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Abstract

The Michaelis-Menten law and the Monod-Wyman-Changeux model for allosteric kinetics
are derived by means of the general relaxation (decay) laws.

Michaelis-Menten law. In a classic paper[l] it was shown that the reaction
E+S=}'ES =M E+P (1)

where E is an enzyme, S is a "substrate", P is a product of reaction and k.3 are reaction
constants, obeys approximately the Michaelis-Menten law

dp S

— =const———— | 2

dt const + s )
where s, p are the concentrations of the substrate S and, respectively, product P and t is the time.
The derivation goes as follows:

de/dt = —kie - s + kay(es) + ks(es) ,
ds/dt = —kie - s+ ka(es) ,
d(es)/dt = ke - s — ko(es) — ks(es) ,
dp/dt = kyfes) .

where e and (es) are the concentration of the enzyme E and, respectively, the complex enzyme-
substrate FS; from the first and the third equations (3) we get e + (es) = const, which expresses
the conservation of the enzyme concentration; assuming the equilibrium ke - s = ky(es) (ds/dt =
0) we get e + (ki/ks)e - s = const from the conservation law, or e = const/(const + s) and
dp/dt = const - s/(const + s) from the last equation (3); this is the Michaelis-Menten law.

It is easy to see that this derivation and the kinetic equations (3) have several drawbacks; the
kinetic equations imply the law of mass action, based usualy on (low-dilution, high-mobility)
diffusion, which is rather unrealistic in enzymatic reactions; the final rate k3 must be much smaller
that the rate ks, in order to have equilibrium in the first step of the reaction; this implies a low
concentration of enzyme; it would be more reasonably to write the equilibrium as kie - s =



ko(es) + ks(es), which leads to the same Michaelis-Menten law,[2] or to admit the reversibility in
the last step of the kinetic equations, i.e. to write the reaction as

E+S=ES=PE+P. (4)

In any case, the underlying mechanism of the Michaelis-Menten law is questionable, though the
law with its saturation-like character seems to be valid in practice; some versions of the law imply
often an inflexion point (a sigmoid curve), which is validated by practice.

Kinetic laws. The problem consists in estimating the reaction product as a function of the
concentration of one reactants, say the substrate, at equilibrium for a general reaction written as
(E,S) = (F,P). We denote by f the concentration of the product and by x the concentation of
the substrate. Increasing = by dx will increase the product by df; the simplest law for this process
is df = BAdx, where B and A\ are constants. The product disappears also, with the simplest
(decaying, relaxing) law df=-Afdx. Combining the two contributions we get the kinetic equation

df
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the solution is

f=B+Ce ™, (6)

where C' is a constant; for a vanishing product at the initial z = 0, we get B + C' = 0 and
f=B1-e); (7)

the product is generated initially with the rate B, as obtained either from equation (7) for small
x (f ~ BAz) or from equation (5) by neglecting the small term \f; and for larger x it saturates
at f = B (equation (7)), i.e. its slope is vanishing in equation (5) which gives indeed f = B.

The processes described above can be complicated by including a cooperative aspect; instead of
df = BAdx we may have df = 2B\xdx and instead of df = —\fdx we may have df = —2\x fdz,
leading to the equation

daf
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whose solution is
f=B+Ce ™ | (9)
or
f=B1-e?) (10)

for f(z = 0) = 0. This solution has an inflexion point.

Similarly, we can consider the equation

d
4 + Aar® ' f = Bhaz® ! (11)
dx

with a > 1 and get a generalized solution

f=B1—e). (12)

Monod-Wyman-Changeux model.[3, 4] First we note that equation (7) can also be written

as
e — 1 AT
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e\r 14+ Mz const + x

: (13)



which is the Michaelis-Menten law. Similarly, using equation (10) or equation (12), we get f =~
const - ¥ [(const + x?) or f =~ const - z%/(const + z%), which is a generalization of the Michaelis-
Menten law.

The relaxation equation (6) suggests a decaying law, which, written for two populations (two
channels, allosteric activity), reads

N1 = Nme*)‘lx y N2 = Nogef)‘” = N(]l@i)\Qx/L s (14)

where L = Ny /Nog; it is worth noting that

et _ No1 /N1 _ No
eM®4Ler2® — No1/Ni+Noi/No ~ Ni+Na
(15)
Le2® _ No1 /N2 _ N
eM@4+Ler2® — Noi/Ni+Noi/No — Ni+Na
so that eM® and Le*?” can be used as statistical weigths. We may write also
eM® N (1+ M\az/n)" (16)
eMr 4 Lerr (14 MNx/n)" + L(1 + Aoz /n)"
or, redefining A\;z/n — x and denoting Ay = ¢\,
eM® o (1+ M\az/n)” _ (14 x)" ‘ (17)

eM® 4 Ler® (14 Ma/n)" + L(1 + Xoz/n)* (14 2)"+ L(1 + cx)"’

this is the Monod-Wyman-Changeux model. We can see that (1 4+ )™ has the aspect of a sum of
multiple states with weigths 1 and x, so we can define the mean of the z-state

v (4 2)" + 5 L1 + cx)” _ (1 +2)" '+ Lex(1 + cx)™! (18)
(1+2)"+ L(1 + cz)” (1+2)" + L(1 + cz)" ’

which is the so-called saturation function (it exhibits saturation and inflexions). By equation (12)
we may erplace by z* in equation (18), which is a generalization of the saturation law.
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