
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 216 (2013)ISSN 1453-4428A resonant oupling of a loalized harmoni osillator to an elasti mediumB. F. ApostolDepartment of Seismology, Institute for Earth's Physis,Magurele-Buharest Mg-6, POBox Mg-35, Romaniaemail: afelix�theory.nipne.roAbstratThe motion is analyzed of a point harmoni osillator oupled to a homogeneous elastimedium and loalized either on the medium surfae or embedded in the medium. Two newelements are introdued, one regarding the reation of the osillator to the medium andanother a oupling fator. The present analysis is meant to be relevant for the e�ets aseismi motion may have upon a loalized struture, either natural or man-built. It is shownthat the reation of the osillator modi�es its inertia, whih in turn leads to a hange in theosillator's eigenfrequeny; this hange is ontrolled by the oupling funtion. The presenttreatment opens the way to introdue new, more realisti features in analyzing the e�etof the seismi motion uponloalzeid strutures, in partiular the non-linear features of theoupling of the struture with its loal site motion.Introdution. In studies of seismi risk and hazard it is of utmost importane to assess thee�ets of the seismi motion upon loalized strutures, either natural or man-built. Usually, suhstrutures are viewed as loalized harmoni osillators, with one or several degrees of freedomand orresponding eigenfrequenies (harateristi frequenies). It is assumed that the seismimotion ats as an external fore upon suh osillators and the resonant regime is highlighted. It isdesirable of ourse to avoid the resonane, i.e. the struture's harateristi frequenies must bedi�erent from the main frequenies of the seismi motion at the site of the struture (loal seismimotion).Two essential elements are overlooked in suh a simpli�ed piture: the reation of the struturebak on the elasti medium and the oupling of the struture to the elasti medium. We showhere a way of introduing these two elemnts in the analysis and desribe the onsequenes, somesurprising, of inluding these two more realisti features.Struture on the surfae. First, we onsider the free plane surfae of an in�nite, homogeneouselasti medium; we onsider elasti waves propagating on this surfae (Rayleigh waves) and assumea generi wave equation
ρü = F∆u (1)desribing the motion of the (two-dimensional) displaement vetor u; in equation (1) ρ is thesuper�ial mass density and F is a generi super�ial modulus of elastiity, suh that the waveveloity is given by c2 = F/ρ; the laplaian in equation (1) is the two-dimensional laplaian. Onthe other hand we assume a point-like harmoni osillator with mass m and eigenfrequeny Ωloalized at r0 on the surfae, desribed by the equation

mv̈ + mΩ2
v = 0 , (2)



2 J. Theor. Phys.where v is the osillator's displaement from its equilibrium position.The medium ats upon the osillator with the fore super�ial density (F∆u)r=r0
; for an area Sof the ontat surfae between the osillator and the medium, the fore ating upon the osillatoris S(F∆u)r=r0

. Here we introdue a oupling funtion g and write the fore as gS(F∆u)r=r0
;under the onditions, the equation of motion of the osillator beomes

mv̈ + mΩ2
v = gS(F∆u)r=r0

; (3)the area S must be muh smaller than the area onstruted with any relevant wavelength. Theoupling funtion g may have a omplex struture; it may depend on the osillator eigenmode(frequeny Ω), on the osillator amplitude, on the loal amplitude u of the wave and even on thetime t. We assume here the most simple situation whih orresponds to a onstant g. Obviously,
g ≤ 1.Similarly, the osillator reats bak upon the elasti medium, with its inertia fore−gmv̈Sδ(r−r0),loalized at r0 and a�eted by the oupling funtion; the wave equation (1) beomes

ρü = F∆u− gmv̈δ(r − r0) . (4)Equations (3) and (4) are two oupled equations, whih we solve here. We write equation (4) as
1

c2
ü − ∆u = −gmv̈

F
δ(r− r0) , (5)take the temporal Fourier transform, introdue the modulus of the wavevetor k = ω/c and get

∆u + k2
u = −gmω2

v

F
δ(r − r0) ; (6)the solution of the equation

∆u + k2u = f (7)in two dimensions is given by[1℄
u =

1

4i

∫

dr′H
(1)
0 (k |r − r

′|)f(r′) , (8)sine
∆H

(1)
0 + k2H

(1)
0 = 4iδ(r) , (9)

H
(1)
0 being the Hankel funtion of zeroth degree and, at the same time, the Green funtion inequation (); its asymptoti behaviour is given by

H
(1)
0 (kr) ∼















2i
π

ln(kr) , kr → 0 ,

√

2π
kr

ei(kr+π/4) , kr → ∞ .

(10)Applying these formulae to equation (6) we get the partiular solution
up = −gmω2

v

4iF
H

(1)
0 (k |r − r0|) ≃ −gmω2

v

2πF
ln(k |r − r0|) , k |r − r0| ≪ 1 ; (11)we an see that a loalized soure generates ylindrial waves on an elasti surfae, whih have alogarithmi singularity at the soure. A solution of the homogeneous equation (6) must be addedto this partiular solution in order to get the general solution; we hoose a free wave written as

u0 = A cos ω0(t − x/c) , (12)
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u0 = πA

[

δ(ω − ω0)e
iω0x/c + δ(ω + ω0)e

−iω0x/c
]

. (13)Now we ompute (∆u)r=r0
, where u = up + u0, in order to introdue it in equation (3); sine

∆ ln rr=0 = 2πδ(r) we have
(∆up)r=r0

= −gmω2
v

F
δ(r − r0)r=r0

≃ −gmω2
v

FS
, (14)while

(∆up)r=r0
= −ω2

0

c2
πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

. (15)Introduing these quantities in the Fourier transform of equation (3) we get
m(Ω2 − ω2)v = −g2mω2

v−

−gSFω2

0

c2
πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

,

(16)or
v(ω) = − ω2

0

Ω2
−ω2(1−g2)

×

×gSρ
m

πA

[

δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]

.

(17)The most important result exhibited by equation (17) is the hange in the resonane frequeny
ω → ω

√
1 − g2. As a result of its interation with the elasti medium, the osillator eigenfrequny

Ω hanges into Ω/
√

1 − g2 (gets "renormalized"). If we take the inverse Fourier transform we get
v(t) = − ω2

0

Ω2 − ω2
0(1 − g2)

gSρ

m
A cos ω0(t − x0/c) ; (18)if we take into aont the ontribution of the poles ω = ±Ω/

√
1 − g2 we get the solution or-responding to free osillations at resonane; whih ours now at the modi�ed eigenfrequeny

±Ω/
√

1 − g2. It is worth noting that for a perfet oupling orresponding to g = 1, there is not aresonane anymore.Point osillator embedded in an elasti medium. Although not very realisti, we examinehere the ase of a point osillator embedded in a homogeneous, in�nite, elasti medium beausethe solution may appear more familiar. Equations (3) and (4) read now
mv̈ + mΩ2

v = gV (F∆u)R=R0
,

ρü = F∆u− gmv̈δ(R −R0) ,
(19)where ρ is the volumi density of mass, F is a generi (volumi) modulus of elastiity; the waveveloity has the same expression (and value) given by c2 = F/ρ and V (muh smaller than thevolume onstruted with any relevant wavelength) is the volume of the osillator. The waveequation

1

c2
ü − ∆u = f (20)has the partiular solution[1℄

u =
1

4π

∫

dR′
f(R′, t − |R − R

′| /c)
|R− R′| ; (21)
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1

c2
ü− ∆u = −gmv̈

F
δ(R − R0) (22)we get the partiular solution

up = −gmv̈(t − |R −R0| /c)
4πF |R− R0|

(23)and
(∆up)R=R0

=
gmv̈(t)

F
δ(R − R0)R=R0

=
gmv̈(t)

FV
, (24)sine ∆(1/R) = −4πδ(R). Similarly, for a plane wave u0 = A cos ω0(t − x/c) we get

(∆u0)R=R0
= −(ω2

0A/c2) cos ω0(t − x0/c) . (25)The equation of motion (19) of the osillator beomes
mv̈ + mΩ2

v = g2mv̈ − gV Fω2
0

c2
A cosω0(t − x0/c) , (26)or

m(1 − g2)v̈ + mΩ2
v = −gρV ω2

0A cos ω0(t − x0/c) . (27)This is a typial equation of motion for a harmoni osillator with a modi�ed eigenfrequeny underthe ation of an external fore.Conlusion. In onlusion we may say that the reation of a point harmoni osillator to theelasti medium to whih it is oupled modi�es the inertia of the osillator, whih implies a hangein its eigenfrequeny; this hange is ontrolled by the oupling funtion. The introdution of theoupling funtion and the reation upon the elasti medium may bring important onsequenesin estimating the resonane regime of a struture (either natural or man-built) subjeted to theation of a seismi motion. The present treatment opens the way of introduing various featuresin the oupling funtions, in order to be in more realisti situations; in partiular it is amenable tointroduing the non-linearities whih may a�et the oupling of the struture with its site motion.Referenes[1℄ P. M. Morse and H. Feshbah, Methods of Theoretial Physis, vol. 1, MGraw-Hill, NY(1953).© J. Theor. Phys. 2013, apoma�theor1.theory.nipne.ro


