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Wave propagation in �nite media (and, in general, the motion of ontinous, �nite media) is a

standard subjet of di�erential equations with boundary onditions. In solids it aquires some

partiularities, arising from the disrete (atomisti) nature of solids, from their periodiity and,

possibly, from surfae (edge) modi�ations. The later point is partiularly emphasized in solids in

relation to the surfae (Tamm or Shokley) eletroni states.[1℄-[3℄ Less known are the modi�ation

of the periodi positions of atoms near the surfae, due to anharmoni fores.[4℄

A onvenient simpli�ation of the problem is obviously its redution to a one-dimensional hain.

First, we onsider here a semi-in�nite hain extending from n = 0; 1; :::to n ! 1. The typial

problem is provided by the tight binding approximation to the eletron motion, desribed by the

equations
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here " is the on-site energy, a

n

are the annihilation operators of the eletron states (amplitudes

of the atomi orbitals in the tight-binding waefuntion) and t is the transfer amplitude between

two neighbouring sites (hoping matrix element of the eletroni hamiltonian between two adjaent

atomi orbitals); we assume t > 0 (and " real). Equations (1) are the equations of motion for a

n

with the hamiltonian
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, where the summation extends over the nearest-neighbours.

We note the absene of an original on-site referene energy (" = 0 for t = 0) and the same

parameters (on-site energy and t) for the hain edge n = 0. Suh types of �nite-di�erene equations

have been studied extensively for various types of waves, like elasti waves, spin waves, et.[5℄-[8℄

The solutions of equations (1) are of the form a
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; introduing them in the regular set of

equations (1) we get r
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. We note that

the solution is periodi with period �k = 2�, so we may limit ourselves to �� < k � � (the �rst

Brillouin zone). The edge equation (1) gives 2 os k(A +B) = Ae
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+Be

�ik

, or Ae
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(whih formally is a
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. It follows that the solution reads

a
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= (k) sin(n+ 1)k, with the property (�k) = �(k), i.e. we should limit ourselves to half the

Brillouin zone 0 < k < � (as for standing waves) and write the general solution as
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and "(k) = 2t os k, i.e. a sin-Fourier series. We note also that sin(n + 1)k= sink as a polynomial

of os k = � is the Gegenbauer polynomial of the �rst order.[5℄ Therefore, the semi-in�nite hain
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of tight-binding eletrons exhibit the energy band of the in�nite hain, the e�et of the edge being

only to re�et the motion (and produe standing waves whih diminish the Brillouin zone to half).

For j�j > 1, we may hoose � = osh k, r

1;2

= e

�k

and a
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for k > 0 (a
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for

k < 0); it is easy to see that the edge equation (1) is not satis�ed. Atually, this equation has

modi�ed parameters (i.e. a

�1

6= 0); for instane, if it is writen as (2�� �)a

0

= a

1

, then we have

the damped solution a

n
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for one value of k given by e

k

= � (> 1); this is a (Tamm)

surfae (edge) state.

We onsider now a �nite hain with N + 1 sites, desribed by the equations
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we proeed in the same manner, and get � = os k for j�j � 1, a
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, restrited to

the �rst Brillouin zone �� < k � �; the two boundary onditions give
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i.e. sin(N + 2)k = 0, k =
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standing waves again; we limit ourselves to half the Brillouin zone and the solution is given by

the same equation (2)
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with the diferene that the energy is "

m

= 2t os[�m=(N +2)℄; atually, we should leave aside the

values k = 0 and k = � (likewise for the semi-in�nite hain), sine a

n

= 0 for these values; it is

easy to see that we have N + 1 states. However, for the orthogonality of the Fourier transforms

in equation (5) it is neessary to perform the summation over m from �(N + 2) to (N + 2).

The hain desribed by equations (3) an be viewed as the hain with �xed ends (a
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= a
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a hain with free ends would imply the vanishing of the derivatives of a

0

, a

N

. We may also impose

the yli ondition, i.e. we require a
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we get k =

2�

N+1

m and traveling waves a

n

= (k)e

ikn

. We an see that the position of the eigenvalues

does not depend relevantly on the boundary onditions for large N (in the thermodynami limit;

ompare k =

2�

N+1

m for yli ondition and k =

�

N+2

m for �xed ends). This is known as the

Ledermann theorem (for short-range fores).[9, 10℄ However, their density an hange; e.g., the

eigenvalues are twie as rare for yli ondition than for �xed ends; �xed ends or free ends are

pratially yli ondition for a hain with a double length.[7℄ The number of states is the same
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in the thermodynami limit, sine for �xed or free ends, where the eigenvalues are denser, we sum

only over half the Brillouin zone.

The ase j�j > 1, � = osh k for the �nite hain has a solution only if we modify the edge

parameters.
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