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tThe motion is analyzed of a point harmoni
 os
illator 
oupled to a homogeneous elasti
medium and lo
alized either on the medium surfa
e or embedded in the medium. Two newelements are introdu
ed, one regarding the rea
tion of the os
illator to the medium andanother a 
oupling fa
tor. The present analysis is meant to be relevant for the e�e
ts aseismi
 motion may have upon a lo
alized struture, either natural or man-built. It is shownthat the rea
tion of the os
illator modi�es its inertia, whi
h in turn leads to a 
hange in theos
illator's eigenfrequen
y; this 
hange is 
ontrolled by the 
oupling fun
tion. The presenttreatment opens the way to introdu
e new, more realisti
 features in analyzing the e�e
tof the seismi
 motion uponlo
alzeid stru
tures, in parti
ular the non-linear features of the
oupling of the stru
ture with its lo
al site motion.Introdu
tion. In studies of seismi
 risk and hazard it is of utmost importan
e to assess thee�e
ts of the seismi
 motion upon lo
alized stru
tures, either natural or man-built. Usually, su
hstru
tures are viewed as lo
alized harmoni
 os
illators, with one or several degrees of freedomand 
orresponding eigenfrequen
ies (
hara
teristi
 frequen
ies). It is assumed that the seismi
motion a
ts as an external for
e upon su
h os
illators and the resonant regime is highlighted. It isdesirable of 
ourse to avoid the resonan
e, i.e. the stru
ture's 
hara
teristi
 frequen
ies must bedi�erent from the main frequen
ies of the seismi
 motion at the site of the stru
ture (lo
al seismi
motion).Two essential elements are overlooked in su
h a simpli�ed pi
ture: the rea
tion of the stru
tureba
k on the elasti
 medium and the 
oupling of the stru
ture to the elasti
 medium. We showhere a way of introdu
ing these two elemnts in the analysis and des
ribe the 
onsequen
es, somesurprising, of in
luding these two more realisti
 features.Stru
ture on the surfa
e. First, we 
onsider the free plane surfa
e of an in�nite, homogeneouselasti
 medium; we 
onsider elasti
 waves propagating on this surfa
e (Rayleigh waves) and assumea generi
 wave equation
ρü = F∆u (1)des
ribing the motion of the (two-dimensional) displa
ement ve
tor u; in equation (1) ρ is thesuper�
ial mass density and F is a generi
 super�
ial modulus of elasti
ity, su
h that the wavevelo
ity is given by c2 = F/ρ; the lapla
ian in equation (1) is the two-dimensional lapla
ian. Onthe other hand we assume a point-like harmoni
 os
illator with mass m and eigenfrequen
y Ωlo
alized at r0 on the surfa
e, des
ribed by the equation

mv̈ + mΩ2
v = 0 , (2)
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illator's displa
ement from its equilibrium position.The medium a
ts upon the os
illator with the for
e super�
ial density (F∆u)r=r0
; for an area Sof the 
onta
t surfa
e between the os
illator and the medium, the for
e a
ting upon the os
illatoris S(F∆u)r=r0

. Here we introdu
e a 
oupling fun
tion g and write the for
e as gS(F∆u)r=r0
;under the 
onditions, the equation of motion of the os
illator be
omes

mv̈ + mΩ2
v = gS(F∆u)r=r0

; (3)the area S must be mu
h smaller than the area 
onstru
ted with any relevant wavelength. The
oupling fun
tion g may have a 
omplex stru
ture; it may depend on the os
illator eigenmode(frequen
y Ω), on the os
illator amplitude, on the lo
al amplitude u of the wave and even on thetime t. We assume here the most simple situation whi
h 
orresponds to a 
onstant g. Obviously,
g ≤ 1.Similarly, the os
illator rea
ts ba
k upon the elasti
 medium, with its inertia for
e−gmv̈Sδ(r−r0),lo
alized at r0 and a�e
ted by the 
oupling fun
tion; the wave equation (1) be
omes

ρü = F∆u− gmv̈δ(r − r0) . (4)Equations (3) and (4) are two 
oupled equations, whi
h we solve here. We write equation (4) as
1

c2
ü − ∆u = −gmv̈

F
δ(r− r0) , (5)take the temporal Fourier transform, introdu
e the modulus of the waveve
tor k = ω/c and get

∆u + k2
u = −gmω2

v

F
δ(r − r0) ; (6)the solution of the equation

∆u + k2u = f (7)in two dimensions is given by[1℄
u =

1

4i

∫

dr′H
(1)
0 (k |r − r

′|)f(r′) , (8)sin
e
∆H

(1)
0 + k2H

(1)
0 = 4iδ(r) , (9)

H
(1)
0 being the Hankel fun
tion of zeroth degree and, at the same time, the Green fun
tion inequation (); its asymptoti
 behaviour is given by

H
(1)
0 (kr) ∼















2i
π

ln(kr) , kr → 0 ,

√

2π
kr

ei(kr+π/4) , kr → ∞ .

(10)Applying these formulae to equation (6) we get the parti
ular solution
up = −gmω2

v

4iF
H

(1)
0 (k |r − r0|) ≃ −gmω2

v

2πF
ln(k |r − r0|) , k |r − r0| ≪ 1 ; (11)we 
an see that a lo
alized sour
e generates 
ylindri
al waves on an elasti
 surfa
e, whi
h have alogarithmi
 singularity at the sour
e. A solution of the homogeneous equation (6) must be addedto this parti
ular solution in order to get the general solution; we 
hoose a free wave written as

u0 = A cos ω0(t − x/c) , (12)
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u0 = πA

[

δ(ω − ω0)e
iω0x/c + δ(ω + ω0)e

−iω0x/c
]

. (13)Now we 
ompute (∆u)r=r0
, where u = up + u0, in order to introdu
e it in equation (3); sin
e

∆ ln rr=0 = 2πδ(r) we have
(∆up)r=r0

= −gmω2
v

F
δ(r − r0)r=r0

≃ −gmω2
v

FS
, (14)while

(∆up)r=r0
= −ω2

0

c2
πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

. (15)Introdu
ing these quantities in the Fourier transform of equation (3) we get
m(Ω2 − ω2)v = −g2mω2

v−

−gSFω2

0

c2
πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

,

(16)or
v(ω) = − ω2

0

Ω2
−ω2(1−g2)

×

×gSρ
m

πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

.

(17)The most important result exhibited by equation (17) is the 
hange in the resonan
e frequen
y
ω → ω

√
1 − g2. As a result of its intera
tion with the elasti
 medium, the os
illator eigenfrequn
y

Ω 
hanges into Ω/
√

1 − g2 (gets "renormalized"). If we take the inverse Fourier transform we get
v(t) = − ω2

0

Ω2 − ω2
0(1 − g2)

gSρ

m
A cos ω0(t − x0/c) ; (18)if we take into a

ont the 
ontribution of the poles ω = ±Ω/

√
1 − g2 we get the solution 
or-responding to free os
illations at resonan
e; whi
h o

urs now at the modi�ed eigenfrequen
y

±Ω/
√

1 − g2. It is worth noting that for a perfe
t 
oupling 
orresponding to g = 1, there is not aresonan
e anymore.Point os
illator embedded in an elasti
 medium. Although not very realisti
, we examinehere the 
ase of a point os
illator embedded in a homogeneous, in�nite, elasti
 medium be
ausethe solution may appear more familiar. Equations (3) and (4) read now
mv̈ + mΩ2

v = gV (F∆u)R=R0
,

ρü = F∆u− gmv̈δ(R −R0) ,
(19)where ρ is the volumi
 density of mass, F is a generi
 (volumi
) modulus of elasti
ity; the wavevelo
ity has the same expression (and value) given by c2 = F/ρ and V (mu
h smaller than thevolume 
onstru
ted with any relevant wavelength) is the volume of the os
illator. The waveequation

1

c2
ü − ∆u = f (20)has the parti
ular solution[1℄

u =
1

4π

∫

dR′
f(R′, t − |R − R

′| /c)
|R− R′| ; (21)
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1

c2
ü− ∆u = −gmv̈

F
δ(R − R0) (22)we get the parti
ular solution

up = −gmv̈(t − |R −R0| /c)
4πF |R− R0|

(23)and
(∆up)R=R0

=
gmv̈(t)

F
δ(R − R0)R=R0

=
gmv̈(t)

FV
, (24)sin
e ∆(1/R) = −4πδ(R). Similarly, for a plane wave u0 = A cos ω0(t − x/c) we get

(∆u0)R=R0
= −(ω2

0A/c2) cos ω0(t − x0/c) . (25)The equation of motion (19) of the os
illator be
omes
mv̈ + mΩ2

v = g2mv̈ − gV Fω2
0

c2
A cosω0(t − x0/c) , (26)or

m(1 − g2)v̈ + mΩ2
v = −gρV ω2

0A cos ω0(t − x0/c) . (27)This is a typi
al equation of motion for a harmoni
 os
illator with a modi�ed eigenfrequen
y underthe a
tion of an external for
e.Con
lusion. In 
on
lusion we may say that the rea
tion of a point harmoni
 os
illator to theelasti
 medium to whi
h it is 
oupled modi�es the inertia of the os
illator, whi
h implies a 
hangein its eigenfrequen
y; this 
hange is 
ontrolled by the 
oupling fun
tion. The introdu
tion of the
oupling fun
tion and the rea
tion upon the elasti
 medium may bring important 
onsequen
esin estimating the resonan
e regime of a stru
ture (either natural or man-built) subje
ted to thea
tion of a seismi
 motion. The present treatment opens the way of introdu
ing various featuresin the 
oupling fun
tions, in order to be in more realisti
 situations; in parti
ular it is amenable tointrodu
ing the non-linearities whi
h may a�e
t the 
oupling of the stru
ture with its site motion.Referen
es[1℄ P. M. Morse and H. Fes
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