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Abstract

The electromagnetic field scattered by a rough surface of a semi-infinite solid is computed
within the first-order of a perturbation scheme with the surface roughness as a perturbation
parameter. The calculations are based on the equation of motion of the polarization within
the Lorentz-Drude (plasma) model of polarizable, non-magnetic, homogeneous matter. It is
shown that the surface roughness contributes its component modulated with half the in-plane
wavelength of the incident wave to the scattered field in the first order of the perturbation
scheme. Within the first-order approximation, the wave reflected by the surface roughness
adds to the main (specularly) reflected wave, while the wave transmitted by the surface
roughness into the solid propagates along the original direction of the incident wave (distinct
from the main refracted wave). A (two-dimensional) mode, resonant at the longitudinal
frequency of the solid, is identified, confined to (and propagating only on) the surface, due to
the surface roughness.
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calculations within the first-order approximation; contribution of the surface roughness component
modulated with half the in-plane wavelength of the incident wave; strictly two-dimensional mode,
due to the surface roughness, resonant at the longitudinal frequency of the solid.

1 Introduction

Recently, there is a great deal of interest in the role played by the surface roughness (corrugation)
in a large variety of physical phenomena, including the dispersive properties of the surface plasmon-
polariton in nanoplasmonics,|1] terahertz-waves generation|2] or electronic microstructures.|3, 4]
Enhanced, or suppressed, optical transmission in the subwavelength regime is associated with
surface corrugation,[5] which induces also a highly-directional optical emission.|6] Multiple scat-
tering has been emphasized, both experimentally and theoretically, in light scattered diffusely by
a randomly rough surface.|7] The scattering theory within the Born approximation was applied
to the surface roughness modelled by a dispersive (position dependent) dielectric function.|8|
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The main difficulty in getting more definite results in such problems resides in modelling conve-
niently the surface roughness such as to arrive at more mathematically operational approaches.|9]

We present here a perturbation-theoretical scheme, with the surface roughness as a perturbation
parameter, which allows the computation of the electromagnetic field scattered by the surface
roughness in a semi-infinite solid. The scheme is based on the equation of motion of the po-
larization, whose degrees of freedom are explicitly introduced, within the well-knowm Lorentz-
Drude (plasma) model of polarizable, non-magnetic, homogeneous matter. The scattered field is
computed within the first order of the perturbation theory, where the component of the surface
roughnes modulated with half the in-plane wavelength of the incident wave contributes to scat-
tering. The wave reflected by the surface roughness adds to the main (specularly) reflected wave,
while the wave scattered by the surface roughnesss into the solid propagates along the original
direction of the incident wave (distinct from the refracted wave). The surface roughness con-
tributes to the reflection and transmission coefficients in higher orders of the perturbation theory
(starting with thesecond order), as expecetd. However, for damped waves in conductors, there
exists a first-order contribution to these coefficients, arisingfrom thes urface roughness. As we can
see, the main qualitative features of the scattering by surface roughness (directionality, change in
the reflection and transmission coefficients, etc) appear even in the first-order of the perturbation
theory. In addition, it is shown that the surface roughness generates a surface mode, i.e. a mode
strictly confined to, and propagating only on the surface ( a two-dimensional wave), resonant at
the longitudinal frequency of the solid.

2 Semi-infinite solid with a rough surface

We consider a polarizable homogeneous body with a density n of mobile charges ¢ moving in
a uniform rigid neutralizing background. A small displacement u(R,t) of these charges, where
R = (r,z), r = (x,y) is the position vector and ¢ denotes the time, produces a chage density
p = —ngdivu and a current desity j = nqu, corresponding to a polarization P = nqu. The vector
potential is given by

/

(R, t—|R-R/|/c
1/dR,J( |R}—R’| /)’ 1)

AR, t) =

or, with the temporal Fourier transform,

iR, w) ,\f’
dR ———% 2
/ IR — R| ’ 2)

where A = w/c. The scalar potential @ is obtained from divA = i\® (Lorenz gauge) and the
fields are given by E = i\A — grad® (electric field), H = curlA or curlE = i\H (magnetic field).
We use the well-known decomposition|[10]

i)\|R_R" i dkl ik(r—r') ir|o—2| 3
R-R/ 271'/ K ’ ¥

for the spherical wave (Green function) in equation (2), where k = v/A? — k2, as well as Fourier
transforms of the type

1 ikr
u(r5) = G / dku(k, 2)e’™r (4)

For simplicity, the argument w is omitted in such formulae, as well as, ocasionally, the wavevector
argument k.
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Next, we consider a semi-infinite solid extending over the region z > h(r), where h(r), with
[drh(r) = 0, is the surface roughness function, to be further specified. The polarization for this
body is taken as

P = ng(u, u,)0(z — h(r)) , (5)

where u lies in the r-plane, u, is directed along the z-direction and 6 is the step function (6(z) = 1
for z > 0, 6(z) = 0 for z < 0). We assume that the magnitude of the roughness function h(r) is
much smaller than the relevant wavelengths of the electromagnetic field and use the approximation

P=PO PO

(6)
PO = ng(u, u.)0(z) , PY = —ngh(r)(u, u,)é(2) ,

where §(z) is the Dirac delta-function. The specific conditions of validity for such an approx-
imation, which is a first-order perturbation-theoretical approach, will be discussed below. We
can see that the polarization P(® corresponds to a half-space extending over the region z > 0,
while the polarization P®) is a surface polarization localized on the surface z = 0. We compute
the electromagnetic potentials and fields as described above (equation (2)) for the charges and
currents corresponding to these polarizations. The calculations are straightforward. Leaving aside
the factor ng (it will be restored in the final formulae), we get

A0 = % Jo d2'(u, u)e™F

(7)
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and
AD (K, 2) = —222 (g(k, 2 = 0), g.(k, 2 = 0)) e
(8)
dMW(k,2) = —27 [%kg(k, z2=0)+g.(k,z= 0)3971(2)} ezl
where
gk, z) = /alrh(r)u(r,z)e—ikr = (2;)2 /dqh(q)u(k— q,2) 9)

and a similar formula for g, (k, z), h(q) being the Fourier transform of the roughness function h(r)
(sgn(z) = +1 for z > 0, sgn(z) = —1 for z < 0). Further on, we may omit the arguments k, z of
these functions and understand z = 0 in the functions g, g..

In order to compute the electric field it is convenient to refer the in-plane vectors (i.e., vectors
parallel with the surface of the half-space) to the vectors k and k;, = e, x k, where e, is the unit
vector along the z-direction; for instance, we write

u:u1%+u2% (10)
and a similar representation for the electric field parallel with the surface of the half-space. The
components u; and u, correspond to the p-wave (parallel wave), while the component uy corre-
sponds to the s-wave (from the German senkrecht which means perpendicular). In performing the
calculations, it is worth paying attention to the derivative of the modulus function, according to
the equation

62 . ! . !
We“ﬂz_z = k27 4 20k (2 — o) . (11)
2



4 J. Theor. Phys.

We get the electric field
E%O) — ik f6>0 dz/ulem\z—z’\ 27rk 8 fO ds u, eirlz— z|
Eéo) _ 27r’i)\2 fooo dz/u26m\zfz’\ ’ (12)

EO = 27Tk a = o~ d2'wy einle—2'| 4 2mik” 27”k [0 d2'u et == #l — 4ru.0(2)

and A
EY = —om (kgy — kg.sgn(z)) e*l?

Eél) — 27rz)\ 2w em|z\ , (13)

ES) = 2mik (glsgn(z) — %gz) eirlzl 4mg.0(2)

where g; o are the projections of g on the vectors k and, respectively, k. It is easy to check the
following relations:

kB + 2B = e (ikuy + 22 ) 6(2) — dru.(z = 0)8(2) |

(14)
(0)
kagi + k2B = —4mi\2u,0(2)
and Y
ik;E%l) + agz — Arikg,6(2) + 4.0 (2) |
(15)

O 4 k2B = 4miNtg.o(z)

which are the expression of Maxwell equations for this geometry.

3 Equations of motion. The perturbation scheme

In polarizable homogeneous (non-magnetic) matter the displacement field u(R,t) is subjected to
Newton’s equation of motion

mii = ¢(E + Eo) — mw?u — myu (16)

where m is the mass of the mobile charges, E is the electric field of the polarization charges and
currents (calculated in the previous section), Ey is an external electric field, w, is a characteristic
frequency and v is a damping coefficient. This is the well-known Lorentz-Drude model of matter
polarization.|[11]-[13] Taking the temporal Fourier transform of equation, with E; = E + E; the
total electric field, we get the electric susceptibility x(w) = P/E; (P = ngE) and the dielectric

function ) ) )
w? — w; —wy

e(w)=1+4ry(w) = ) (17)

w? — w2 +iwy
where w, = y/4mng?/m is the plasma frequency. For w. = 0 in equation (17) we get the dielectric
function of a conductor; w,. # 0 corresponds to dielectrics. This is also known as the Lydane-Sachs-
Teller dielectric function,[14] with the longitudinal frequency wy = /w2 + w2 and the transverse
frequency wr = w.. In general, the damping coefficient v is much smaller than these frequencies,
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so we limit ourselves to the ideal case v = 0. It is worth noting the absence of the magnetic
part of the Lorentz force in equation (16), according to the non-relativistic motion of the slight
displacement u. It is easy to see that, apart from relativistic contributions, it would introduce
non-linearities in equation (16), which are beyond our assumption of a small displacement u.
Using spatial Fourier transforms, this approximation can be formulated as Ku(K) < 1, where K
is the wavevector.

For temporal Fourier transforms equation (16) can also be written as (y = 0)

(W? —wHu = (E+E) . (18)

_q

m
According to the results given in the previous section, the polarization electric field E depends on
the displacement field u. For a plane surface (h(r) = 0) we denote this displacement field by u®
and write equation (18) as

(W? —wHu® = —% {E(u(o)) + Eo} (19)

(for z > 0). The electric field E(u®) is given by equations (12) (with u replaced by u®). In
the presence of the surface roughness, according to equation (6), the displacement field acquires
a small additional contribution, denoted by u"), which corresponds to the field EV)(u), where
u = u® 4+ ul). This additional contribution is governed by the equation of motion

(w? — w?uV = —LEO () . (20)
m
In keeping with the first-order of the perturbation theory, we may write this equation as
(@ w2 = —ZEO(?) (21)
m

(for z > 0), where E®(u®) is given by equations (13), with u replaced by u® in the g -functions
(equation (9)). We solve equations (19) for u® with an external plane wave field Eg and compute
the field E® (u®) by equations (13) (both for z > 0 and z < 0); it is the field scattered by the
surface roughness. The additional contribution u(!) is obtained from equation (20).

4 Plane surface: zeroth order approximation

We focus now on equations (19) for a plane surface, with the electric field E given by equations
(12). The incident wave is described by Eqe~“!tkrticz - We take the second derivative of equation

(19) for ul” with respect to z and use the relation given by equation (11). We get

o2 (0) )
okl =0 )
where 22,2
’ w,
R2:H2_w2—fu2:)\28_k2' (23)
Therefore, the solution is ‘
ugO) — Azem/z ’ (24)

where A, is a constant amplitude. We can see that the field propagates in the half-space with a
modified wavevector «’, according to the Ewald-Oseen extinction theorem.|[15] By equation (23)
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we can check the well-known polaritonic dispersion relation ew? = ¢2K'2, where K’ = (k, ') is the
wavevector. Introducing the solution given by equation (24) in equation (19) we get the amplitude
Ay given by

w22 q
Ay—L—— = = Fy, . 25
22/<;(/<;’ —K) m 0 (25)
Making use of equations (12) for z < 0 we get the reflected field
A2 : K—K :

BV = —omngl,— " eint = B paemin <0. 26
2 ™mq 2/{(/{,+/{)6 ot 02€ ) R (26)

The (total) electric field inside the half-space is obtained from equation (19) as

. 2K P!

E(O):_T 2 D) At — Eroeit'? ~0. 27
2 q (W* — w;)Aze P 02¢ ;2 (27)

It is easy to see that equation (26) defines the well-known Fresnel reflection coefficient[16]

2
EY

Eos

cos By — /2 cos b, |
cos By + /€ cos 0,

Ry =

(28)

for the s-wave, where 6, denote the incidence and, respectively, refraction angles, sin 6p=+/c sin 6,..

Similarly, equation (27) defines the transmission coefficient for the s-wave.
(0)

1,z*

iku” + 0u© /02 and kou'” /02 + ik?u(®, and use the relations given by equations (14). We find
(0)

Equations (19) are solved in a similar way for w; .. It is convenient to form the combinations

immediately that u; , satisfy the same equation (22), with solutions

1,z
(0) iK'z (0) k iK'z
up =A€7 gy = _EAle , (29)
where the amplitude A, is given by
ki + k? q
Awi— " = 2 Fy . 30
1 2 (K — k) m (30)

Inserting the solution given by equation (29) in equations (12) for z < 0 we get the reflected field
-k, K — Kk KK —k? ,
B = —2mngA o ~_e7ins — : Ege™™ | 2 <0 31
1 g 1/{’(/4+/{)€ PRI x> 01€ y % (31)
and B = (l{;//ﬁ)E@; hence, the Fresnel reflection coefficient

Ve cos by — cos b, 2
Ve cos By + cos b,

R, = (32)
for the p-wave.[16] The (total) electric field is proportional to u® (equation (19)), so we can get
the transmission coefficient for the p-wave. In both cases (s- and p-waves) we can check that the
reflection and transmission coefficients add to unity, as expected.

It is worth noting that there appears a resonance in equation (31) for k' + k? = 0, provided &
and k" are both purely imaginary. This resonance is given by
C()2 — 202]{:2(("}% + w%) (33)
w? + 2c2k? + \/(w% — 2c2k?)? — 4c?k202,

We can see that in the long-wavelength limit & — 0 the frequency given by equation (33) ap-
proaches the (surface) polaritonic frequency w ~ ck(1 4+ w?/w?), while in the opposite limit
k — oo we get the surface plasmon frequency w ~ /(w? 4+ w?)/2. We may call this resonance
surface plasmon-polariton mode.|[18]
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5 The scattered field

We compute now the scattered field E®), as given by equations (13), in the first-order approxima-
tion of the perturbation theory, by making use of the displacement field u(®) given by equations
(24) and (29).

First, it is worth noting that the z-component of the scattered field given by equations (13) has a

localized part
EY) = 4mnqg.6(2) . (34)

This contribution corresponds to the motion of the localized part

PWY = —ngg.é(z) (35)

z

of the polarization given by equations (6). Indeed, the equation of motion (16) can also be written

as :
W

(@ ~WA)PO = 22 (36)
and using the field given by equation (34) we get
(w2 - wg)gz = ;2)92 . (37)

We can see that the polarization, as well as the displacement field and the electric field localized
on the surface exhibit a resonance for the longitudinal frequency /w2 + w?. This resonant mode

is purely two-dimensional, i.e. it is confined to the surface (z = 0) and is propagating only on the
surface.

Further on, we consider only the propagating fields in equations (13) (i.e. without ES)) First,
we note that the field scattered by the surface roughness into the solid is propagating along the
same direction K = (k, k) as the incident wave (it is proportional to e**+%2) in contrast with
the zeroth order field (refracted field) which is transmitted into the solid along the direction
K' = (k, ') (it goes like ¢’*+%'#). On the other hand, the field reflected by the surface roughness
propagates along the same direction (k, —x) as the main reflected field. This is true only within
the first-order approximation of the perturbation theory. Higher-order approximations, both in
the expansion of the polarization given by equation (6) and in the equation of motion (20) will
give a field scattered by the surface roughness along any direction (depending on the roughness
function).

According to equations (24) and (29), we assume a zeroth order displacement field of the form
ug?%(r, Z) = A1726ikr+i’i,z (38)

(and u® = —(k/k )u;). Then, it is easy to see that equations (9) lead to

k
g10= A h(2K) 6. =~ ATh(2K) | (39)

where h(2k) is the Fourier transform of the roughness function h(r) for twice the in-plane wavevec-
tor k of the incident wave. For instance, if h(r) = 2h cos 2kr, then h(2k) = h. We can see that,
within the first-order theory of perturbation, only the surface roughness modulated with half the
in-plane wavelength of the incident wave contributes to the scattering. Assuming A; » real, from
equations (13), (26) and (31) we can write the reflected field as

Erg = B{y + B = B3 [1+i(s' + k)h(2k)] , 2<0 (40)

)
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(and E, = (k/k)E7). Hence, we can see the condition of validity ‘(/@’ + ﬁ)h(Qk)‘ < 1 for the
perturbation scheme employed here: the magnitude of the roughness function should be much
smaller than the relevent wavelengths. This condition can also be put in a more interesting form
as

(Vecos b, + cosby)h(2k) < A | (41)

where ¢ is the dielectric function, 6, are the incidence and, respectively refraction angles (sin 6y =
Vvesingd,) and A = ¢/w is the wavelength of the incident wave. A similar condition holds for the
field scattered into the solid, whose amplitudes satisfy a relation similar with equation (40).

We can see from equation (40) that, in general, the surface roughness contributes to the reflec-
tion (and transmission) coefficient in the second-order of the perturbation theory, as expected.
However, for conductors (w. = 0) it may happen that Kk acquires purely imaginary values (espe-
cially for large incidence angles). Then, the wave is damped inside the conductor, and the surface
roughness changes the reflaction coefficient according to

R— R[1-2||n2k)] . (42)

A cooresponding increase occurs in the (damped) transmission coefficient.

It is easy to see that the inclusion of the damping factor 4 in equation (16) leads to an imaginary
part
iwvwf)

(W7 = 2P

de = (43)
in the dielectric function and, correspondingly (by using ew? = K /2), an imaginary part 0k =
wde /2ccos® B,. We can see from equation (40) that the relative contribution of the surface rough-
ness to the absorption is 3wdeh(2k)/ccos®§, (which should be much less than unity).

6 Concluding remarks

A perturbation-theoretical scheme was devised, with the surface roughness as a perturbation pa-
rameter, for the reflection and refraction of the electromagnetic waves for a semi-infinite solid. The
polarization degrees of motion has been introduced explicitly, within the Lorentz-Drude (plasma)
model of polarizable, non-magnetic, homogeneous matter. The field scattered by the surface
roughness has been calculated within the first order of the perturbation scheme. It is shown that
the component of the surface roughness modulated with half the in-plane wavelength of the in-
cident wave contributes to the scattered field within the first-order approximation. Within the
same approximation, the field reflected by the surface roughness adds to the main (specularly)
reflected wave, while the field transmitted by the surface roughness into the solid propagates
along the same direction as the incident wave (distinct from the refracted wave). A (strictly
two-dimensional) mode, resonant at the longitudinal frequency of the solid, has been identified,
confined to the surface, and propagating only on the surface. The contribution of the surface
roughness to the reflection (and transmission) coefficient occurs only in the higher-order of the
perturbation scheme, starting with the second-order (not calculated here). However, for damping
waves in conductors, the first order of the perturbation theory may contribute to the reflection
and transmission coefficients, as it was shown here.
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