c

= λ2ε − k2 . (23)Therefore, the solution is
u

(0)
2 = A2e

iκ′z , (24)where A2 is a 
onstant amplitude. We 
an see that the �eld propagates in the half-spa
e with amodi�ed waveve
tor κ′, a

ording to the Ewald-Oseen extin
tion theorem.[15℄ By equation (23)
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an 
he
k the well-known polaritoni
 dispersion relation εω2 = c2K
′2, where K′ = (k, κ′) is thewaveve
tor. Introdu
ing the solution given by equation (24) in equation (19) we get the amplitude

A2 given by
A2

ω2
pλ

2

2κ(κ′ − κ)
=

q

m
E02 . (25)Making use of equations (12) for z < 0 we get the re�e
ted �eld

E
(0)
2 = −2πnqA2

λ2

κ(κ′ + κ)
e−iκz =

κ − κ
′

κ + κ′ E02e
−iκz , z < 0 . (26)The (total) ele
tri
 �eld inside the half-spa
e is obtained from equation (19) as

E
(0)
2 = −m

q
(ω2 − ω2

c )A2e
iκ′z =

2κ

κ + κ′ E02e
iκ′z , z > 0 . (27)It is easy to see that equation (26) de�nes the well-known Fresnel re�e
tion 
oe�
ient[16℄

Rs =

∣

∣

∣

∣

∣

∣

E
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2
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∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣
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√

ε cos θr

cos θ0 +
√

ε cos θr

∣

∣

∣

∣

∣

2 (28)for the s-wave, where θ0,r denote the in
iden
e and, respe
tively, refra
tion angles, sin θ0=√
ε sin θr.Similarly, equation (27) de�nes the transmission 
oe�
ient for the s-wave.Equations (19) are solved in a similar way for u

(0)
1,z. It is 
onvenient to form the 
ombinations

iku
(0)
1 + ∂u(0)

z /∂z and k∂u
(0)
1 /∂z + iκ2u(0)

z , and use the relations given by equations (14). We �ndimmediately that u
(0)
1,z satisfy the same equation (22), with solutions

u
(0)
1 = A1e

iκ′z , u(0)
z = − k

κ′ A1e
iκ′z , (29)where the amplitude A1 is given by

A1ω
2
p

κκ′ + k2

2κ′(κ′ − κ)
=

q

m
E01 . (30)Inserting the solution given by equation (29) in equations (12) for z < 0 we get the re�e
ted �eld

E
(0)
1 = −2πnqA1

κκ′ − k2

κ′(κ′ + κ)
e−iκz =

κ
′ − κ

κ′ + κ
· κκ

′ − k2

κκ′ + k2
E01e

−iκz , z < 0 (31)and E(0)
z = (k/κ)E

(0)
1 ; hen
e, the Fresnel re�e
tion 
oe�
ient

Rp =

∣

∣

∣

∣

∣

√
ε cos θ0 − cos θr√
ε cos θ0 + cos θr

∣

∣

∣

∣

∣

2 (32)for the p-wave.[16℄ The (total) ele
tri
 �eld is proportional to u(0) (equation (19)), so we 
an getthe transmission 
oe�
ient for the p-wave. In both 
ases (s- and p-waves) we 
an 
he
k that there�e
tion and transmission 
oe�
ients add to unity, as expe
ted.It is worth noting that there appears a resonan
e in equation (31) for κκ
′

+ k2 = 0, provided κand κ
′ are both purely imaginary. This resonan
e is given by

ω2 =
2c2k2(ω2

L + ω2
T )

ω2
L + 2c2k2 +

√

(ω2
L − 2c2k2)2 − 4c2k2ω2

T

. (33)We 
an see that in the long-wavelength limit k → 0 the frequen
y given by equation (33) ap-proa
hes the (surfa
e) polaritoni
 frequen
y ω ∼ ck(1 + ω2
T /ω2

L), while in the opposite limit
k → ∞ we get the surfa
e plasmon frequen
y ω ≃

√

(ω2
l + ω2

T )/2. We may 
all this resonan
esurfa
e plasmon-polariton mode.[18℄
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attered �eldWe 
ompute now the s
attered �eld E(1), as given by equations (13), in the �rst-order approxima-tion of the perturbation theory, by making use of the displa
ement �eld u(0) given by equations(24) and (29).First, it is worth noting that the z-
omponent of the s
attered �eld given by equations (13) has alo
alized part
E

(1)
zl = 4πnqgzδ(z) . (34)This 
ontribution 
orresponds to the motion of the lo
alized part
P (1)

z = −nqgzδ(z) (35)of the polarization given by equations (6). Indeed, the equation of motion (16) 
an also be writtenas
(ω2 − ω2

c )P
(1)
z = −ω2

p

4π
E(1)

z , (36)and using the �eld given by equation (34) we get
(ω2 − ω2

c )gz = ω2
pgz . (37)We 
an see that the polarization, as well as the displa
ement �eld and the ele
tri
 �eld lo
alizedon the surfa
e exhibit a resonan
e for the longitudinal frequen
y √

ω2
p + ω2

c . This resonant modeis purely two-dimensional, i.e. it is 
on�ned to the surfa
e (z = 0) and is propagating only on thesurfa
e.Further on, we 
onsider only the propagating �elds in equations (13) (i.e. without E
(1)
zl ). First,we note that the �eld s
attered by the surfa
e roughness into the solid is propagating along thesame dire
tion K = (k, κ) as the in
ident wave (it is proportional to eikr+iκz), in 
ontrast withthe zeroth order �eld (refra
ted �eld) whi
h is transmitted into the solid along the dire
tion

K
′

= (k, κ
′

) (it goes like eikr+iκ′z). On the other hand, the �eld re�e
ted by the surfa
e roughnesspropagates along the same dire
tion (k, −κ) as the main re�e
ted �eld. This is true only withinthe �rst-order approximation of the perturbation theory. Higher-order approximations, both inthe expansion of the polarization given by equation (6) and in the equation of motion (20) willgive a �eld s
attered by the surfa
e roughness along any dire
tion (depending on the roughnessfun
tion).A

ording to equations (24) and (29), we assume a zeroth order displa
ement �eld of the form
u

(0)
1,2(r, z) = A1,2e

ikr+iκ′z (38)(and u(0)
z = −(k/κ

′

)u1). Then, it is easy to see that equations (9) lead to
g1,2 = A∗

1,2h(2k) , gz = − k

κ′ A
∗
1h(2k) , (39)where h(2k) is the Fourier transform of the roughness fun
tion h(r) for twi
e the in-plane waveve
-tor k of the in
ident wave. For instan
e, if h(r) = 2h cos 2kr, then h(2k) = h. We 
an see that,within the �rst-order theory of perturbation, only the surfa
e roughness modulated with half thein-plane wavelength of the in
ident wave 
ontributes to the s
attering. Assuming A1,2 real, fromequations (13), (26) and (31) we 
an write the re�e
ted �eld as

E1,2 = E
(0)
1,2 + E

(1)
1,2 = E

(0)
1,2

[

1 + i(κ
′

+ κ)h(2k)
]

, z < 0 (40)



8 J. Theor. Phys.(and Ez = (k/κ)E1). Hen
e, we 
an see the 
ondition of validity ∣

∣

∣(κ
′

+ κ)h(2k)
∣

∣

∣ ≪ 1 for theperturbation s
heme employed here: the magnitude of the roughness fun
tion should be mu
hsmaller than the relevent wavelengths. This 
ondition 
an also be put in a more interesting formas
(
√

ε cos θr + cos θ0)h(2k) ≪ λ , (41)where ε is the diele
tri
 fun
tion, θ0,r are the in
iden
e and, respe
tively refra
tion angles (sin θ0 =√
ε sin θr) and λ = c/ω is the wavelength of the in
ident wave. A similar 
ondition holds for the�eld s
attered into the solid, whose amplitudes satisfy a relation similar with equation (40).We 
an see from equation (40) that, in general, the surfa
e roughness 
ontributes to the re�e
-tion (and transmission) 
oe�
ient in the se
ond-order of the perturbation theory, as expe
ted.However, for 
ondu
tors (ωc = 0) it may happen that κ

′ a
quires purely imaginary values (espe-
ially for large in
iden
e angles). Then, the wave is damped inside the 
ondu
tor, and the surfa
eroughness 
hanges the re�a
tion 
oe�
ient a

ording to
R → R

[

1 − 2
∣

∣

∣κ
′
∣

∣

∣ h(2k)
]

. (42)A 
ooresponding in
rease o

urs in the (damped) transmission 
oe�
ient.It is easy to see that the in
lusion of the damping fa
tor γ in equation (16) leads to an imaginarypart
δε =

iωγω2
p

(ω2 − ω2
c )

2
(43)in the diele
tri
 fun
tion and, 
orrespondingly (by using εω2 = c2K

′2), an imaginary part δκ
′

=
ωδε/2c cos3 θr. We 
an see from equation (40) that the relative 
ontribution of the surfa
e rough-ness to the absorption is 3ωδεh(2k)/c cos3 θr (whi
h should be mu
h less than unity).6 Con
luding remarksA perturbation-theoreti
al s
heme was devised, with the surfa
e roughness as a perturbation pa-rameter, for the re�e
tion and refra
tion of the ele
tromagneti
 waves for a semi-in�nite solid. Thepolarization degrees of motion has been introdu
ed expli
itly, within the Lorentz-Drude (plasma)model of polarizable, non-magneti
, homogeneous matter. The �eld s
attered by the surfa
eroughness has been 
al
ulated within the �rst order of the perturbation s
heme. It is shown thatthe 
omponent of the surfa
e roughness modulated with half the in-plane wavelength of the in-
ident wave 
ontributes to the s
attered �eld within the �rst-order approximation. Within thesame approximation, the �eld re�e
ted by the surfa
e roughness adds to the main (spe
ularly)re�e
ted wave, while the �eld transmitted by the surfa
e roughness into the solid propagatesalong the same dire
tion as the in
ident wave (distin
t from the refra
ted wave). A (stri
tlytwo-dimensional) mode, resonant at the longitudinal frequen
y of the solid, has been identi�ed,
on�ned to the surfa
e, and propagating only on the surfa
e. The 
ontribution of the surfa
eroughness to the re�e
tion (and transmission) 
oe�
ient o

urs only in the higher-order of theperturbation s
heme, starting with the se
ond-order (not 
al
ulated here). However, for dampingwaves in 
ondu
tors, the �rst order of the perturbation theory may 
ontribute to the re�e
tionand transmission 
oe�
ients, as it was shown here.A
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